
Computational Plenoptic Imaging

SIGGRAPH 2012 Course

Monday, 6 August 2012, 9:00-10:30 am
Los Angeles Convention Center, Room 408B

Gordon Wetzstein
MIT Media Lab

gordonw@media.mit.edu

Ivo Ihrke
Saarland University

ihrke@mpi-inf.mpg.de

Douglas Lanman
MIT Media Lab

dlanman@media.mit.edu

Wolfgang Heidrich
University of British

Columbia
heidrich@cs.ubc.ca

Kurt Akeley
Lytro, Inc.

kakeley@lytro.com

Ramesh Raskar
MIT Media Lab

raskar@media.mit.edu

mailto:gordonw@media.mit.edu
mailto:ihrke@mpi-inf.mpg.de
mailto:dlanman@media.mit.edu
mailto:heidrich@cs.ubc.ca
mailto:kakeley@lytro.com
mailto:raskar@media.mit.edu


Abstract and Motivation

Spawned by the introduction of the Lytro light field camera to the con-
sumer market and recent accomplishments in the speed at which light can
be captured [Raskar et al. 2011] , a new generation of computational cam-
eras is emerging. By exploiting the co-design of camera optics and com-
putational processing, these cameras capture unprecedented details of the
plenoptic function — a ray-based model for light that includes the color
spectrum as well as spatial, temporal, and directional variation. Although
digital light sensors have greatly evolved in the last years, the visual infor-
mation captured by conventional cameras has remained almost unchanged
since the invention of the daguerreotype. All standard CCD and CMOS
sensors integrate over the dimensions of the plenoptic function as they
convert photons into electrons; in the process all visual information is irre-
versibly lost, except for a two-dimensional, spatially-varying subset — the
common photograph. In this course, we review the plenoptic function and
discuss approaches that aim at optically encoding high-dimensional visual
information that is then recovered computationally in post-processing.

This course is intended to review the state of the art in joint optical
light modulation and computational reconstruction of visual information
transcending that captured by traditional photography. In addition to the
plenoptic dimensions, we also consider high dynamic range image acqui-
sition as common sensors have a limited dynamic range. In contrast to
prior courses on general computational photography [Raskar and Tumblin
2006,2007] and a recent survey on the topic [Wetzstein et al. 2011], this
course gives a broad, well-structured, and intuitive overview of all aspects
of plenoptic image acquisition and focuses on two recent developments:
light field acquisition and ultra-fast cameras. We unveil the secrets behind
capturing light at a trillion frames per second and the Lytro camera. Our
course serves as a resource for interested parties by providing a categoriza-
tion of recent research and help in the identification of unexplored areas in
the field.

We will discuss all aspects of plenoptic image acquisition in detail.
Specifically, we begin by giving an overview of the plenoptic dimensions
and show how much of this visual information is irreversibly lost in con-
ventional image acquisition. We proceed by discussing the state of the art
in joint optical modulation and computation reconstruction for the acqui-
sition of high dynamic range imagery as well as spectral information. Two
parts, focusing on light field acquisition and ultra-fast optics respectively,
will unveil the secrets behind imaging techniques that have recently been
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featured in the news. We outline other aspects of light that are of inter-
est for various applications and wrap the course up with a short summary,
while leaving enough time for questions and a short discussion.

Prerequisites

This introductory-level course has no prerequisites.
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screen), low-cost eye care devices (Netra,Catra), new theoretical models to
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Course Outline

10 minutes: Introduction and Overview
Gordon Wetzstein

This part will introduce the speakers, present a motivation of the
course, and outline the individual parts. We will also introduce the
plenoptic function in this part and give an overview over its dimen-
sions along with a variety of different applications for their acquisi-
tion.

10 minutes: High Dynamic Range Imaging
Wolfgang Heidrich

This part will review approaches to high dynamic range (HDR) im-
age acquisition. The focus of this part of the course will be on tech-
niques that exploit joint optical light modulation and computational
reconstruction for HDR imaging.

10 minutes: Spectral Imaging
Ivo Ihrke

This part of the course will give a brief overview of multi-spectral and
hyper-spectral imaging and then proceed to discuss computational
photography techniques for spectral imaging in more detail.

10 minutes: Light Field Acquisition
Douglas Lanman

This part of the course reviews the general concepts behind light
fields and discusses a variety of light field acquisition approaches,
ranging from single-shot cameras (e.g., Lytro) to more exotic multi-
camera and high-dimensional multiplexing approaches. This section
also reviews emerging applications for light fields, including 3D dis-
plays, human-computer interaction, and medical imaging.

20 minutes: Inside the Lytro Light Field Camera
Kurt Akeley

With the recent launch of the first consumer light field camera by
Lytro, computational cameras have started to enter the mass mar-
ket. In this part of the course, we reveal the secrets behind the Lytro
camera, which was listed by TIME Magazine as one of the 50 best
inventions of 2011.
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20 minutes: Light Capture with a Trillion Frames per Second
Ramesh Raskar

This part of the course will cover the latest developments in ultra-fast
image acquisition. We will show how light propagation in free space
can be captured at one trillion frames per second. We will show how
ultra-fast image acquisition in combination with advanced compu-
tational reconstructions allows unprecedented applications such as
looking around corners and measuring BRDFs in the wild.

5 minutes: Further Light Properties
Gordon Wetzstein

In this part of the course, we outline the acquisition of light properties
that are not directly included in the plenoptic function but related,
such as polarization and Schlieren imaging. We will show how joint
optical light modulation and computational processing can also be
useful for these applications.

5 minutes: Summary and Q & A
All

This part will summarize how computational plenoptic cameras are
becoming the future of imaging by exploiting the co-design of dis-
play optics and computational processing. We will outline future di-
rections of this emerging field and allow for sufficient time to answer
questions and stimulate discussions.
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Computational Plenoptic Imaging
SIGGRAPH 2012 Course Notes

Gordon Wetzstein1 Ivo Ihrke2 Douglas Lanman1
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The plenoptic function is a ray-based model for light that includes the color spectrum as well as spatial, temporal,
and directional variation. Although digital light sensors have greatly evolved in the last years, one fundamental
limitation remains: all standard CCD and CMOS sensors integrate over the dimensions of the plenoptic function
as they convert photons into electrons; in the process, all visual information is irreversibly lost, except for a two-
dimensional, spatially-varying subset — the common photograph. In this part of the course notes, we provide a
review of approaches that optically encode the dimensions of the plenoptic function transcending those captured by
traditional photography and reconstruct the recorded information computationally. The literature survey provided
in this section is an updated version of a survey paper recently published by some of the authors [Wetzstein et al.
2011a]; a course on the dual topic of computational displays is being taught at SIGGRAPH 2012 as well [Wetzstein
et al. 2012].

1 Introduction

Evolution has resulted in the natural development of a variety of highly specialized visual systems among animals.
The mantis shrimp retina, for instance, contains 16 different types of photoreceptors [Marshall and Oberwinkler
1999]. The extraordinary anatomy of their eyes not only allows the mantis shrimp to see 12 different color channels,
ranging from ultra-violet to infra-red, and distinguish between shades of linear and circular polarization, but it also
allows the shrimp to perceive depth using trinocular vision with each eye. Other creatures of the sea, such as
cephalopods [Mäthger et al. 2009], are also known to use their ability to perceive polarization for communication
and unveiling transparency of their prey. Although the compound eyes found in flying insects have a lower spatial
resolution compared to mammalian single-lens eyes, their temporal resolving power is far superior to the human
visual system.

Traditionally, cameras have been designed to capture what a single human eye can perceive: a two-dimensional
trichromatic image. Inspired by the natural diversity of perceptual systems and fueled by advances of digital camera
technology, computational processing, and optical fabrication, image processing has begun to transcend limitations
of film-based analog photography. Applications for the computerized acquisition of images with a high spatial,
temporal, spectral, and directional resolution are manifold; medical imaging, remote sensing, shape reconstruction,
surveillance, and automated fabrication are only a few examples.

The plenoptic function [Adelson and Bergen 1991] provides a ray-based model of light encompassing most proper-
ties that are of interest for image acquisition. As illustrated in Figure 1, these include the color spectrum as well as
spatial, temporal, and directional light variation. In addition to these more traditional plenoptic dimensions [Adelson
and Bergen 1991], we also consider dynamic range a desirable property, as common sensors have a limited dynamic
range.

1.1 Computational Photography and Plenoptic Imaging

What makes plenoptic imaging different than general computational photography? Plenoptic imaging considers a
subset of computational photography approaches; specifically, those that aim at acquiring the dimensions of the
plenoptic function with combined optical light modulation and computational reconstruction. Computational pho-
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Sequential Image Capture
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High-Speed Imaging
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Multi-Camera Arrays
Hybrid CamerasMulti-Camera Arrays

Figure 1: Taxonomy and overview of plenoptic image acquisition approaches.

tography has grown tremendously in the last years with dozens of published papers per year in a variety of graphics,
vision, and optics venues. The dramatic rise in publications in this interdisciplinary field, spanning optics, sensor
technology, image processing, and illumination, has made it difficult to encompass all research in a single survey.

We provide a structured review of the subset of research that has recently been shown to be closely-related in terms
of optical encoding and especially in terms of reconstruction algorithms [Ihrke et al. 2010a]. Additionally, our report
serves as a resource for interested parties by providing a categorization of recent research and is intended to aid in
the identification of unexplored areas in the field.

1.2 Overview and Definition of Scope

In this report, we review the state of the art in joint optical light modulation and computational reconstruction
approaches for acquiring the dimensions of the plenoptic function. Specifically, we discuss the acquisition of high
dynamic range imagery (Section 2), the color spectrum (Section 3), light fields and directional variation (Section 4),
spatial super-resolution and focal surfaces (Section 5), as well as high-speed events (Section 6). We also outline the
acquisition of light properties that are not directly included in the plenoptic function, but related, such as polarization,
phase imaging, and time-of-flight (Section 7) and point the reader to more comprehensive literature on these topics.
Conclusions and possible future avenues of research are discussed in Section 8.

Due to the fact that modern, digital acquisition approaches are often closely related to their analog predecessors, we
outline these whenever applicable. For each of the plenoptic dimensions we also discuss practical applications of the
acquired data. As there is an abundance of work in this field, we focus on imaging techniques that are designed for
standard planar sensors. We will only highlight examples of modified sensor hardware for direct capture of plenoptic
image information. We do not cover pure image processing techniques, such as tone-reproduction, dynamic range
compression and tone-mapping [Reinhard et al. 2010], or the reconstruction of geometry [Ihrke et al. 2010b], BSDFs
and reflectance fields.

2 High Dynamic Range Imaging

High dynamic range (HDR) image acquisition has been a very active area of research for more than a decade. With
the introduction of the HDR display prototype [Seetzen et al. 2004] and its successor models becoming consumer
products today, the demand for high-contrast photographic material is ever increasing. Other applications for high
dynamic range imagery include digital photography, physically-based rendering and lighting [Debevec 2002], image
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editing, digital cinema, perceptual difference metrics based on absolute luminance [Mantiuk et al. 2005; Mantiuk
et al. 2011], virtual reality, and computer games. For a comprehensive overview of HDR imaging, including appli-
cations, radiometry, perception, data formats, tone reproduction, and display, the reader is referred to the textbook
by Reinhard et al. [Reinhard et al. 2010]. In this section, we provide a detailed and up-to-date list of approaches for
the acquisition of high dynamic range imagery.

2.1 Single-Shot Acquisition

According to DxOMark (www.dxomark.com), the latest high-end digital SLR cameras are equipped with CMOS
sensors that have a measured dynamic range of up to 13.5 f-stops, which translates to a contrast of 11,000:1. This
is comparable to that of color negative films [Reinhard et al. 2010]. In the future, we can expect digital sensors to
perform equally well as negative film in terms of dynamic range, but this is not the case for most sensors today.

Specialized sensors that allow high dynamic range content to be captured, have been commercially available for a
few years. These include professional movie cameras, such as Grass Valley’s Viper [Valley 2010] or Panavision’s
Genesis [Panavision 2010]. The SpheroCam HDR [SpheronVR 2010] is able to capture full spherical 360-degree
images with 26 f-stops and 50 megapixels in a single scan. A technology that allows per-pixel exposure control on
the sensor, thereby enabling adaptive high dynamic range capture, was introduced by Pixim [Pixim 2010]. This level
of control is achieved by including an analog-to-digital converter for each pixel on the sensor.

Capturing image gradients rather than actual pixel intensities was shown to increase the dynamic range of recorded
content [Tumblin et al. 2005]. In order to reconstruct intensity values, a computationally expensive Poisson solver
needs to be applied to the measured data. While a Gradient Camera is an interesting theoretical concept, to the
knowledge of the authors this camera has never actually been built.

The maximum intensity that can be resolved with standard ND filter arrays is limited by the lowest transmission
of the employed ND filters. Large, completely saturated regions in the sensor image are usually filled with data
interpolated from neighboring unsaturated regions [Nayar and Mitsunaga 2000]. An analysis of sensor saturation in
multiplexed imaging along with a Fourier-based reconstruction technique that boosts the dynamic range of captured
images beyond the previous limits was recently proposed [Wetzstein et al. 2010]. Figure 2 shows an example image
that is captured with an ND filter array on the left and a Fourier-based reconstruction of multiplexed data on the
right.

Figure 2: Sensor image captured with an array of ND filters [Nayar and Mitsunaga 2000] (left). Exposure brackets
and magnifications for Fourier-based HDR reconstruction from multiplexed sensor images [Wetzstein et al. 2010]
(right).

