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ABSTRACT
Spatial language video retrieval is an important real-world
problem that forms a test bed for evaluating semantic struc-
tures for natural language descriptions of motion on natural-
istic data. Video search by natural language query requires
that linguistic input be converted into structures that oper-
ate on video in order to find clips that match a query. This
paper describes a framework for grounding the meaning of
spatial prepositions in video. We present a library of features
that can be used to automatically classify a video clip based
on whether it matches a natural language query. To evalu-
ate these features, we collected a corpus of natural language
descriptions about the motion of people in video clips. We
characterize the language used in the corpus, and use it to
train and test models for the meanings of the spatial prepo-
sitions “to,” “across,” “through,” “out,” “along,” “towards,”
and “around.” The classifiers can be used to build a spatial
language video retrieval system that finds clips matching
queries such as “across the kitchen.”

Categories and Subject Descriptors
H.3 [Information Search and Retrieval]: Search process

Keywords
video retrieval, spatial language

General Terms
algorithms, experimentation, measurement

1. INTRODUCTION
In the United States alone, there are an estimated 30 mil-

lion surveillance cameras installed, which record four billion
hours of video per week[22]. However, analyzing and un-
derstanding the content of video data remains a challenging
problem. To address aspects of this problem, we are devel-
oping interfaces that allow people to use natural language
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Figure 1: Frames from two clips returned for the
query “across the kitchen.”

queries to naturally and flexibly find what they are looking
for in video collections.

Our system is a multi-modal user interface that finds video
clips in surveillance video containing people moving in ways
that match natural language queries such as “to the refriger-
ator” and “across the kitchen.” A core problem in building a
natural language query system for surveillance video is en-
coding robust visually-grounded models of the meaning of
spatial prepositions. In our approach, the meanings of spa-
tial prepositions are modeled by visual classifiers that take
spatial paths as input. These classifiers are trained using la-
beled path examples. Continuous geometric paths of people
in video are converted into a set of features motivated by
theories of human spatial language [7, 11, 20]. In this paper
we focus on spatial prepositions that describe motion, such
as “around,”“across,” and “to.”

In order to train and evaluate our models, we collected a
corpus of natural language descriptions of video clips. Our
video corpus consists of data recorded from a fish-eye camera
installed in the ceiling of a home[19]. Sample frames from
this corpus, retrieved by the system for the query “across
the kitchen,” are shown in Figure 1. To associate video clips
with a natural language description, annotators were asked
to write a short phrase describing the motion of a person
in the clip. Using this corpus of descriptions paired with
video clips, we trained models of the meanings of some spa-
tial prepositions, and explored their semantics by analyzing
which features are most important for good classification
performance.

Although our data consists of only video from a home,
it is representative of a much larger class of domains. Air-



ports, retailers, and many other organizations are amassing
millions of hours of video from statically placed surveillance
cameras. Beyond video, our spatial-semantic models may
be applied to other kinds of space-time data, from searching
GPS logs to understanding natural language directions.

Previous work in video surveillance has focused on track-
ing objects in video (e.g., [5, 25]), automatically recognizing
unusual events in video such as unattended luggage in public
areas or unusual behavior in a home (e.g., [1, 8]), and inte-
grated retrieval interfaces (e.g., [6, 23]). Our work points to-
wards a method of bridging the semantic gap in surveillance
video retrieval by enabling users to type a natural language
description of the activity in the video, and find clips that
match that description.

2. RELATED WORK
Our system transforms spatial language queries into a

function/argument structure based on the theories of Jack-
endoff [7], Landau and Jackendoff [11], and Talmy [20]. Fol-
lowing Talmy [20], we refer to the person being described
by a sentence such as “The person is going to the sink” as
the figure, and the noun phrase argument as the ground.
The features in our classifiers are directly inspired from this
work.

Others have implemented and tested models of spatial
semantics. Regier [17] built a system that assigns labels
such as “through” to a movie showing a figure moving rel-
ative to a ground object. His system learned the meanings
of many spatial prepositions across different languages, and
tests the models on schematic videos. Our system uses some
of the same features, but tests our model using annotations
of real video. Kelleher and Costello [10] built a model for
the meanings of static spatial prepositions, which primarily
denote the location of an object. Their model takes into
account the influence of distractor objects in the generation
and understanding of phrases such as “the ball near the red
box.” They used their model to enable a robot to engage
in visually situated dialog about a table-top environment.
Our work focuses on dynamic spatial prepositions describ-
ing paths, and evaluates our models by applying them to a
corpus of natural language descriptions of movement.

Fleischman et al. [3] built a system that recognizes events
in video recorded in the kitchen. Their system learns hier-
archical patterns of motion in the video, creating a lexicon
of patterns. The system uses the lexicon to create feature
vectors from video events, which are used to train a classifier
that can recognize events in the video such as “making cof-
fee.” Our system also uses classifiers to recognize events, but
focuses on events that match natural language descriptions
rather than finding higher level patterns of activity.