An alternative to mounting a fixed set of ND filters in front of the sensor is an aligned spatial light modulator, such as
a digital micromirror device (DMD). This concept was explored as Programmable Imaging [Nayar et al. 2004; Nayar
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et al. 2006] and allows for adaptive control over the exposure of each pixel. Unfortunately, it is rather difficult to
align a DMD with a sensor on a pixel-precise basis, partly due to the required additional relay optics; for procedures
to precisely calibrate such a system please consult [Ri et al. 2006]. Although a transmissive spatial light modulator
can, alternatively, be mounted near the aperture plane of the camera, as proposed by Nayar and Branzoi [Nayar
and Branzoi 2003], this Adaptive Dynamic Range Imaging approach only allows lower spatial frequencies in the
image to be modulated. The most practical approach to adaptive exposures is a per-pixel control of the readout in
software, as implemented by the Pixim camera [Pixim 2010]. This has also been simulated for the specific case
of CMOS sensors with rolling shutters [Gu et al. 2010], but only on a per-scanline basis. The next version of the
Frankencamera [Adams et al. 2010] is planned to provide non-destructive sensor readout for small image regions of
interest [Levoy 2010], which would be close to the desired per-pixel exposure control.

Rouf et al. [Rouf et al. 2011] proposed to encode both saturated highlights and low-dynamic range content in a
single sensor image using cross-screen filters. Computerized tomographic reconstruction techniques were employed
to estimate the saturated regions from glare created by the optical filters.

2.2 Multi-Sensor and Multi-Exposure Techniques

The most straightforward way of acquiring high dynamic range images is to sequentially capture multiple pho-
tographs with different exposure times and merge them into a single, high-contrast image [Mann and Picard 1995;
Debevec and Malik 1997; Mitsunaga and Nayar 1999; Robertson et al. 1999]. Some of these approaches simul-
taneously compute the non-linear camera response function from the image sequence [Debevec and Malik 1997;
Mitsunaga and Nayar 1999; Robertson et al. 1999]. Extensions to these techniques also allow HDR video [Kang
et al. 2003]. Here, successive frames in the video are captured with varying exposure times and aligned using opti-
cal flow algorithms. Today, all of these methods are well established and discussed in the textbook by Reinhard et
al. [Reinhard et al. 2010].

In addition to capturing multiple exposures, a static filter with varying transmissivity, termed Generalized Mosaic-
ing [Schechner and Nayar 2003b], can be mounted in front of the camera but also requires multiple photographs to
be captured. Alternatively, the optical path of an imaging device can be divided using prisms [Aggarwal and Ahuja
2004] (Split Aperture Imaging) or beam-splitters [McGuire et al. 2007] (Optical Splitting Trees), so that multiple
sensors capture the same scene with different exposure times. While these approaches allow dynamic content to
be recorded, the additional optical elements and sensor hardware make them more expensive and increase the form
factor of the device.

2.3 Analysis and Tradeoffs

Given a camera with known response function and dynamic range, Grossberg and Nayar [Grossberg and Nayar
2003] analyze the best possible set of actual exposure values for a low dynamic range (LDR) image sequence used
to compute an HDR photograph. By also considering variable ISO settings, Hasinoff et al. [Hasinoff et al. 2010]
provide the optimal choice of parameters for HDR acquisition with minimal noise.

3 Spectral Imaging

Imaging of the electromagnetic spectrum comes in a number of flavors. For photographs or movies, the goal is
typically to capture the colors perceived by the human visual system. Since the human visual system is based on
three types of color sensing cells (the cones), three color bands are sufficient to form a natural color impression. This
discovery is usually credited to Maxwell [Maxwell 1860].

In this report we are mainly concerned with methods for capturing the physical properties of light in contrast to
their perceptual counterparts that are dealt with in the areas of Applied Perception and Color Sciences. For readers
interested in issues of color perception, we refer to standard literature: Wyszeski and Stiles [Wyszecki and Stiles
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1982] provide raw data for many perceptual experiments. Fairchild’s book [Fairchild 2005] is a higher-level treatise
focusing on models for perceptual effects as, for instance, adaptation issues. Hunt’s books [Hunt 1991; ?] deal with
measurement and reproduction of color for human observers (e.g., in digital imaging, film, print, and television).
Reinhard et al. [Reinhard et al. 2008] discuss color imaging from a computer graphics perspective.

In this section we discuss spectral imaging from a radiometric, i.e. physical, perspective. To simplify the discussion
we first introduce some terminology as used in this subfield of plenoptic imaging.

3.1 Glossary of Terms

Spectral Radiance is the physical quantity emitted by light sources or reflected by objects. The symbol is Lλ and
its unit is [W/m2 · sr · nm]. Spectral radiance is constant along a ray. It is the quantity returned by the plenoptic
function.

Spectral Filters selectively attenuate parts of the electromagnetic spectrum. There are two principles of operation,
absorptive spectral filters remove parts of the spectrum by converting photons into kinetic energy of the atoms con-
stituting the material. Interference-based filters, also referred to as dichroic filters, consist of a transparent substrate
which is coated with thin layers that selectively reflect light, reinforcing and attenuating different wavelengths in
different ways. The number and thicknesses of the layers determine the spectral reflection profile. Absorptive fil-
ters have a better angular constancy, but heating may be an issue for narrow-band filters. Interference-based filters
have the advantage that the spectral filter curve can be designed within certain limits by choosing the parameters of
the coatings. However, the angular variation of these filters is significant. In general, filters are available both for
transmission and reflection modes of operation.

Narrow-Band Filters have a small support in the wavelength domain.

Broad-Band Filters have a large support in the wavelength domain. They are also known as panchromatic filters.

The Spectral Response Curve of a sensor is a function that describes its quantum efficiency with respect to photons
of different wavelengths. A higher value means a better response of the sensor to photons of a particular wavelength,
i.e. more electrons are freed due to the photo-electric effect.

Color is the perceptual interpretation of a given electro-magnetic spectrum.

The Gamut of an imaging or color reproduction system is the range of correctly reproducible colors.

Multi-Spectral Images typically consist of a low number of spectral bands. They often include a near infrared
(NIR) band. The bands typically do not form a full spectrum, there can be missing regions [Vagni 2007].

Hyper-Spectral Images contain thirty to several hundred spectral bands which are approximations to the full spec-
trum [Vagni 2007]. The different spectral bands do not necessarily have the same spatial resolution. In this report,
we will use the term multi-spectral to refer both to multi-spectral and hyper-spectral image acquisition methods.

A Multi-Spectral Data Cube is a stack of images taken at different wavelength bands.

3.2 Color Imaging

In a limited sense, the most common application of multi-spectral imaging is the acquisition of color images for
human observers. In principle, three spectral bands mimicking the human tri-stimulus system, are sufficient to
capture color images. This principle was first demonstrated by Maxwell performing color photography by time-
sequential acquisition of three images using different band-pass filters, see Figure 3. Display was achieved by super-
imposed spectrally filtered black-and-white projections using the same filters as used for capture. This acquisition
principle was in use for quite some time until practical film-based color photography was invented. One of the
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Figure 3: Tartan Ribbon, considered to be the world’s first color photograph, taken by Thomas Sutton for James
Clerk Maxwell in 1861 by successively placing three color filters in front of the camera’s main lens and taking three
monochromatic photographs (Wikimedia Commons).

earliest collections of color photographs was assembled by the Russian photographer Sergej Mikhailovich Prokudin-
Gorskij [Prokudin-Gorskii 1912]. Time-sequential imaging through different filters is still one of the main modes of
capturing multi-spectral images (see Sec. 3.3).

In the digital age, color films have been replaced by electronic CMOS or CCD sensors. The two technologies
to capture an instantaneous color image are optical splitting trees employing dichroic beam-splitter prisms [Optec
2011], as used in three-CCD cameras, and spatial multiplexing [Narasimhan and Nayar 2005; Ihrke et al. 2010a],
trading spatial resolution for color information. The spatially varying spectral filters in multiplexing applications
are also known as color filter arrays (CFAs). A different principle, based on volumetric, or layered measurements is
employed by the Foveon sensor [Foveon 2010], which captures tri-chromatic images at full spatial resolution.

The most popular spatial multiplexing pattern is the well known Bayer pattern [Bayer 1976]. It is used in most single-
sensor digital color cameras. The associated problem of reconstructing a full-resolution color image is generally
referred to as demosaicing. An overview of demosaicing techniques is given in [Ramanath et al. 2002; Gunturk
et al. 2005; Li et al. 2008b]. Li et al. [Li et al. 2008b] present a classification scheme of demosaicing techniques
depending on the prior model being used (explicitly or implicitly) and an evaluation of different classes of algorithms.
An interesting result is that the common constant-hue assumption seems to be less valid for modern imagery with
a wider gamut and higher dynamic range than the classical Kodak photo CD test set [Eastman Kodak Company
], which was scanned from film and has predominantly been used for evaluating demosaicing algorithms. Mostly,
demosaicing is evaluated through simulation. However, in a realistic setting, including camera noise, Hirakawa and
Parks [Hirakawa and Parks 2006] have shown that demosaicing on noisy images performs poorly and that subsequent
denoising is affected by demosaicing artifacts. They propose a joint denoising and demosaicing framework that can
be used with different demosaicing and denoising algorithms.

In recent years, a large number of alternative CFAs have been explored by camera manufacturers, some of which are
already being used in consumer products. Examples and many references to alternative CFA designs can be found in
Hirakawa and Wolfe’s work [Hirakawa and Wolfe 2008]. Traditionally, imaging through CFAs and reconstruction
of the signal have been seen as sub-sampling and up-sampling operations, respectively. Recent research in the
analysis of these multiplexing patterns has, however, produced a new view of multiplexing as a projection onto a
linear subspace of basis functions (the spectral responses of the filters in this case), i.e. of multiplexing as a coding
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operation [Lu and Vetterli 2009; Ihrke et al. 2010a]. Correspondingly, in this view, the reconstruction process is seen
as a recovery of the subspace, or a decoding of the signal. This view originated in Fourier analysis of color filter
arrays [Alleyson et al. 2005], stimulated by the desire to apply digital signal processing methodology to the color
multiplexing problem. Being a linear framework, it allows for the optimization of the subspace onto which color
is projected [Hirakawa and Wolfe 2007; Hirakawa and Wolfe 2008; Lu and Vetterli 2009]. Practical realizations
are alternative CFA designs that suffer from less aliasing than their ad-hoc, heuristically-designed counterparts.
While in [Hirakawa and Wolfe 2007; Hirakawa and Wolfe 2008; Lu and Vetterli 2009] a fixed number of primary
color response functions are assumed which can be linearly mixed to optimize the CFA, [Parmar and Reeves 2006;
Parmar and Reeves 2010] optimize the spectral response functions themselves in order to improve CFA design. More
recently, [Sajadi et al. 2011] proposed to use shiftable layers of CFAs; this design allows the color primaries to be
switched dynamically and provides an optimal SNR in different lighting conditions.

Generalizing color filter arrays, Narasimhan and Nayar [Narasimhan and Nayar 2005] proposed the Assorted Pixels
framework, where individual pixels can be modulated by arbitrary plenoptic filters, yielding an image mosaic that
has to be interpolated to obtain the full-resolution multi-channel image. In subsequent work [Yasuma et al. 2010],
aliasing within the Assorted Pixels framework was minimized. Ihrke et al. [Ihrke et al. 2010a] have shown how this
(and other) approaches that are tiling the image in a super-pixel fashion can be interpreted as belonging to one group
of imaging systems that share common analysis and reconstruction approaches.

In a different application, Wetzstein et al. [Wetzstein et al. 2010] explore CFA designs that lead to dynamic range
constraints in Fourier space. They show how an optimized CFA pattern in conjunction with optimization algorithms
allow trichromatic high dynamic range images to be captured.

3.3 Multi-Spectral Imaging

As for the other plenoptic dimensions, the three basic approaches of Figure 1, single-shot capture, sequential image
acquisition, and multiple device setups are valid alternatives for multi-spectral imaging and have been investigated
intensely.

3.3.1 Spectrometers

Traditionally, spectroscopy has been carried out for single rays entering an instrument referred to as spectrometer. It
was invented by Joseph von Fraunhofer in 1814 and used to discover the missing lines in the solar spectrum bearing
his name. Typically the ray is split into its constituent wavelengths which are displaced spatially. This is achieved
by placing either dispersive or diffractive elements into the light path, where the latter come both in transmissive
and reflective variants. If dispersion is used to split the ray, typically a prism is employed. The separation of
wavelengths is caused by the wavelength-dependent refractive index of the prism material. The function mapping
wavelength to refractive index is typically decreasing with increasing wavelength, but usually in a non-linear fashion.
Under certain conditions, it can even have an inverted slope (anomalous dispersion) [Hecht 2002]. Diffractive
elements are usually gratings, where maxima of the diffraction pattern are spatially shifted according to the grating
equation [Hecht 2002]. After the light path is split by some means, the light is brought onto a photo-detector which
can, for instance, be a CCD. Here, relative radiance of the individual wavelengths is measured. Spectrometers have
to be calibrated in two ways: first, the mapping of wavelengths to pixels has to be determined. This is usually
done using light sources with few and very narrow emission lines of known wavelength, the pixel positions of other
wavelengths are then interpolated [Gaigalas et al. 2009]. The second step establishes the relative irradiance measured
for every wavelength. This is done by measuring a surface of known flat reflectance, for example Spectralon, which
is illuminated with a known broad-band spectrum. The relative inhomogeneities imposed by the device are then
divided out [Gaigalas et al. 2009]. Spectrometers that are designed to image more than one ray are referred to as
imaging spectrometers.
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3.3.2 Scanning Imaging Spectrometers

Traditional devices are usually based on some form of scanning. Either a full two-dimensional image is acquired
with changed band-pass filters, effectively performing a spectral scan, or a pushbroom scan is performed where the
two-dimensional CCD images a spatial dimension on one axis of the image and the spectral dimension on the other.
The full multi-spectral data cube is then obtained by scanning the remaining spatial dimension.

Spectral Scanning can be performed in a variety of ways. Most of them involve either a filter wheel (e.g., [Wang
and Heidrich 2004]) or electronically tunable filters (ETFs). The former method usually employs narrow-band
filters such that spectral bands are imaged directly. The disadvantage is a low light throughput. Toyooka and
Hayasaka [Toyooka and Hayasaka 1997] present a system based on broad-band filters with computational inversion.
Whether or not this is advantageous depends on the camera noise [Ihrke et al. 2010a]. Electronically tunable filters
are programmable devices that can exhibit varying filter curves depending on control voltages applied to the device.
Several incarnations exist; the most well known include Liquid Crystal Tunable Filters (LCTFs) [cri inc 2009],
which are based on a cascade of Lyot-filter stages [Lyot 1944], acousto-optical tunable filters, where an acoustically
excited crystal serves as a variable diffraction grating, and interferometer-based systems, where the spectrum is
projected into the Fourier basis. In the latter, the spectral scan is performed in a multiplexing manner: by varying the
position of the mirror in one arm of an interferometer, for instance a Michelson-type device, different phase shifts
are induced for every wavelength. The resulting spectral modulation is in the form of a sinusoid. Thus, effectively,
the measurements are performed in the Fourier basis, similar to the Dappled Photography technique [Veeraraghavan
et al. 2007] for light fields (see Sec. 4). The spectrogram is obtained by taking an inverse Fourier transform. A good
overview of these technologies is given in [Gat 2000].

A more flexible way of programmable wavelength modulation is presented by Mohan et al. [Mohan et al. 2008b].
They modulate the spectrum of a entire image by first diffracting the light and placing an attenuating mask into
the “rainbow plane” of the imaging system. However, the authors do not recover multiplexed spectra but only
demonstrate modulated spectrum imaging. Usually, the scanning and the imaging process have to be synchronized,
i.e. the camera should only take an image when the filter in front of the camera is set to a known value. Schechner
and Nayar [Schechner and Nayar 2004] introduce a technique to computationally synchronize video streams taken
with a periodically moving spectral filter.

All previously discussed techniques attempt to recover scene spectra passively. An alternative technique using active
spectral illumination in a time-sequential manner is presented by Park et al. [Park et al. 2007]. The scene, which
can include ambient lighting, is imaged under different additional spectral lighting. The acquired images allow for
reasonably accurate per-pixel spectra to be recovered.

Spatial Scanning has been widely employed in satellite-based remote sensing. Two technologies are commonly
used: pushbroom and whiskbroom scanning. Whereas pushbroom scanning uses a two-dimensional sensor and can
thus recover one spectral and one spatial dimension per position of the satellite, whiskbroom systems employ a one-
dimensional sensor, imaging the spectrum of a single point which is then scanned to obtain a full scan-line with a
rotating mirror. The main idea is that a static scene can be imaged multiple times using different spectral bands and
thus a full multi-spectral data cube can be assembled. A good overview of space-borne remote sensing, and more
generally, multi-spectral imaging techniques is given in [Vagni 2007]

In computer vision, a similar concept, called Generalized Mosaicing, has been introduced by Schechner and Na-
yar [Schechner and Nayar 2001]. Here, a spatially varying filter is mounted in front of the main lens, filtering each
column of the acquired image differently. By moving the camera and registering the images, a full multi-spectral
data cube can be recovered [Schechner and Nayar 2002].
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3.3.3 Single-Shot Imaging Spectrometers

To enable the spectral acquisition of fast-moving objects, it is necessary to have single-shot methods available.
Indeed, this appears to be the focus of research in recent years. We can differentiate between three major modes
of operation. The first is a trade of spatial for spectral resolution. Optical devices are implemented that provide
empty space on the sensor which can, with a subsequent dispersion step through which a scene ray is split into its
wavelength constituents, be filled with spectral information. The second option is multi-device setups which operate
mostly like their spectral scanning counterparts, replacing sequential imaging by additional hardware. The third
class of devices employs computational imaging, i.e. computational inversion of an image formation process where
spectral information is recorded in a super-imposed manner.

Spatial Multiplexing of the spectrum, in general, uses a dispersive or diffractive element in conjunction with some
optics redirecting rays from the scene onto parts of the sensor surrounded by void regions. The void regions are then
filled with spectral information. All these techniques take advantage of the high resolution of current digital cameras.
Examples using custom manufactured redirecting mirrors include [Harvey et al. 2005; Gao et al. 2009; Gorman et al.
2010]. These techniques achieve imaging of up to 25 spectral bands in real-time and keep the optical axis of the
different slices of the multi-spectral data cube constant. Bodkin et al. [Bodkin et al. 2009] and Du et al. [Du et al.
2009] propose a similar concept by using an array of pinholes that limits the rays that can reach the sensor from
the scene. The pinholes are arranged such that a prism following in the optical path disperses the spectrum and
fills the pixels with spectral information. A different approach is taken by Fletcher-Holmes et al. [Fletcher-Holmes
and Harvey 2005]. They are interested in only providing a small “foveal region” in the center of the image with
multi-spectral information. For this, the center of the image is probed with fiber optic cables which are fed into
a standard spectrometer. Mathews et al. [Mathews 2008] and Horstmeyer et al. [Horstmeyer et al. 2009] describe
light field cameras with spectrally filtered sub-images. An issue with this design is the problem of motion parallax
induced by the different view points when registering the images (see Sec. 4). In general, this registration problem
is difficult and requires knowledge of scene geometry and reflectance which cannot easily be estimated.

Multi-Device Setups are similar in spirit to spectral scanning spectrometers, replacing the scanning process by
additional hardware. A straightforward solution recording five spectral bands is presented by Lau et al. [Lau and
Yang 2005]. They use a standard multi-video array where different spectral filters are mounted on each camera.
The motion-parallax problem mentioned previously is even worse in this case. McGuire et al. [McGuire et al. 2007]
discuss optical splitting trees where the individual sensors are aligned such that they share a single optical axis. The
design of beam-splitter/filter trees is non-trivial and the authors propose an automatic solution based on optimization.
A hybrid camera was proposed by Cao et al. [Cao et al. 2011], where the output of a high resolution RGB camera
was combined with that of a prism-based low spatial-resolution, high spectral-resolution camera.

Computational Spectral Imaging aims at trading computational complexity for simplified optical designs. Com-
puted Tomography Image Spectrometry (CTIS) was developed by Okamoto and Yamaguchi [Okamoto and Yam-
aguchi 1991]. They observed that by placing a diffraction grating in the optical path, several spectral copies overlay
on the image sensor. Every pixel is measuring a line integral along the spectral axis. Knowing the imaging geometry
enables a tomographic reconstruction of the spectra. A drawback to this technique is that not all data can be mea-
sured and thus an ill-conditioned problem, similar to limited angle tomography, is encountered. The technique was
extended to single shot imaging by Descour et al. [Descour and Dereniak 1995; Descour et al. 1997].

A relatively novel technique is referred to as Coded Aperture Snapshot Spectral Imaging (CASSI) [Gehm et al. 2007;
Wagadarikar et al. 2008; Wagadarikar et al. 2009]. In a series of papers the authors show how to construct different
devices to exploit the compressive sensing paradigm [Candès et al. 2006] which promises to enable higher resolution
computational reconstructions with less samples than predicted by the Shannon-Nyquist sampling theorem.
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The results presented for both CTIS and CASSI have only been demonstrated for relatively low-resolution, low-
quality spectral images. Therefore, these approaches are not yet suitable for high-quality photographic applications.

3.4 Applications

There is a huge amount of applications for multi-spectral imaging and we are just beginning to explore the possi-
bilities in computer graphics and vision. Traditional users of multi-spectral imaging technology are in the fields of
astronomy and remote sensing where, for instance, the mapping of vegetation, minerals, water surfaces, and haz-
ardous waste monitoring are of interest. In addition, multi-spectral imaging is used for material discrimination [Du
et al. 2009], ophthalmology [Lawlor et al. 2002], the study of combustion dynamics [Hunicz and Piernikarski 2001],
cellular dynamics [Kindzelskii et al. 2000], surveillance [Harvey et al. 2000], for deciphering ancient scrolls [Mans-
field 2005], flower photography [Rorslett 2008], medicine, agriculture, manufacturing, forensics, and microscopy. It
should not be forgotten that the military is an interested party [Vagni 2007].

4 Light Field Acquisition

While the 5D plenoptic function parameterizes all possible images of a general scene, being a slice of constant time
and wavelength of the full plenoptic function, it remains problematic to capture its directional variation over a wide
field of view. Consider the inside of a ceramic vase; a camera must be inserted inside to capture the intensity and color
of light rays traveling entirely within the concavity. However, if the viewer is restricted to move through an isotropic,
transparent medium (e.g., air or water) outside of the convex hull of a given object, then the plenoptic function can
be measured by translating a digital camera throughout the allowed viewer region. Levoy and Hanrahan [Levoy and
Hanrahan 1996] and Gortler et al. [Gortler et al. 1996] realized that, when the viewer is restricted to move outside
the convex hull, the 5D plenoptic function possesses one dimension of redundancy: the radiance of a given ray does
not change in free space. Thus, in a region free of occluders, the 5D plenoptic function can be expressed as a 4D
light field.

The concept of a light field predates its introduction in computer graphics. The term itself dates to the work of
Gershun [Gershun 1936], who derived closed-form expressions for illumination patterns projected by area light
sources. Ashdown [Ashdown 1993] continued this line of research. Moon and Spencer [Moon and Spencer 1981]
introduced the equivalent concept of a photic field and applied it to topics spanning lighting design, photography, and
solar heating. The concept of a light field is similar to epipolar volumes in computer vision [Bolles et al. 1987]. As
demonstrated by Halle [Halle 1994], both epipolar volumes and holographic stereograms can be captured by uniform
camera translations. The concept of capturing a 4D light field, for example by translating a single camera [Levoy
and Hanrahan 1996; Gortler et al. 1996] or by using an array of cameras [Wilburn et al. 2002], is predated by integral
photography [Lippmann 1908], parallax panoramagrams [Ives 1903], and holography [Gabor 1948].

This section catalogues existing devices and methods for light field capture, as well as applications enabled by such
data sets. Note that a sensor pixel in a conventional camera averages the radiance of light rays impinging over
the full hemisphere of incidence angles, producing a 2D projection of the 4D light field. In contrast, light field
cameras prevent such averaging by introducing spatio-angular selectivity. Such cameras can be classified into those
that primarily rely on multiple sensors or a single sensor augmented by temporal, spatial, or frequency-domain
multiplexing.

4.1 Multiple Sensors

As described by Levoy and Hanrahan [Levoy and Hanrahan 1996], a light field can be measured by capturing a set
of photographs taken by an array of cameras distributed on a planar surface. Each camera measures the radiance
of light rays incident on a single point, defined in the plane of the cameras, for a set of angles determined by the
field of view of each camera. Thus, each camera records a 2D slice of the 4D light field. Concatenating these
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Figure 4: Light field cameras can be categorized by how a 4D light field is encoded in a set of 2D images. Methods
include using multiple sensors or a single sensor with temporal, spatial, or frequency-domain multiplexing. (Top,
Left) Wilburn et al. [Wilburn et al. 2002] describe a camera array. (Top, Middle) Liang et al. [Liang et al. 2008]
achieve temporal multiplexing with a programmable aperture. (Top, Right) Georgiev et al. [Georgiev et al. 2008]
capture spatially-multiplexed light fields using an array of lenses and prisms. (Bottom) Raskar et al. [Raskar
et al. 2008] capture frequency-multiplexed light fields by placing a heterodyne mask [Veeraraghavan et al. 2007;
Veeraraghavan et al. 2008; Lanman et al. 2008] close to the sensor. (Figures reproduced from [Wilburn et al. 2002],
[Liang et al. 2008], [Georgiev et al. 2008], and [Raskar et al. 2008].)

slices yields an estimate of the light field. Wilburn et al. [Wilburn et al. 2002; Wilburn et al. 2005] achieve dynamic
light field capture using an array of up to 125 digital video cameras (see Figure 4, left). Yang et al. [Yang et al.
2002] propose a similar system using 64 cameras. Nomura et al. [Nomura et al. 2007] create scene collages using
up to 20 cameras attached to a flexible plastic sheet, combining the benefits of both multiple sensors and temporal
multiplexing. Custom hardware allows accurate calibration and synchronization of the camera arrays. Such designs
have several unique properties. Foremost, as demonstrated by Vaish et al. [Vaish et al. 2006], the captured light field
can be considered as if it were captured using a single camera with a main lens aperture extending over the region
occupied by the cameras. Such large-format cameras can not be practically constructed using refractive optics. Vaish
et al. exploit this configuration by applying methods of synthetic aperture imaging to obtain sharp images of objects
obscured by thick foliage.

4.2 Temporal Multiplexing

Camera arrays have several significant limitations; foremost, a sparse array of cameras may not provide sufficient
light field resolution for certain applications. In addition, the cost and engineering complexity of such systems pro-
hibit their use for many consumer applications. As an alternative, methods using a single image sensor have been
developed. For example, Levoy and Hanrahan [Levoy and Hanrahan 1996] propose a direct solution; using a me-
chanical gantry, a single camera is translated over a spherical or planar surface, constantly reoriented to point towards
the object of interest. Alternatively, the object can be mechanically rotated on a computer-controlled turntable. Ihrke
et al. [Ihrke et al. 2008] substitute mechanical translation of a camera with rotation of a planar mirror, effectively
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creating a time-multiplexed series of virtual cameras. Thus, by distributing the measurements over time, single-
sensor light field capture is achieved. Taguchi et al. [Taguchi et al. 2010a] show how capturing multiple images
of rotationally-symmetric mirrors from different camera positions allow wide field of view light fields to be cap-
tured. Gortler et al. [Gortler et al. 1996] propose a similar solution; the camera is manually translated and computer
vision algorithms are used to estimate the light field from such uncontrolled translations. These approaches trace
their origins to the method introduced by Chen and Williams [Chen and Williams 1993], which is implemented by
QuickTime VR.

The preceding systems capture the light field impinging on surfaces enveloping large regions (e.g., a sphere encom-
passing the convex hull of a sculpture). In contrast, hand-held light field photography considers capturing the light
field passing through the main lens aperture of a conventional camera. Adelson and Wang [Adelson and Wang 1992],
Okano et al. [Okano et al. 1999], and Ng et al. [Ng et al. 2005] extend integral photography to spatially multiplex
a 4D light field onto a 2D image sensor, as discussed in the following subsection. However, temporal multiplexing
can also achieve this goal.