More generally, Naphade et al. [15] describe the Large-
Scale Concept Ontology for Multimedia (LSCOM), an effort
to create a taxonomy of concepts that are automatically ex-
tractable from video, that are useful for retrieval, and that
cover a wide variety of semantic phenomena. Retrieval sys-
tems such as Li et al. [12] automatically detect these con-
cepts in video, and map queries to the concepts in order to
find relevant clips. In contrast to our work, LSCOM focuses
on open-class coarse-grained semantic events for retrieval
from corpora of broadcast news, including movement cate-
gories such as “Exiting A Vehicle” and “People Marching.”
This paper describes a complementary effort to recognize
fine-grained spatial events in video by finding movement tra-

jectories that match a natural language description.
Ren et al. [18] review video retrieval methods based on

matching spatio-temporal information. They describe sym-
bolic query languages for video retrieval, trajectory-matching
approaches, and query-by-example systems. Our work points
towards a system that uses a subset of natural language as a
query language: users describe their information need, and
the system finds clips that match that description.

Katz et al. [9] built a natural language interface to a video
corpus which can answer questions about video, such as
“Show me all cars leaving the garage.” Objects are automati-
cally detected and tracked, and the tracks are converted into
an intermediate symbolic structure based on Jackendoff [7]
that corresponds to events detected in the video. Our work
focuses on handling complex spatial prepositions such as
“across” while they focus on understanding a range of ques-
tions involving geometrically simpler prepositions. Harada
et al. [4] built a system that finds images that match nat-
ural language descriptions such as “a cute one” with color
features.

Researchers have developed video retrieval interfaces us-
ing non-linguistic input modalities which are complementary
to linguistic interfaces. Ivanov and Wren [6] describe a user
interface to a surveillance system that visualizes information
from a network of motion sensors. Users can graphically
specify patterns of activation in the sensor network in order
to find events such as people entering through a particu-
lar door. Yoshitaka et al. [24] describe a query-by-example
video retrieval system that allows users to draw an example
object trajectory, including position, size, and velocity, and
finds video clips that match that trajectory. Natural lan-
guage text-based queries complement these interfaces in sev-
eral ways. First, queries expressed as text strings are easily
repeatable; in contrast, it is difficult to draw (or tell someone
else to draw) the exact same path twice in a pen-based sys-
tem. Second, language can succinctly express paths such as
“towards the sink”, which would need to be drawn as many
radial lines to be expressed graphically. The combination
of a pen-based interface and a natural language interface is
more powerful than either interface on its own.

3. SYSTEM ARCHITECTURE
Our system finds video clips that match natural language

queries such as “across the kitchen” and “towards the door.”
When a user enters a natural language query, the system
first parses it, then uses a classifier to find matching video
clips in the data. Prepositions are treated as functions which
take an ordered list of points (the figure) and a polygon (the
ground). The functions return a boolean value indicating
whether these geometries match the preposition. For exam-
ple, for the query “to the sink,” the figure is the trajectory of
a person in a video clip, and the ground is a polygon repre-
senting the sink. Figure 2 shows how the system processes a
natural language query and retrieves matching video clips.

The functions are instantiated as binary classifiers which
are learned from a corpus of natural language descriptions of
video clips. A combinatory categorial grammar parser [14]
extracts the function/argument structure from the query
and resolves referring expressions in the query. Unique ob-
jects that rarely move such as “the kitchen” or “the coffee
maker” are resolved to pre-annotated regions in the video.
Some noun phrases such as “the door” or “the counter” can
not be automatically resolved in this way because there are
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Figure 2: Data flow as the system processes a query.

more than one in the room being recorded. For example, in
Figure 3, if an annotator labeled the clip “past the counter,”
the proper ground object is the east counter; on the other
hand, if the label was “to the counter,” it probably refers to
the north counter. To sidestep this issue, we manually la-
beled ambiguous objects with the proper ground. We plan
to use this corpus to train and evaluate a system to auto-
matically resolve referring expressions such as “the door.”

Other noun phrases referred to parts of objects, most fre-
quently to parts of the island. For example, one annotator
labeled the clip shown in Figure 3 as “along the east side
of the island,” selecting just part of the island for annota-
tion. In this case, “the island” is resolved to a polygon as
described above, and the semantics for “side” encode a rule
that automatically selects an appropriate geometry for the
ground object.

We chose to use binary classifiers to model the meaning of
spatial prepositions for two reasons. First, a binary classifier
can be directly used for video retrieval: the classifier simply
returns all clips in the corpus that match a particular query.
Second, binary classifiers naturally capture the fact that a
given situation can have more than one correct description.
For example, the clip shown in Figure 3 could be described
as “along the island” or “past the island.” A binary classifier
for each spatial preposition captures this duality.