Liang et al. [Liang et al. 2008] propose programmable aperture photography to achieve time-multiplexed light field
capture. While Ives [Ives 1903] uses static parallax barriers placed close to the image sensor, Liang et al. use
dynamic aperture masks (see Figure 4, middle). For example, consider capturing a sequence of conventional pho-
tographs. Between each exposure a pinhole aperture is translated in raster scan order. Each photograph records a
pencil of rays passing through a pinhole located at a fixed position in the aperture plane for a range of sensor pixels.
Similar to multiple sensor acquisition schemes, each image is a 2D slice of the 4D light field and the sequence can
be concatenated to estimate the radiance for an arbitrary light ray passing through the aperture plane. To reduce the
necessary exposure time, Liang et al. further apply Hadamard aperture patterns, originally proposed by Schechner
and Nayar [Schechner et al. 2007], that are 50% transparent.

The preceding methods all consider conventional cameras with refractive lens elements. Zhang and Chen [Zhang
and Chen 2005] propose a lensless light field camera. In their design, a bare sensor is mechanically translated
perpendicular to the scene. The values measured by each sensor pixel are recorded for each translation. By the
Fourier projection-slice theorem [Ng 2005], the 2D Fourier transform of a given image is equivalent to a 2D slice
of the 4D Fourier transform of the light field; the angle of this slice is dependent on the sensor translation. Thus,
tomographic reconstruction yields an estimate of the light field using a bare sensor, mechanical translation, and
computational reconstruction methods.

4.3 Spatial and Frequency Multiplexing

Time-sequential acquisition reduces the cost and complexity of multiple sensor systems, however it has one sig-
nificant limitation: dynamic scenes cannot be readily captured. Thus, either a high-speed camera is necessary or
alternative means of multiplexing the 4D light field into a 2D image are required. Ives [Ives 1903] and Lipp-
mann [Lippmann 1908] provide two early examples of spatial multiplexing with the introduction of parallax barriers
and integral photography, respectively. Such spatial multiplexing allows light field capture of dynamic scenes, but
requires a trade-off between the spatial and angular sampling rates. Okano et al. [Okano et al. 1999] and Ng et
al. [Ng et al. 2005] describe modern, digital implementations of integral photography, however numerous other
spatial multiplexing schemes have emerged.

Instead of affixing an array of microlenses directly to an image sensor, Georgiev et al. [Georgiev et al. 2006] add an
external lens attachment with an array of lenses and prisms (see Figure 4, right). Ueda et al. [Ueda et al. 2008a; Ueda
et al. 2008b] consider similar external lens arrays; however, in these works, an array of variable focus lenses, im-
plemented using liquid lenses controlled by electrowetting, allow the spatial and angular resolution to be optimized
depending on the observed scene.

Rather than using absorbing masks or refractive lens arrays, Unger et al. [Unger et al. 2003], Levoy et al. [Levoy
et al. 2004], Lanman et al. [Lanman et al. 2006], and Taguchi et al. [Taguchi et al. 2010b] demonstrate that a single
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photograph of an array of tilted, planar mirrors or mirrored spheres produces a spatially-multiplexed estimate of
the incident light field. Yang et al. [Yang et al. 2000] demonstrate a large-format, lenslet-based architecture by
combining an array of lenses and a flatbed scanner. Related compound imaging systems, producing a spatially-
multiplexed light field using arrays of lenses and a single sensor, were proposed by Ogata et al. [Ogata et al. 1994],
Tanida et al. [Tanida et al. 2001; Tanida et al. 2003], and Hiura et al. [Hiura et al. 2009].

Spatial multiplexing produces an interlaced array of elemental images within the image formed on the sensor. Veer-
araghavan et al. [Veeraraghavan et al. 2007] introduce frequency multiplexing as an alternative method for achieving
single-sensor light field capture. The optical heterodyning method proposed by Veeraraghavan et al. encodes the
4D Fourier transform of the light field into different spatio-angular bands of the Fourier transform of the 2D sen-
sor image. Similar in concept to spatial multiplexing, the sensor spectrum contains a uniform array of 2D spectral
slices of the 4D light field spectrum. Such frequency-domain multiplexing is achieved by placing non-refractive,
light-attenuating masks slightly in front of a conventional sensor (see Figure 4, bottom).

As described by Veeraraghavan et al., masks allowing frequency-domain multiplexing (i.e., heterodyne detection)
must have a Fourier transform consisting of an array of impulses (i.e., a 2D Dirac comb). In [Veeraraghavan et al.
2007], a Sum-of-Sinusoids (SoS) pattern, consisting of a weighted harmonic series of equal-phase sinusoids, is
proposed. As shown in Figure 5, such codes transmit significantly more light than traditional pinhole arrays [Ives
1903]; however, as shown by Lanman et al. [Lanman et al. 2008], these patterns are equivalent to a truncated Fourier
series approximation of a pinhole array for high angular sampling rates. In [Lanman et al. 2008], Lanman et al.
propose tiled-broadband patterns, corresponding to periodic masks with individual tiles exhibiting a broadband
Fourier transform. This family includes pinhole arrays, SoS patterns, and the tiled-MURA patterns proposed in that
work (see Figure 5). Such patterns produce masks with 50% transmission, enabling shorter exposures than existing
methods.

In subsequent work, Veeraraghavan et al. [Veeraraghavan et al. 2008] propose adaptive mask patterns, consisting of
aharmonic sinusoids, optimized for the spectral bandwidth of the observed scene. Georgiev et al. [Georgiev et al.
2008] analyze such heterodyne cameras and further propose masks placed external to the camera body. Rather than
using a global, frequency-domain decoding scheme, Ihrke et al. [Ihrke et al. 2010a] demonstrate how spatial-domain
decoding methods can be extended to frequency-multiplexed light fields.

4.4 Capture Applications

Given the wide variety of light field capture devices, a similarly diverse set of applications is enabled by such high-
dimensional representations of light transport. While Kanolt [Kanolt 1918] considers the related concept of a par-
allax panoramagram to achieve 3D display, light fields have also proven useful for applications spanning computer
graphics, digital photography, and 3D reconstruction.

In the field of computer graphics, light fields were introduced to facilitate image-based rendering [Levoy and Han-
rahan 1996; Gortler et al. 1996]. In contrast to the conventional computer graphics pipeline, novel 2D images are
synthesized by resampling the 4D light field. With sufficient light field resolution, views are synthesized without
knowledge of the underlying scene geometry. Subsequent to these works, researchers continued to enhance the fi-
delity of image-based rendering. For example, a significant limitation of early methods is that illumination cannot
be adjusted in synthesized images. This is in stark contrast to the conventional computer graphics pipeline, wherein
arbitrary light sources can be supported using ray tracing together with a model of material reflectance properties.
Debevec et al. [Debevec et al. 2000] address this limitation by capturing an 8D reflectance field. In their system, the
4D light field reflected by an object is measured as a function of the 4D light field incident on the object. Thus, an
8D reflectance field maps variations in the input radiance to variations in the output radiance, allowing image-based
rendering to support variation of both viewpoint and illumination.

Light fields parameterize every possible photograph that can be taken outside the convex hull of an object; as a
result, they have found widespread application in 3D television, also known as free-viewpoint video. Carranza et
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Figure 5: Lanman et al. [Lanman et al. 2008] introduce tiled-broadband patterns for mask-based, frequency-
multiplexed light field capture. (Top) Each row, from left to right, shows broadband tiles of increasing spatial dimen-
sions, including: pinholes [Ives 1928], Sum-of-Sinusoids (SoS) [Veeraraghavan et al. 2007], and MURA [Gottesman
and Fenimore 1989; Lanman et al. 2008]. (Bottom) The SoS tile converges to 18% transmission, whereas the MURA
tile remains near 50%. Note that frequency multiplexing with either SoS or MURA tiles significantly outperforms
conventional pinhole arrays in terms of total light transmission and exposure time. (Figures reproduced from [Lan-
man 2010].)

al. [Carranza et al. 2003] describe a system with an array of cameras surrounding one or more actors. Similar
systems have been developed by Matusik et al. [Matusik et al. 2000] and Starck et al. [Starck and Hilton 2008].
Image-based rendering allows arbitrary adjustment of the viewpoint in real-time. Vlasic et al. [Vlasic et al. 2009]
further demonstrate 3D reconstruction of human actors from multiple-camera sequences captured under varying
illumination conditions.

Light fields, given their similarity to conventional parallax panoramagrams [Ives 1928], have also found application
in the design and analysis of 3D displays. Okano et al. [Okano et al. 1999] adapt integral photography to create a 3D
television system supporting both multi-view capture and display. Similarly, Matusik and Pfister [Matusik and Pfister
2004] achieve light field capture using an array of 16 cameras and implement light field display using an array of 16
projectors and lenticular screens. Zwicker et al. [Zwicker et al. 2006] develop antialiasing filters for automultiscopic
3D display using a signal processing analysis. Hirsch et al. [Hirsch et al. 2009] develop a BiDirectional (BiDi) screen,
supporting both conventional 2D image display and real-time 4D light field capture, facilitating mixed multitouch
and gesture-based interaction; the device uses a lensless light field capture method, consisting of a tiled-MURA
pattern [Lanman et al. 2008] displayed on an LCD panel and a large-format sensor. Recently, Lanman et al. [Lanman
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et al. 2010] use an algebraic analysis of light fields to characterize the rank constraints of all dual-layer, attenuation-
based light field displays; through this analysis they propose a generalization of conventional parallax barriers, using
content-adaptive, time-multiplexed mask pairs to synthesize high-rank light fields with increased brightness and
spatial resolution. Wetzstein et al. [Wetzstein et al. 2011b] demonstrate how a stack of attentuating layers, such as
spaced transparencies or LCD panels, can be used in combination with computerized tomographic reconstruction to
display natural light fields of 3D scenes.

Post-processing of captured light fields can resolve long-standing problems in conventional photography. Ng [Ng
2005] describes efficient algorithms for digital image refocusing, allowing the plane of focus to be adjusted after a
photograph has been taken. In addition, Talvala et al. [Talvala et al. 2007] and Raskar et al. [Raskar et al. 2008]
demonstrate that high-frequency masks can be combined with light field photography to eliminate artifacts due
to glare and multiple scattering of light within camera lenses. Similarly, light field capture can be extended to
microscopy and confocal imaging, enabling similar benefits in extended depth of field and reduced scattering [Levoy
et al. 2004; Levoy et al. 2006]. Smith et al. [Smith et al. 2009] improve conventional image stabilization algorithms
using light fields captured with an array of 25 cameras. As described, most single-sensor acquisition schemes trade
increased angular resolution for decreased spatial resolution [Georgiev et al. 2006]; Bishop et al. [Bishop et al.
2009] and Lumsdaine and Georgiev [Lumsdaine and Georgiev 2009] apply priors regarding the statistics of natural
images and modified imaging hardware, respectively, to achieve super-resolution light field capture that, in certain
conditions, mitigates this resolution loss.

As characterized throughout this report, the plenoptic function of a given scene contains a large degree of redun-
dancy; both the spatial and angular dimensions of light fields of natural scenes are highly correlated. Recent work is
exploring the benefits of compressive sensing for light field acquisition. Fergus et al. [Fergus et al. 2006b] introduce
random lens imaging, wherein a conventional camera lens is replaced with a random arrangement of planar mirrored
surfaces, allowing super-resolution and 3D imaging applications. Babacan et al. [Babacan et al. 2009] propose a
compressive sensing scheme for light field capture utilizing randomly-coded, non-refractive masks placed in the
aperture plane. Ashok and Neifeld [Ashok and Neifeld 2010] propose compressive sensing schemes, again using
non-refractive masks, allowing either spatial or angular compressive light field imaging. As observed in that work,
future capture methods will likely benefit from joint spatio-angular compressive sensing; however, as discussed
later in this report, further redundancies exist among all the plenoptic dimensions, not just the directional variations
characterized by light fields.

5 Multiplexing Space and Focal Surfaces

The ability to resolve spatial light variation is an integral part of any imaging system. For the purpose of this report
we differentiate between spatial variation on a plane perpendicular to the optical axis and variation along the optical
axis inside a camera behind the main lens. The former quantity, transverse light variation, is what all 2D sensors
measure. In this section, we discuss approaches for very high-resolution imaging (Sec. 5.1), focal surface curvature
correction techniques of the light field inside a camera (Sec. 5.2), and extended depth of field photography (Sec. 5.3).

5.1 Super-Resolution and Gigapixel Imaging

Although exotic camera systems can resolve structures in the order of 100 nm [van Putten et al. 2011], the resolution
of standard photographs is usually limited by the physical layout and size of the photosensitive elements, the optical
resolution of employed optical elements, and the diffraction limit. Attempts to break these limits, which are sig-
nificantly larger than 100 nm, are referred to as super-resolution imaging. Such techniques have been of particular
interest to the vision community for many years. In most cases a sequence of slightly shifted low-resolution photos
is captured and fused into a single high-resolution image. The shifts are usually smaller than the pixel size; an exten-
sive review of such techniques can be found in [Baker and Kanade 2002; Borman and Stevenson 1998]. Sub-pixel
precise shifts of low-resolution images can be achieved by mechanical vibrations [LANDOLT et al. 2001; Ben-Ezra
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Figure 6: A wide field of view 1.7 gigapixel image captured by Cossairt et al. [Cossairt et al. 2011].

et al. 2005], by coding the camera’s aperture using phase [Ashok and Neifeld 2007] and attenuation [Mohan et al.
2008a] masks, by exploiting object motion in combination with temporally coded apertures [Agrawal and Raskar
2007], or by analyzing multiple frames of a video [Liu and Sun 2011]. For an increased resolution in space and
time, successive frames in videos of a single camera [Shahar et al. 2011] or multiple devices [Shechtman et al. 2002;
Shechtman et al. 2005] (see Sec. 6.2) can be analyzed instead. All super-resolution approaches require an optimiza-
tion problem to be solved for the unknown super-resolved image given multiple low-resolution measurements. This
is computationally expensive for higher resolutions and is usually an ill-posed problem requiring additional image
priors [Baker and Kanade 2002].

Gigapixel imaging is a relatively new field that, similar to super-resolution, aims at capturing very high-resolution
imagery. The main difference is that gigapixel imaging approaches generally do not try to beat the limits of sensor
resolution, but rather stitch a gigapixel panoramic image together from a set of megapixel images. These can be
photographed by mounting a camera on a computer-controlled rotation stage [Kopf et al. 2007], or a high-resolution
small-scale sensor that is automatically moved in the image plane of a large-format camera [Ben-Ezra 2011]. Both of
these techniques implement the concept of capturing a sequence of images with a single device that are composited
into a high-quality photograph. In this case, the parameter that is varied for each image in the sequence is the camera
pose. Alternatively, the optics of a camera can be modified, for instance with custom spherical lens elements, to
allow a single very high-resolution image to be captured instantaneously with multiple sensors [Cossairt et al. 2011].
An example scene captured with this technique is shown in Figure 6.

5.2 Optical Field Correction

Not only is the actual resolution of digital photographs limited by the pixel count and the diffraction limit, but
also by the applied optical elements. Standard spherical lenses have a focal surface that is, unlike most sensors,
not actually planar but curved. Significant engineering effort is put into the commercial development of complex
lens systems, especially in variable-focus camera objectives, that correct for the resulting image blur at sensor
locations away from the optical axis. Several approaches have been proposed to correct for what is usually called
field curvature, or more simply lens aberrations, and also phase aberrations caused by atmospheric turbulences in
astronomical imaging [Tyson 1991]. These usually integrate secondary optical assemblies into the system, such as
fiber optics [Kapany and Hopkins 1957], prisms [Inderhees 1973], lenslet arrays [Hanrahan and Ng 2006; Brady
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and Hagen 2009], coded attenuation masks [Pandharkar et al. 2010], or spatial light modulators [Tyson 1991] and
oftentimes require computational processing of the measured data.

5.3 Extended Depth of Field Photography

Depth of field (DOF), that is a depth-dependent (de)focus of a pictured scene, plays an important role in photography.
Controlled focus and defocus can be useful for highlighting objects of interest, such as people in a portrait where
the background is blurred. For most applications, however, all-focused imagery is desirable. Ideally, a photographer
should be able to refocus or completely remove all defocus as a post processing step in an image editing software or
directly on the camera. While this is one of the main applications for light fields, as discussed in Section 4, in this
section we explore alternative focus modulation approaches that do not directly capture the full 4D light field.

Although the depth-dependent size of the point spread function (PSF) or circle-of-confusion is effected by a variety
of parameters, the most important ones are the aperture size and the depth expansion of the photographed scene.
Larger apertures result in shallower depths of field but allow more light to reach the sensor, thereby decreasing the
noise level. While a shallow DOF is often undesirable, it is also unavoidable in many situations where a low noise
level is more important.

Removing the DOF blur in a standard photograph is a difficult problem because it requires a deconvolution of the
image with a spatially varying PSF. The PSF shape corresponds to that of the camera aperture, which can usually
be well approximated with a Gaussian distribution; unfortunately, a deconvolution with a Gaussian is an ill-posed
inverse problem, because high frequencies are irreversibly lost in the image capture. Applying natural image priors
can improve reconstructions (see e.g., [Levin et al. 2007b]). The spatially-varying PSF size is directly proportional
to the depth of the scene, which is in most cases unknown. A common approach to alleviate this problem is to
mechanically or optically modify the depth-dependent PSF of the imaging system so that it becomes depth-invariant
resulting in a reconstruction that only requires a spatially invariant deconvolution, which is much easier and does not
require knowledge of the scene depth.

One family of techniques that only requires a single shot to capture a scene with a depth-invariant PSF is called
Focal Sweep. Here, the PSF modulation is achieved by moving the object [Häusler 1972] or the sensor [Nagahara
et al. 2008] during the exposure time, or by exploiting the wavelength-dependency of the PSF to multiplex multiple
focal planes in the scene onto a single sensor image [Cossairt and Nayar 2010].

Alternatively, the apertures of the imaging system can be coded with cubic phase plates [Dowski and Cathey 1995] or
other phase masks [Ojeda-Castaneda et al. 2005; Ben-Eliezer et al. 2005; Chi and George 2001], diffusers [Garcia-
Guerrero et al. 2007; Cossairt et al. 2010], attenuation patterns [Levin et al. 2007a], polarization filters [Chi et al.
2006], or multi-focal elements [Levin et al. 2009].

All of the above listed focal sweep and coded aperture approaches optically modify the PSF of the optical system for
an extended DOF. The captured images usually need to be post-processed, for instance by applying a deconvolution.
An analysis of quality criteria of attenuation-based aperture masks for defocus deblurring was presented by Zhou
and Nayar [Zhou and Nayar 2009]; this analysis was extended to also consider PSF invertibility [Baek 2010].

Focal Stacks are series of images of the same scene, where the focal plane differs for each photograph in the se-
quence. A single, focused image can be composited by selecting the best-focused match in the stack for each image
region [Pieper and Korpel 1983]. The optimal choice of parameters, including focus and aperture, for the images in
a focal stack are well established [Hasinoff et al. 2009; Hasinoff and Kutulakos 2008]. Capturing a focal stack with
a large-scale high-resolution camera was implemented by Ben-Ezra [Ben-Ezra 2010]. Kutulakos and Hasinoff [Ku-
tulakos and Hasinoff 2009] proposed to multiplex a focal stack into a single sensor image in a similar fashion as
color filter arrays multiplex different color channels into a RAW camera image. However, to the knowledge of the
authors, this camera has not yet been built.

Green et al. [Green et al. 2007] split the aperture of a camera using circular mirrors and multiplex the result into
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Figure 7: Multiple frames of a flying bird multiplexed into a single photograph (left). These kinds of photographs
were shot with a photographic gun (right) by Etienne-Jules Marey as early as 1882.

different regions of a single photograph. In principle, this approach captures multiple frames with varying aperture
settings at a reduced spatial resolution in a single snapshot.

Other applications for flexible focus imaging include 3D shape reconstruction with shape from (de)focus (see
e.g. [Nayar and Nakagawa 1994; Zhou et al. 2009]) or Confocal Stereo [Hasinoff and Kutulakos 2006; Hasinoff
and Kutulakos 2009], video matting [McGuire et al. 2005], and extended depth of field projection [Grosse et al.
2010].

6 Multiplexing Time

Capturing motion and other forms of movement in photographs has been pursued since the invention of the da-
guerreotype. Early pioneers in this field include Eadweard Muybridge (e.g. [Muybridge 1957]) and Etienne-Jules
Marey (e.g. [Braun 1992]). As illustrated in Figure 7, much of the early work on picturing time focused on the study
of anatomy and locomotion of animals and humans; photographic apparatuses were usually custom built at that time
(Fig. 7, right). In this section, we discuss two classes of techniques for picturing motion: image capture at temporal
resolutions that are significantly lower (Sec. 6.1) or higher (Sec. 6.2) than the resolving capabilities of the human
visual system and approaches for joint optical and computational motion deblurring (Sec. 6.3).

6.1 Time Lapse Photography

Photographing scenes at very low temporal sampling rates is usually referred to as time lapse photography. Tech-
nically, time lapses can simply be acquired by taking multiple photographs from the same or a very close camera
position at larger time intervals and assembling them in a video. In order to avoid temporal aliasing, or in sim-
pler terms provide naturally looking motion, the exposure times should ideally be as long as the interval between
successive shots. Timothy Allen, photographer for the BBC, provides a very informative tutorial on time lapse pho-
tography on his website [Allen 2010]. The BBC has produced a number of astounding time lapse videos, including
many scenes in their Planet Earth and Life series.

6.2 High-Speed Imaging

Analog high-speed film cameras have been developed throughout the last century. A variety of technologies exist
that expose film at very high speeds including mechanical movement through temporally registered pins and rotating
prisms or mirrors. For a detailed discussion of the history of high-speed photography, applications, and the state of
the art about nine years ago, the reader is referred to the book by Ray [Ray 2002].
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Single Sensor Approaches

Today, high-speed digital cameras are commercially available. Examples are the Phantom Flex by Vision Re-
search [Research 2010], which can capture up to 2,570 frames per second (fps) at HD resolution, and the FAST-
CAM SA5 by Photron, which captures 7,500 fps at megapixel resolution or up to one million frames per second at
a reduced resolution (64 × 16 pixels) [Photron 2010]; both cameras employ CMOS sensor technology. A modified
CCD is used in the HyperVision HPV-2 by Shimadzu [Shimadzu 2010], which operates at one million fps for an
image resolution of 312 × 260 pixels. The Dynamic Photomechanics Laboratory at the University of Rhode Island
(mcise.uri.edu/dpml/facilities.html) houses an IMACON 468-MkII digital camera operating at 200 million fps, but
exact specifications of that camera are unknown to the authors. With the introduction of Casio’s Exilim camera
series (exilim.casio.com), which records low resolution videos at up to 1,000 fps, high-speed cameras have entered
the consumer market.

An alternative to high-speed sensors is provided by Assorted Pixels [Narasimhan and Nayar 2005], where spatial
resolution is traded for temporal resolution by measuring spatially interleaved, temporally staggered exposures on
a sensor. This approach is very similar to what standard color filter arrays do to acquire color information (see
Sec. 3.2). While this concept was initially only theoretical, it has recently been implemented by aligning a digital
micromirror device (DMD) with a CCD sensor [Bub et al. 2010]. Alternatively, the sensor readout could be con-
trolled on a per-pixel basis, as for instance provided by non-destructive sensor readout (e.g., [Semiconductor 2010]).
Reddy et al. [Reddy et al. 2011] built an LCOS-based camera prototype that modulates the exposure of each pixel
randomly throughout the exposure time. In combination with a non-linear sparse reconstruction algorithm, the 25
fps prototype has been shown to capture imagery with up to 200 frames per second without loss of spatial resolution
by exploiting sparsity in the spatio-temporal volume. Coded rolling shutters [Gu et al. 2010] have the potential to
implement this concept on a per-scanline basis.

Agrawal et al. [Agrawal et al. 2010b] demonstrated how a pinhole in the aperture plane of a camera, which moves
throughout the exposure time, allows the captured data to be adaptively re-interpreted. For this purpose, temporal
light variation is directly encoded in the different views of the light field that is simultaneously acquired with a Sum-
of-Sinusoids (SoS) attenuation-mask (see Sec. 4.3) in a single shot. Temporal variation and different viewpoints
cannot be separated in this approach.

Multiple Devices

Rather than photographing a scene with a single high-speed camera, multiple synchronized devices can be used.
One of the most popular movie scenes that shows high-speed motion captured by a camera array is the bullet time
effect in The Matrix. Here, a rig of digital SLR cameras, arranged along a virtual camera path, captures a scene at
precisely controlled time steps so that a virtual, high-speed camera can be simulated that moves along the predefined
path.

The direct capture of high-speed events with camera arrays was scientifically discussed by Wilburn et al. [Wilburn
et al. 2004; Wilburn et al. 2005]. In this approach, the exposure windows of the cameras are slightly staggered so that
a high-speed video can be composed by merging the data of the individual cameras. Shechtman et al. [Shechtman
et al. 2002; Shechtman et al. 2005] proposed to combine the output of multiple low-resolution video cameras for
space-time super-resolution. Coded exposures have been shown to optimize temporal super-resolution from multi-
camera arrays [Agrawal et al. 2010a] by alleviating the ill-posedness of the reconstruction. As required for spatial
super-resolution (see Sec. 5.1), temporal super-resolution requires computationally expensive post-processing of the
measured data.
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High-Speed Illumination

High-speed imagery can also be acquired by utilizing high-speed illumination. Harold ‘Doc’ Edgerton [Project
2009] created this field by inventing electronic strobes and using them to depict very fast motions in a similar
fashion as Eadweard Muybridge and Etienne-Jules Marey had done with more primitive, mechanical technologies
decades before him. Today, high-speed illumination, in an attosecond time scale, is more conveniently achieved with
lasers rather than stroboscopes [Baker et al. 2006; Ray 2002].

Stroboscopic illumination can be used to compensate for rolling shutter effects and synchronize an array of consumer
cameras [Bradley et al. 2009]. Narasimhan et al. [Narasimhan et al. 2008] exploited the high-speed temporal dither-
ing patterns of DLP-based illumination for a variety of vision problems, including photometric stereo and range
imaging. Coded strobing, by either illumination or controlled sensor readout, in combination with reconstructions
developed in the compressive sensing community, allows high-speed periodic events to be acquired [Veeraraghavan
et al. 2011]. Another high-speed imaging approach that is inspired by compressive sensing was proposed by Gupta
et al. [Gupta et al. 2010]. Here, a 3D spatio-temporal volume is adaptively encoded with a fixed voxel budget. This
approach encodes fast motions with a high temporal, but lower spatial resolution, while the spatial resolution in
static parts of the scene is maximized. A co-axial projector-camera pair was used to simulate controllable per-pixel
exposures.

Exotic Ultra High-Speed Imaging

Other imaging devices that capture ultra high-speed events are streak cameras. Rather than recording standard 2D
photographs, these devices capture 2D images that encode spatial information in one dimension and temporal light
variation in the other. These systems are usually combined with pulsed laser illumination and operate at temporal
resolutions of about one hundred femtoseconds [Hamamatsu 2010], corresponding to a framerate of ten trillion fps.
Another exotic ultra high-speed imager is the STREAM camera [Goda et al. 2009], which optically converts a 2D
image into a serial time-domain waveform that is recorded with a single high-speed photodiode at 6.1 million fps.

6.3 Motion Deblurring

Motion deblurring has been an active area of research over the last few decades. It is well known that deblur-
ring is an ill-posed problem, which is why many algorithms apply regularizers [Richardson 1972; Lucy 1974] or
natural image statistics (e.g., [Fergus et al. 2006a; Levin et al. 2007b]) to solve the problem robustly. Usually, high-
frequency spatio-temporal image information is irreversibly lost in the image formation because a standard shutter
along with the sensor integration time create a temporal rect-filter which has many zero-crossings in the Fourier
domain. In this section, we review coded image acquisition techniques that optically modify the motion PSF so that
the reconstruction becomes a well-posed problem.

Coded Single Capture Approaches

One of the earliest approaches of coded temporal sampling was introduced by Raskar et al. [Raskar et al. 2006] as the
Fluttered Shutter. The motion PSF in a single sensor image was modified by mounting a programmable liquid crystal
element in front of the camera lens and modulating its transmission over the exposure time with optimized binary
codes. These codes were designed to preserve high temporal frequencies, so that the required image deconvolution
becomes well-posed. Optimized codes and an algorithm for the problem of combined motion deblurring and spatial
super-resolution of moving objects with coded exposures were analyzed by Agrawal and Raskar [Agrawal and
Raskar 2007]. Both approaches use programmable, attenuation-based shutters to apply the codes, thereby sacrificing
light transmission, and require a manual rectification of object motion in the captured images. Optimality criteria
for motion PSF invertibility were extended to also allow high-quality PSF estimation [Agrawal and Xu 2009]; this
automates the motion rectification step.
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Figure 8: By varying the exposure time for successive frames in a video (left), multi-image deblurring (right) can
be made invertible [Agrawal et al. 2009].

Inspired by approaches that create depth-invariant point spread functions (see Sec. 5.3), Levin et al.[Levin et al. 2008]
showed how one-dimensional parabolic sensor motion during the exposure time can achieve a motion-invariant PSF
along the line of sensor motion. Compared to attenuation-coded temporal exposures, this method does not sacrifice
light transmission but requires prior knowledge of object motion and only works along one spatial direction. The
optimal tradeoffs for single image deblurring from either attenuation-coded exposures or sensor motion, in terms of
signal-to-noise ratio of the reconstructions, were analyzed by Agrawal and Raskar [Agrawal and Raskar 2009].

Image Sequences or Multiple Cameras

Synthetic Shutter Speed Imaging [Telleen et al. 2007] combines multiple sharp but noisy images captured with short
exposure times. The resulting image has a lower noise level; motion blur is reduced by aligning all images before
they are fused.

A Hybrid Camera for motion deblurring, consisting of a rig of two cameras, was introduced by Ben-Ezra and
Nayar [Ben-Ezra and Nayar 2003; Ben-Ezra and Nayar 2004]. One of the cameras captures the scene at a high
temporal, but low spatial resolution; the output of this camera is used to estimate the motion PSF, which in turn is
used to deblur the high-quality image captured by the other camera. Improvements of reconstructions for hybrid
cameras have recently been presented [Tai et al. 2010]. Hybrid camera architectures also provide the opportunity to
simultaneously deblur captured images and reconstruct a high-resolution depth map of the photographed scene [Li
et al. 2008a].

Motion blur in a video can be synthetically removed by applying super-resolution techniques to multiple successive
frames [Bascle et al. 1996]. Agrawal et al. [Agrawal et al. 2009] showed that improved results can be achieved
by modulating the exposure times for successive frames in video sequences so that a reconstruction from multiple
images becomes a well-posed problem. An example for this is shown in Figure 8.

7 Acquisition of Further Light Properties

In this section, we review acquisition approaches for light properties that are not considered dimensions of the
plenoptic function, but are closely related in terms of capture or application.
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7.1 Polarization

Polarization is an inherent property of the wave nature of light [Collett 2005], which is why we treat it separately
from the plenoptic function. Generally, polarization describes the oscillation of a wave traveling through space in the
transverse plane, perpendicular to the direction of propagation. Linear polarization refers to transverse oscillation
along a line, whereas spherical or elliptical polarization describe corresponding oscillation trajectories.

Although some animals, including mantis shrimp [Marshall and Oberwinkler 1999], cephalopods (squid, octopus,
cuttlefish) [Mäthger et al. 2009], and insects [Wehner 1976], are reported to have photoreceptors that are sensitive
to polarization, standard solid state sensors are not. The most straightforward way of capturing this information
is by taking multiple photographs of a scene with different polarizing filters mounted in front of the camera lens.
These filters are standard practice in photography to reduce specular reflections, increase the contrast of outdoor
images, and improve the appearance of vegetation. Alternatively, this kind of information can be captured using
polarization filter arrays [Schechner and Nayar 2003a] which, similar to generalized mosaics [Schechner and Nayar
2005], require multiple photographs to be captured. Recently, polarized illumination [Ghosh et al. 2010] has been
shown to have the potential to acquire all Stokes parameters necessary to describe polarization.

Applications for the acquisition of polarized light include image dehazing [Schechner et al. 2001; Schechner et al.
2003; Namer and Schechner 2005], improved underwater vision [Schechner and Karpel 2004; Schechner and Karpel
2005], specular highlight removal [Wolff and Boult 1991; Nayar et al. 1993; Müller 1996; Umeyama and Godin
2004], shape [Miyazaki et al. 2003; Miyazaki et al. 2004; Atkinson and Hancock 2005] and BRDF [Atkinson and
Hancock 2008] estimation, material classification [Chen and Wolff 1998], light source separation [Cula et al. 2007],
surface normal acquisition [Ma et al. 2007], surface normal and refractive index estimation [Sadjadi 2007; Ghosh
et al. 2010], separation of transparent layers [Schechner et al. 1999], and optical communication [Siddiqui and Zhou
1991; Schönfelder 2003; Yao 2008].

7.2 Phase Imaging

A variety of techniques has been proposed to visualize and quantify phase retardation in transparent microscopic
organisms [Murphy 2001]. Many of these phase-contrast imaging approaches, such as Zernike phase contrast and
differential interference contrast (DIC), require coherent illumination and are qualitative rather than quantitative.
This implies that changes in phase or refractive events are encoded as intensity variations in captured images, but
remain indistinguishable from the intensity variations caused by absorption in the medium. Quantitative approaches
exist [Barone-Nugent et al. 2002], but require multiple images, are subject to a paraxial approximation, and are
limited to orthographic cameras.

Schlieren and shadowgraph photography are alternative, non-intrusive imaging methods for dynamically changing
refractive index fields. These techniques have been developed in the fluid imaging community over the past century,
with substantial improvements in the 1940s. An extensive overview of different optical setups and the historic evo-
lution of Schlieren and Shadowgraph imaging can be found in the book by Settles [Settles 2001]. As illustrated in
Figure 9, recently proposed applications of Schlieren imaging include the tomographic reconstruction of transpar-
ent gas flows using a camera array [Atcheson et al. 2008] and the capture of refractive events with 4D light field
probes [Wetzstein et al. 2011d].

7.3 LIDAR and Time-of-Flight

LIDAR (LIght Detection and Ranging) [Wandinger 2005] is a technology that measures the time of a laser pulse
from transmission to detection of the reflected signal. It is similar to radar, but uses different wavelengths of the
electromagnetic spectrum, typically in the infrared range. Combining such a pulsed laser with optical scanners and a
positioning system such as GPS allows very precise depth or range maps to be captured, even from airplanes. Over-
laying range data with standard photographs provides a powerful tool for aerial surveying, forestry, oceanography,
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Figure 9: Schlieren imaging for tomographic gas reconstruction (left) and capture of refractive events using light
field probes (right). (Figures reproduced from [Atcheson et al. 2008] and [Wetzstein et al. 2011d].)

agriculture, and geology. Flash LIDAR [Lange and Seitz 2001] or time-of-flight cameras [Kolb et al. 2010] capture
a photograph and a range map simultaneously for all pixels. Although spatial resolution of the range data is often
poor, these cameras usually capture at video rates.

Streak cameras operate in the picosecond [Campillo and Shapiro 1983] or even attosecond [Itatani et al. 2002] range
and usually capture 2D images, where one dimension is spatial light variation and the other dimension is time-of-
flight. These cameras have recently been used to reveal scene information outside the line of sight of a camera,
literally behind corners [Kirmani et al. 2009; Pandharkar et al. 2011].

8 Discussion and Conclusions

In summary, we have presented a review of approaches to plenoptic image acquisition. We have used an intuitive
categorization based on plenoptic dimensions and hardware setups for the acquisition. Alternative categorizations
may be convenient for the discussion of the more general field of computational photography [Raskar and Tumblin
2009]. The increasingly growing number of publications in this field is one of the main motivations for this state of
the art report, which focuses specifically on joint optical encoding and computational reconstruction approaches for
the acquisition of the plenoptic function.

Based on the literature reviewed in this report, we make the following observations:

• most of the discussed approaches either assume that some plenoptic dimensions are constant, such as time
in sequential image capture, or otherwise restricted, for instance spatially band-limited in single sensor inter-
leaved capture; these assumptions result in fixed plenoptic resolution tradeoffs,

• however, there are strong correlations between the dimensions of the plenoptic function; so far these are almost
exclusively exploited in color demosaicing,

• therefore, natural image statistics that can be used as priors in computational image reconstruction and in-
corporate all plenoptic dimensions with their correlations are desirable; so are sophisticated reconstruction
techniques employing these.

It has recently been shown that all approaches for interleaved plenoptic sampling on a single sensor, including
spatial [Narasimhan and Nayar 2005] and Fourier multiplexing [Veeraraghavan et al. 2007; Lanman et al. 2008]
methods, can be cast into a common reconstruction framework [Ihrke et al. 2010a]. While the exploitation of
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correlations between plenoptic dimensions, for example spatial and spectral light variation, is common practice
for imaging with color filter arrays and subsequent demosaicing, there is significant potential to develop similar
techniques for demosaicing other multiplexed plenoptic information, for instance light fields [Levin and Durand
2010].

Priors for the correlations between plenoptic dimensions can be very useful for plenoptic super-resolution or gener-
ally more sophisticated reconstructions. These could, for instance, be derived from plenoptic image databases [Wet-
zstein et al. 2011c]; we show examples of such data in Figures 10, 11, and 12.

Another promising avenue of future research is adaptive imaging. Precise control of the sampled plenoptic infor-
mation is the key for flexible and adaptive reconstruction. An intuitive next step for sophisticated imaging with
respect to temporal light variation and dynamic range is pixel-precise, non-destructive sensor readout. In the future,
however, it is desirable to being able to control the optical modulation of all plenoptic dimensions.

While most of the reviewed approaches make fixed plenoptic resolution tradeoffs, some already show a glimpse
of the potential of adaptive re-interpretation of captured data [Agrawal et al. 2010b]. Ideas from the compressive
sensing community (see e.g., [Candès et al. 2006]) have also started to play an important role in adaptive plenoptic
imaging [Gupta et al. 2010; Veeraraghavan et al. 2011]. In these approaches optical coding is combined with
content adaptive reconstructions that can dynamically trade higher-dimensional resolution in post-processing to best
represent the recorded data.

Picturing space, color, time, directions, and other light properties has been of great interest to science and art alike for
centuries. With the emergence of digital light sensing technology and computational processing power, many new
and exciting ways to acquire some of the visual richness surrounding us have been presented. We have, however,
only begun to realize how new technologies allow us to transcend the way evolution has shaped visual perception
for different creatures on this planet.

Figure 10: Dataset containing multi-spectral variation and controlled object movement in the scene. Left: image
mosaic illustrating the correlation between the spectral and temporal plenoptic dimension of natural scenes. Right:
six spectral, color-coded slices of the dataset with two temporal snapshots each. We recorded these datasets using a
custom multi-spectral camera that consists of collimating optics, a liquid crystal tunable filter, and a USB machine
vision camera.

Figure 11: Five color channels of a multi-spectral light field with 5 × 5 viewpoints and 10 color channels for
each viewpoint. This dataset was captured by mounting our multi-spectral camera on an X-Y translation stage and
sequentially capturing the spectral bands for each viewpoint.
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Figure 12: Another multi-spectral light field dataset with 15×15 viewpoints and 23 narrow-band color channels for
each viewpoint. The spectral channels range from 460 nm to 680 nm in 10 nm increments. Only 5×5 viewpoints are
shown in this mosaic and each of those is color-coded. The photographed scene includes a variety of illumination
effects including diffraction, refraction, inter-reflections, and specularities.
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What is HDR? http://en.wikipedia.org/wiki/High-dynamic-range_imaging 
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Dynamic Range of Standard Sensors 
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 13.5 EVs or f-stops = contrast 11,000:1 = color negative 
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HDR Acquisition – Exposure Brackets 

 [Debevec & Malik 97] 

Radiance Map Tonemapped HDR Image 

Exposure Sequence 
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HDR Display 

• 47” TFT LCD, LED backlight 
 

• aspect ratio  16:9 
 

• resolution  1920 x 1080 
 

• contrast  >1,000,000:1 
 

• brightness 4,000 cd/m2 

 
Images courtesy Dolby 
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Image Based Lighting 
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Textbook 

• HDR image / video encoding 
 

• capture, display, tone reproduction 
 

• visible difference predictors 
 

• image based lighting, etc. 

We cover some specialized acquisition approaches here. 
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II.I Single-Shot Acquisition 
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HDR Cameras 

Grass Valley Viper 

Panavision Genesis 

Spheron 
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Per-Pixel Exposure Control 

www.pixim.com 

no pixim with pixim no pixim with pixim 
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Gradient Camera 

• Measure log-gradient 

• Reconstruct intensity with Poisson solver 

Intensity Log-Intensity Log-Gradient 

[Tumblin et al. 05] 



Computational Plenoptic Imaging | SIGGRAPH 2012 Course | II. High Dynamic Range Imaging 12 

Assorted Pixels 

• ND filter arrays 

• Less flexible and costly than Pixim 

Conventional Camera SVE Camera SVE Reconstruction 

[Nayar and Mitsunaga 00,Narasimhan and Nayar 05] 
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Fourier-based Analysis and Reconstruction 

[Wetzstein et al. 10] 
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Fourier-based Analysis and Reconstruction 

Low dynamic range 

Our reconstruction 

Ground truth 

Low dynamic range 

Our reconstruction 

Ground truth 

[Wetzstein et al. 10] 
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Fourier-based Analysis and Reconstruction 

[Wetzstein et al. 10] 
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Programmable Imaging 
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Adaptive Dynamic Range Imaging 

[Nayar and Branzoi 03] 
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Coded Rolling Shutter 

[Gu et al. 10] 
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Frankencamera 

• Version 3.0 is supposed to have non-

destructive ROI readout 

[Adams et al. 10, Levoy 10] 
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Tomographic HDR from Star Filter 

[Rouf et al. 11] 
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II.II Multi-Device Techniques 
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Split Aperture Imaging 

 [Aggrawal & Ahuja 04] 

- Multiple sensors 

- Mirror pyramid in aperture 
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Optical Splitting Trees 

 [McGuire et al. 07] 

Exposure Sequence & Tonemapped Image 
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II.III Analysis and Tradeoffs 
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Which Exposures to Combine? 

 [
G
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s
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Noise Optimal HDR Capture 

 [
H

a
s
in

o
ff
 e

t 
a
l.
 1

0
] 

Vary exposure time and ISO for improved noise in HDR 
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Next: Spectral Imaging 
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8 
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Multi-Spectral vs. Hyper-Spectral 

multi-spectral hyper-spectral 



EG 2011 | Computational Plenoptic Imaging STAR | VI. High Speed Imaging 4 

Color Filters 
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James Clerk Maxwell  

1831 - 1879 
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1861 – first color photograph 

 

©  Copyright: For permission to reproduce, please contact peter.stubbs@edinphoto.org.uk 
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Examples - Prokudin-Gorskij 

• Self-portrait 1915 

http://upload.wikimedia.org/wikipedia/commons/b/b2/Sergei-Prokudin-Gorski-Larg.jpg


Computational Plenoptic Imaging | SIGGRAPH 2012 Course | III. Spectral Imaging 8 

 

Photograph 1910, Emir of Bukhara , Prokudin-Gorskii 

Examples - Prokudin-Gorskij 
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Examples -  Prokudin Gorski - Lew Tolstoy 

1910 photograph, Sergey Prokudin-Gorskii 1887 painting, Ilya Repin 

http://upload.wikimedia.org/wikipedia/commons/c/c6/L.N.Tolstoy_Prokudin-Gorsky.jpg
http://upload.wikimedia.org/wikipedia/commons/b/bb/Ilya_Efimovich_Repin_%281844-1930%29_-_Portrait_of_Leo_Tolstoy_%281887%29.jpg
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Color Wheel 

 

[Wang and Heidrich 2004] 
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Liquid Crystal Tunable Filter (LCTF) 

– Computer controllable spectral filter 

VariSpec LCTF 
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VariSpec spectral curves 
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Agile Spectrum Imaging 
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Color Filter Arrays 
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Color Filter Arrays 

 

microscopic image of CCD (courtesy of Kevin Collins) 
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Color Filter Arrays 

• alternative CFA designs 

standard 

Bayer 
subtractive  

primaries 

e.g. Kodak  

DCS 620x 

RGB/Emerald 

e.g. Sony 

DCS F828 

subtractive  

primaries +  

green 

some video  

cameras for 

increased light  

sensitivity 

yellow/cyan/ 

green/white 

e.g. JVC 
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Color Filter Arrays 

• Lots of work on optimized spectral 

transmissions & layout of CFAs – see 

STAR 

 

• Siggraph ’11 paper on dynamically 

switchable CFAs coming up… 

 

• Assorted Pixels generalizes the concept 
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Single Pixel Spectrometers 
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Principle of Operation - Dispersion 

 

disadvantage: 

 

• dispersion relation  

   is nonlinear 

 

• spatial position of wavelengths on screen must be calibrated 
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Prism-Based Systems 

• Vintage Prism-Based Spectrometer 
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Spectrometer (Diffraction-Based) 

– Spectrometer  

 calibration (all types) 

1. mapping  

  pixel – wavelength 

2. relative intensity of 

  wavelength  
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Diffraction Grating  

– Center and first order diffraction 

 

– At center, no diffraction 

 

– For higher orders, diffraction is taking place 

 (wavelength dependent) 
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Scanning Spectrometers 
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Direct Scanning  

 

pushbroom scanning  

 

• two-dimensional sensor 

 

• one spatial dimension 

 

• one spectral dimension 

 

• second spatial dimension  

  by sensor motion 

 

 

whiskbroom scanning  

 

• one-dimensional sensor 

 

• one spectral dimension 

 

• mirror scanning of first 

  spatial dimension 

 

• second spatial dimension  

  by sensor motion 

 

[Optoiq] 
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Spatial Scanning 

• Generalized Mosaics [Schechner & Nayar] 

 

 

 

 

 

 

• linear filter  

• each pixel column filtered differently 

• rotational motion & registration to assemble 
image stack  
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Snapshot Imaging Spectrometers 
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Multiplexing: Prism-Mask Based System 

 

[Du’09] 
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[Hagen’08] 

different linear “projections” 

of the multispectral  

data cube 

Computed Tomography Imaging Spectrometer  
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Spectrally Filtered Light Fields  

[Horstmeyer’09] 
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Applications 
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Applications 

• automatic white balancing 

Spatially uniform illumination 

[Cao10] Spatially varying illumination 

raw from RGB tungsten WB `greyworld WB spectral WB spectra 
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Applications 

• improved tracking 

 

 

 

 

• real and fake skin detection 

[Cao10] 

RGB –  

tracking lost 

spectral –  

tracking OK 
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Applications 

• analyze / restore paintings 

[Calit] 
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Applications 

• Satellite-Based Remote Sensing 

[DigitalGlobe’10] 

vegetation mapping urban land use pollution monitoring 
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Next: Light Field Acquisition 
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IV.I (Brief) Introduction to Light Fields 
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The 5D Plenoptic Function 

Q: What is the set of all things that one can ever see? 

A: The Plenoptic Function [Adelson and Bergen 1991] 

 (from plenus, complete or full, and optic) 

P(q, f, l, t) 
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The 5D Plenoptic Function 

Q: What is the set of all things that one can ever see? 

A: The Plenoptic Function [Adelson and Bergen 1991] 

 (from plenus, complete or full, and optic) 

P(q, f, l, t) 
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The 5D Plenoptic Function 

P(q, f, l, t, px, py, pz ) 

P(q, f, l, t, px, py, pz ) defines the intensity of light: 

• as a function of viewpoint 

• as a function of time 

• as a function of wavelength 
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The 5D Plenoptic Function 

P(q, f, l, t, px, py, pz ) 

P(q, f, l, t, px, py, pz ) defines the intensity of light: 

• as a function of viewpoint 

• as a function of time 

• as a function of wavelength 
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The 5D Plenoptic Function 

Let’s ignore color and time (i.e., these are attributes of rays)… 

 

 

 

 

 

The plenoptic function is 5D: 

•3D position 

•2D direction 

 

Require 5D to represent attributes across occlusions 

P(q, f, px, py, pz) 
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The 4D Light Field 

Consider a region free of occluding objects… 

 

 

 

 

 

The plenoptic function (light field) is 4D 

•2D position 

•2D direction 

 

The space of all lines in a 3D space is 4D 

P(q, f, px, py, pz) 

[Levoy and Hanrahan 1996; Gortler et al. 1996] 
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Position-Angle Parameterization 

2D position 

2D direction 

s 
q 
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Two-Plane (Light Slab) Parameterization 

2D position 

2D position 

s 

u 
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Alternative Parameterizations 

Left: Points on a plane or curved surface and directions leaving each point  

 

Center: Pairs of points on the surface of a sphere 

 

Right: Pairs of points on two planes in general (meaning any) position 
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Image-Based Rendering 

[Levoy and Hanrahan 1996] [Gortler et al. 1996] 

[Carranza et al. 2003] 
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Conventional vs. Plenoptic Camera 

Slide by Marc Levoy 

uv-plane st-plane 

Virtual Camera = (u,v) Pixel = (s,t) Scene Pixel = (s,t) 
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Light Field Photography = Array of (Virtual) Cameras 

 

Sub-aperture 

Virtual Camera =  

Sub-aperture View 

Slide by Marc Levoy 



  Marc Levoy 
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Digital Image Refocusing 

[Ng 2005] 

Kodak 16-megapixel sensor 

125μ square-sided microlenses 
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IV.II Multiple Sensors 
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Static Camera Arrays 

Stanford Multi-Camera Array  

125 cameras using custom hardware 

[Wilburn et al. 2002, Wilburn et al. 2005] 

Distributed Light Field Camera 

64 cameras with distributed rendering 

[Yang et al. 2002] 
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Flexible Camera Arrays 

[Nomura et al. 2007] 
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IV.III Temporal Multiplexing 
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Controlled Camera or Object Motion 

Stanford Spherical Gantry 

[Levoy and Hanrahan 1996] 

Relighting with 4D Incident Light Fields 

[Masselus et al. 2003] 

[Unger et al. 2003] 
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Uncontrolled Camera or Object Motion 

Unstructured Lumigraph Rendering 

[Gortler et al. 1996; Buehler et al. 2001] 
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Virtual Cameras using a Steerable Mirror 

Fast Incident Light Field Acquisition and Rendering 

[Ihrke et al. 2008] 
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Programmable Aperture Photography 

[Liang et al. 2008; Schechner and Nayar 2007] 

9 aperture patterns for 3x3 light field capture 

9 multiplexed aperture patterns for 3x3 light field capture 
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IV.IV Spatial and Frequency Multiplexing 
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Parallax Barriers (“Slits” and “Pinhole Arrays”) 

[Ives 1903] 

sensor 

barrier 

a 

Spatially-multiplexed light field capture using masks (i.e., barriers): 

• Cause severe attenuation  long exposures or lower SNR 

• Impose fixed trade-off between spatial and angular resolution 

    (unless implemented with programmable masks, e.g. LCDs) 

wi 
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Parallax Barriers (“Slits” and “Pinhole Arrays”) 
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Parallax Barriers (“Slits” and “Pinhole Arrays”) 

[The (New) Stanford Light Field Archive] 

lo
o

k
in

g
 u

p
 

looking to the right 

Sample Image 
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Integral Imaging (“Lenticular” or “Fly’s Eye”) 

[Lippmann 1908] 

sensor 

lenslet 

f 

wi 

a 

Spatially-multiplexed light field capture using lenslets: 

• Impose fixed trade-off between spatial and angular resolution 
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Modern, Digital Implementations 

Digital Light Field Photography 

• Hand-held plenoptic camera [Ng et al. 2005] 

• Heterodyne light field camera [Veeraraghavan et al. 2007] 
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External, Fixed Lens Attachments 

[Georgiev et al. 2006] 
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External, Adaptive Lens Attachments 

[Ueda et al. 2008] 
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Virtual Cameras using Mirror Arrays 

[Taguchi et al. 2010] [Lanman et al. 2006] [Unger et al. 2003] 
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2D Fourier 

Transform 

fs 

Lreceived(fu,fs) 

fu 

s 

Lreceived(u,s) 

u 

fs0 

fu0 

 

band-limited  

light field 

Lenses & Apertures  Scene 

u s 

Sensor 

Pinhole Array 

ˆ 

Light Field Analysis of Barrier Cameras 
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fs 

Lreceived(fu,fs) 

fu 

sensor “slice” 

(Fourier Projection-Slice Theorem) 

wasted sensor bandwidth 

Lenses & Apertures  Scene 

u s 

Sensor 

Pinhole Array 

ˆ 

Modeling Sensors in the Frequency Domain 
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fs 

Lreceived(fu,fs) 

fu 

modulation function is an impulse train 

 

Lenses & Apertures  Scene 

u s 

Sensor 

modulation along a slanted line through origin 

Heterodyne Mask 

ˆ 

Heterodyne Light Field Cameras 



Computational Plenoptic Imaging | SIGGRAPH 2012 Course | IV. Light Field Acquisition 39 

fs 

Lreceived(fu,fs) 

fu 

reorder spectral components 

Lenses & Apertures  Scene 

u s 

Sensor 

Heterodyne Mask 

ˆ 

Heterodyne Light Field Cameras 
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s 

Lreceived(u,s) 

u 

2D Inverse 

Fourier Transform 

fs 

Lreceived(fu,fs) 

fu 

Lenses & Apertures  Scene 

u s 

Sensor 

Heterodyne Mask 

ˆ 

Heterodyne Light Field Cameras 
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Optimal Masks for Optical Heterodyning 

[Lanman et al. 2008] 
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Benefits and Limitations 

•Sum-of-Sinusoids converges to ≈18% transmission 

•Tiled-MURA near 50% (but only for prime-valued lengths) 

•Binary vs. continuous-tone process (quantization) 
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Optimal Masks for Optical Heterodyning 

[Ihrke et al. 2010] 
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IV.V Applications 
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Scene Relighting with 8D Reflectance Fields 

[Debevec et al. 2000] 
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3D Displays 

Parallax Panoramagram 

[Kanolt 1918] 

3DTV with Integral Imaging 

[Okano et al. 1999] 

MERL 3DTV 

[Matusik and Pfister 2004] 
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3D Displays 

High-Rank 3D (HR3D) 

[Lanman et al. 2010] 
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(BiDi)rectional Screens 

[Hirsch et al. 2009] 

Embedded photodetector arrays Depth cameras (e.g., time-of-flight) 

Ambient light sensors 

Sensing multi-touch, gestures, and ambient light using LCDs  

Design Goals 

• Capture light field reflected or emitted by objects 

• Prevent image capture from interfering with image display 

• Support unencumbered interaction with thin form factor 
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(BiDi)rectional Screens 

[Hirsch et al. 2009] 

Components 

• 20.1 inch Sceptre X20WG-NagaII LCD [1680×1050 @ 60 fps] 

• Point Grey Flea2 video cameras [1280×960 @ 7 fps] 

diffuser 

camera 

LCD 

lights 
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(BiDi)rectional Screens 

[Hirsch et al. 2009] 



Computational Plenoptic Imaging | SIGGRAPH 2012 Course | IV. Light Field Acquisition 50 

(BiDi)rectional Screens 

[Hirsch et al. 2009] 
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Mitigating Glare 

Veiling Glare in HDR Imaging 

[Talvala et al. 2007] 

Glare-Aware Photography 

[Raskar et al. 2008] 
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Light Field Microscopy 

[Levoy et al. 2004; Levoy et al. 2006] 
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Image Stabilization 

[Smith et al. 2009] 
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Compressive Light Field Capture 

Compressive Light Field Imaging 

 [Babacan et al. 2009; Ashok and Neifeld 2010] 

Random Lens Imaging 

[Fergus et al. 2006] 
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Next: Multiplexing Space & Focal Surfaces 
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V.I Gigapixel Imaging & Superresolution  
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Gigapixel Panorama 

• Stitch gigapixel panorama from many 

megapixel images 

[Kopf et al. 07] 

Auto-exposure for each image Processed HDR image 

Rotate camera! 
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Gigapixel Large-Format Tile-Scan Camera 

[Ben-Ezra 11] 

Nikon D70, similar conditions 

Tile-scan camera Photometric stereo 

Translate sensor! 
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Gigapixel Computational Imaging 

Beat lens scaling laws with computational processing! 

[C
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1
] 
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Superresolution Overview 

• Increase resolution in fixed sensor area  

 

• Camera resolution limited by 

1. Pixel size 

2. Optics & diffraction limit 

 

• Overcome by combining multiple sub-

pixel shifted low-resolution images  
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One of the  

input images 

Output image 
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Superresolution Overview 

• Solve big linear system 

 for high-res image 

[Baker & Kanade 02] 



Computational Plenoptic Imaging | SIGGRAPH 2012 Course | V. Multiplexing Space & Focal Surfaces 8 

Superresolution with Mechanical Vibrations 

• multiple, successive images 

[L
a
n
d
o
lt
 e

t 
a
l.
 0

1
] 

vibrating mirror 

vibrating sensor 
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Jitter Camera 
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RAW Jitter Camera output Super-resolved image 
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Superresolution with Aperture Masks 

[M
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n
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] 
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Space-Time Superresolution 

• Increase resolution in space & time from 

multiple low-resolution videos 

[S
h
e
c
h
tm

a
n
 e

t 
a
l.
 0

5
] 

3 of 18 low-temporal input sequences 

temporal super-resolution close-ups 
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V.II Optical Field Correction 
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What is Field Curvature? 

• Focal surface of most lenses is not planar 

• Lots of engineering effort! 

www.kenrockwell.com h
tt
p
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Fiber Optics 

• Aligned fiber bundle for 

reshaping curvature 
 

• Limited resolution… 

[Kapany & Hopkins 57] 
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Aberration Correction with Light Field Camera 

Digital curvature correction  

by resorting rays of  

4D light field 

[Ng & Hanrahan 06] 
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Multiscale Lens Design 

• Optimized multi-layered, multi-scale optics 
 

• Joint optical encoding and computational processing 
 

• Extended FOV & DOF, super-resolution, smaller 

form factor, lower cost 
 

[Brady & Hagen 09] 

Locally optimal masks 
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Coded Attenuation Masks 

[Prandharkar et al. 10] 
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Adaptive Optics 

• Deformable mirrors to correct wavefront 

• Used in astronomy and retinal imaging 

www.lyot.org C. Max, Center for Adaptive Optics 

uncorrected wavefront corrected wavefront 
deformable mirror 
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V.III Extended Depth of Field Imaging 
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Depth of Field 

• Defocus blur is depth-dependent 

• Can be described as convolution, where 

– Kernel size is related to depth  

– Kernel shape is that of aperture 

 

Image from [Levin et al. 07] 
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Deconvolution is Hard 

• Looks easy, but it’s not – problems: 

 

– Camera noise 

 

– Spatially varying kernel (depth-dependent) 

 

– Ill-posed problem, kernel of circular aperture 

is not invertible (optical cancellation of image 

frequencies) 

 

[Levin et al. 07] 
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Approaches to Extend DOF 

• Make PSF invertible  deconvolution 

becomes well-posed 

 

• Make PSF depth-invariant  shift-

invariant deconvolution 

 

• Capture multiple images with different 

focus settings (no deconvolution) 
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Coded Apertures – Attenuation Masks 

• Depth from coded aperture 

• Spatially varying deconvolution 
[Levin et al. 07] 

1D Fourier Transform 
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Coded Apertures – Analysis 

• Analysis of aperture patterns with respect 

to camera noise 

[Zhou & Nayar 09] 

Optimized patterns for increasing noise 
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Coded Apertures – Cubic Phase Plate 

• (almost) depth-independent PSF 
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optical setup 

Light field Light field FT 
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Coded Apertures – Lattice Focal Lens  

• 4D is different than 2D – dimensionality gap 

[Levin et al. 09] 
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Coded Apertures – Frequency Analysis 
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• Analysis of computational cameras with 

respect to depth-invariance and transfer 

efficiency 

Coded Apertures – Analysis 

[Baek 10] 



Computational Plenoptic Imaging | SIGGRAPH 2012 Course | V. Multiplexing Space & Focal Surfaces 29 

Coded Apertures – Diffusion Masks 

[Cossairt et al. 10] 

• depth-invariance and invertibility 
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Focal Stacks 

• Capture multiple images with different 

focus settings 

• Merge into single extended DOF image 

[N
a
g
a
h
a
ra

 e
t 
a
l.
 0

8
] 



Computational Plenoptic Imaging | SIGGRAPH 2012 Course | V. Multiplexing Space & Focal Surfaces 31 

Gigapixel Focal Stack 

[Ben-Ezra 11] 
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Light Efficient Photography 

• Efficient selection of focus and aperture 

settings for desired DOF – less noise 
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Focal Stack Multiplexing – Single Image  

• Multiplex focal stack like Bayer pattern 

• Interesting concept – no implementation 
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Focal Sweep – Moving Sensor 

• Move sensor along optical axis over 

exposure time  

• Movement makes PSF depth-independent 

[Nagahara et al. 08] 



Computational Plenoptic Imaging | SIGGRAPH 2012 Course | V. Multiplexing Space & Focal Surfaces 35 

Spectral Focal Sweep 

• Use chromatic aberrations 

• Multiple focal planes on sensor plane 

 

[Cossairt and Nayar 10] 
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Applications – Confocal Stereo 

• Multiple shots, varying aperture & focus 

• Confocal constancy = predictable intensity 

variation for varying aperture & in focus 

[Hasinoff and Kutulakos 09] 
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Applications – Depth from Coded Apertures 

[Zhou et al. 11] 
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Applications – Defocus Video Matting 

[McGuire et al. 05] 
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Applications – Extended DOF Projection 

[Grosse et al. 10] 
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Next: High Speed Imaging 
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Object Motion and Coded Exposure Camera 

• Multiple instances 

of object in single 

image, motion blur 
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Multi-Aperture Photography 

• Multiple images, single sensor 

• Synthesize different apertures in post-

processing 

[Green et al. 07] 
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History – Eadweard Muybridge 1830-1904  

http://en.wikipedia.org/wiki/Eadweard_Muybridge 
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History – Étienne-Jules Marey 1830-1904 

www.wikipedia.org 
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VI.I Time Lapse Photography 
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BBC Time Lapse – Look It! 

ND 3.0 filter, f22, 1 minute exposure 

• Long exposures to avoid temporal aliasing 
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VI.II High-Speed Imaging 
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High-Speed Cameras 

Vision Research Phantom Flex (CMOS) 

2570 fps at HD resolution 

Photron FASTCAM SA5 (CMOS) 

7500 fps at megapixel resolution 

one million fps at 64x64 pixels 

 

Casio Exilim Series (consumer cam) 

1000 fps at reduced resolution 

Shimadzu HyperVision HPV-2 (CCD) 

one million fps at 312x260 pixels 
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Assorted Pixels 

[Narasimhan & Nayar 05] 
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Temporal Mosaic with DMD 

[Bub et al. 10] 

DMD aligned with CCD in microscope 
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Non-Destructive Sensor Readout & Pixim 

Cypress Semiconductor LUPA 3000 

3 megapixels, 485 fps 

www.pixim.com 
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Coded Rolling Shutter 

 

[Gu et al. 10] 
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Reinterpretable Imager 

• Moving pinhole over time in aperture 

• Capture with light field camera 

[Agrawal et al. 10] 
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Bullet Time Effect 

from ‘The Matrix’ 
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Stanford Multi-Camera Array 

[Wilburn et al. 04] 
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Coded Temporal Sampling 

[Agrawal et al. 10] 
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High-Speed Illumination – Electronic Strobes 

Harold ‘Doc’ Edgerton 

1903-1990 
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Temporal Dithering with DLP Illumination 

[Narasimhan et al. 08] 
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Coded Strobing Photography 

[Reddy et al. 11] 
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Streak Cameras 

www.hamamatsu.com 

C5680 

$200K 
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VI.I Motion Deblurring 



Computational Plenoptic Imaging | SIGGRAPH 2012 Course | VI. High Speed Imaging 21 

Motion Deblurring Overview 

• Motion blur is velocity-dependent 

• Can be described as convolution, where 

– Kernel shape is motion trajectory 

– Trajectory is modulated by exposure function 

 

http://en.wikipedia.org/wiki/Motion_blur 
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Deconvolution is Still Hard 

• Again – problems: 

 

– Camera noise 

 

– Spatially varying kernel (velocity-dependent) 

 

– Unknown motion trajectory 

 

– Ill-posed problem, kernel of box integration 
function is not invertible (optical cancellation 
of image frequencies) 
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Approaches to Improve Motion Deblurring 

 

• Make PSF invertible  coded exposure 

 

• Make PSF velocity-invariant  shift-

invariant deconvolution 

 

• Automatize PSF estimation 
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Flutter Shutter 

[Raskar et al. 06] 
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Optimal Motion PSFs  

• Optimality criteria PSF invertibility & 

estimation 

[Agrawal & Xu 07] 
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Motion Invariant Photography 

• Engineer PSF to be motion invariant 

• Only for 1D motion 

[Levin 08] 



Computational Plenoptic Imaging | SIGGRAPH 2012 Course | VI. High Speed Imaging 27 

Hybrid Cameras 

• Combined high-speed low-quality & low-

speed high-quality camera 

Input images Computed PSF 

Deblurred Result Ground Truth 

[Ben-Ezra & Nayar 04] 
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Motion Blur in Video 

• Coded exposure &  

 super-resolution in  

 successive video frames 

 

[Agrawal et al. 09] 
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Next: Further Light Properties 
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Flexible Voxels 

• Flexible space-time resolution as post-

processing 

[Gupta et al. 10] 
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Synthetic Shutter Speed Imaging 

• Combine multiple short exposures to 

reduce noise 

• Align with optical flow 
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Hybrid Cameras 

• Motion deblurring & super-resolution 
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Hybrid Cameras 

• Motion deblurring & depth from two low-

resolution high-speed camers 
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Input images 

Deblurred result Recovered Depth  
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Analysis 

• Analysis of optimal coded, single image 

deblurring 

• MIP becomes worse when velocities 

exceed expectations 

[Agrawal & Raskar 09] 

Coded Exposure Motion Invariant Photography 
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VII.I Polarization 
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What is Polarization? 

http://en.wikipedia.org/wiki/Polarization_(waves) 

Polarization State 

• Wave property of light 

• Oscillation perpendicular to propagation 

• Field Guide to Polarization, Collett 05 
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Polarization Acquisition 

[Narasimhan & Nayar 05] 

Assorted Pixels 

[Schechner & Nayar 05] 

Generalized Mosaics 

Polarization Panoramagrams 
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Polarization Acquisition - Applications 

[Ghosh et al. 10] 

diffuse albedo 

specular albedo 

index of refraction 

specular roughness 

Measure Surface Properties Dehazing 

[Namer & Schechner 05] 

Shape Estimation 

[Miyazaki et al. 03] 

Also: optical communication, underwater vision, BRDF & IOR 

acquisition, …       
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VII.II Phase Imaging 
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Phase Contrast Imaging 

http://www.microscopyu.com/articles/phasecontrast/phasemicroscopy.html 

Phase Contrast Microscope 

Brightfield Phase Contrast 
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DIC Microscope 
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images courtesy Gary Settles 

Schlieren Imaging 
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Schlieren Imaging – Applications 

Aeronautical engineering 

NASA 

Ballistics 

Gary Settles 
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Schlieren Imaging – Optical Setups 
NASA 

University of Missouri 

Imperial College London 
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Background Oriented Schlieren Imaging 

Undistorted  

Reference Image 

Distorted Image Optical Flow Vectors Color Coded 

Optical Flow Vectors 

[Atcheson et al. 2008] 

Optical Encoding  Computational Processing 
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BOS – Tomographic Reconstruction 

[Atcheson et al. 2008] 

Camera Array 

High Frequency Background 

Transparent, Refractive Object 

2D Optical Flow Camera Image 3D Gradient Field 3D Refractive Index 

Optical Setup 
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Light Field Background Oriented Schlieren 

Light Field Probe 

Transparent Refractive 

Object Camera 

[Wetzstein et al. 2010] 
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Light Field Background Oriented Schlieren 

Uniform Illumination 
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[Wetzstein et al. 2010] 
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Light Field Background Oriented Schlieren 

Clear Cornstarch 

Water 

[Wetzstein et al. 2010] 
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VII.III LIDAR and Time-of-Flight 
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See [Kolb et al. 10], EG STAR for more details 

Panasonic PMD 

Fotonic ARTTS MESA 
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Next: Discussion 
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Summary 

• Survey of plenoptic image acquisition  
 

• Classification based on plenoptic 

dimension & hardware setup 
 

• Also see computational photography 
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Observations 

• Most approaches use fixed plenoptic 

resolution tradeoffs   

 

• Strong correlations between plenoptic 

dimensions 

 

• Need for sophisticated reconstruction 

techniques (e.g. compressive sensing) 
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• Plenoptic datasets 
 

• Simulate acquisition 

 & reconstruction 
 

• Explore redundancies 
[Wetzstein et al. 11] 

Future Directions – Exploit Plenoptic Redundancy 
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The End 
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Future Directions – Exploit Plenoptic Redundancy 

• Explore plenoptic priors – mathematical 

formulations for correlations between and 

within dimensions 
 

• Common practice in 

– Color demosaicking 

– Extended DOF and light field acquisition 

(dimensionality gap prior) [Levin et al. 09,10]   
 

• Extend to time, polarization, plenoptic 

manifolds  
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Future Directions – Unified Plenoptic Reconstruction 

• Unified reconstruction in terms of  

– Domain (image space vs. Fourier) 

– Plenoptic dimension 
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