The second argument to the classifier, the figure, is an
ordered list of points extracted automatically from the video,
corresponding to the motion of a person through the room.
The system searches over a database of person tracks. People
are tracked using a motion-based tracker implemented using
the SwisTrack open source tracking pipeline [13]. When a
person moves in the video, the tracker detects the location
of the motion, and either creates a new track, or adds the
detected point to an existing track. When a person stops
moving, the track is ended. These boundaries are often,
but not always, reasonable places to start and stop video
playback, since they correspond to the start and stop of a
person’s motion.

Once the query has been converted to a path and a poly-
gon, these structures are converted to a feature vector. The
features are inspired by work in spatial semantics, and are

Figure 3: A frame from a clip in our corpus. De-
scriptions for this clip included “to the counter,”
“along the east side of the island,”“from the refrig-
erator”, “to the cabinet,” and “across the kitchen.”

different for each preposition. The specific features used in
our system are described in the next section. The feature
vector is given as input to a classifier which outputs whether
the clip matches the natural language query.

3.1 Spatial Prepositions
We are focusing on dynamic spatial prepositions such as

“across” and “to,” which describe movement through space.
The dynamic spatial prepositions described here were cho-
sen because they occurred frequently in our corpus of natural
language descriptions for video clips. Each preposition is in-
stantiated as a classifier trained using labeled feature vectors
extracted from a schematic representation of the video clip.
The features used are described below. Many of them are
quite simple to compute, and may seem obvious. A key con-
tribution of our work is to analyze which features work best
for real-world retrieval tasks, and to create a methodology
for analyzing what geometric and contextual features need
to be taken into account for good retrieval performance. A
second contribution of our work is to build up a library of
features that can be assembled to quickly create a classifier
for a new spatial preposition.

Many features involve distances or averages of distances
between two points. In order to make the model scale in-
variant, all distance values are normalized by dividing the
distance by the size of the diagonal of the bounding box
of the figure and the ground together or in some cases the
figure alone.

3.1.1 To
Features for “to” focus on the endpoint of the figure with

respect to the ground.

distFigureEndToGround The distance between the end-
point of the figure and the closest point on the border
of the ground. If the figure ends inside the ground, the
value is snapped to zero.

distFigureEndToGroundCentroid The distance between
the end of the figure and the centroid of the ground.



endpointsInGroundBoundingBox Whether the end of
the figure intersects the bounding box of the ground.

minimumDistanceToGround The minimum distance be-
tween the figure and the ground.

numInteriorPoints The number of points in the figure
which are inside the ground, when the figure is divided
into a sequence of 100 equally spaced points.

3.1.2 Across
An important underlying concept inherent in the meaning

of many spatial prepositions is the idea of coordinate axes.
“Across” has been defined as a spatial relation that takes
a linear figure and planar ground, and requires the figure
to be perpendicular to the major axis of the ground. [11,
20]. However this definition does not specify how to find
the major axis of the ground. In many contexts, there is no
single set of axes: for example, there are many paths across a
square room. The system solves this problem by finding the
unique axes that the figure imposes on the ground, and then
quantifying how well those axes match the ground. These
axes are computed by finding the line that connects the first
and last point in the figure, and extending this line until it
intersects the ground. The origin of the axes is the midpoint
of this line segment, and the endpoints are the two points
where the axes intersect the ground. Once the axes are
known, the system computes features that capture how well
the figure follows the axes, and how well the axes fit the
ground. The features used by a decision tree learner to train
a classifier for “across” are listed below.

averageDistance The average distance between the figure
and the axes it imposes on the ground.

centroidToAxesOrigin The normalized distance between
the origin of the axes and the centroid of the ground.

distAlongGroundBtwnAxes The distance along the per-
imeter of the ground between the endpoints of the axes,
normalized by the perimeter of the ground. The min-
imum of two possible values.

figureCenterOfMassToGroundCentroid The normaliz-
ed distance between the center of mass of the figure
and the origin of the axes.

ratioFigureToAxes The ratio of the distance between the
start and end points of the figure and the axes it im-
poses on the ground.

standardDeviation The standard deviation of the nor-
malized distance between the figure and the axes.

3.1.3 Through and Out
“Through” and “out” use many of the same features as

“across,” including the notion of an axes. “Through” adds
one feature, peakDistance.

peakDistance The maximum distance between the figure
and the axes it imposes on the ground.

3.1.4 Along
“Along” is a spatial relation in which the figure and ground

are both conceptualized as linear: the figure must be coaxial
to the ground, or parallel with the ground’s major axis [11,
20]. The system does a preliminary segmentation of the
track by sliding a window 75% of the figure’s length along
the figure, and only uses the part of the figure that minimizes
the average distance to the ground. In this way, the model
reduces noise from the beginning or end of the path if the

person starts far away from the ground object but quickly
approaches it.

angleBetweenLinearizedObjects The angle between fig-
ure and ground when each is modeled by a best-fit line.

averageDistance The average distance between the figure
and the ground. The algorithm steps along the figure
at a fixed resolution, and for each point computes the
distance to the closest point on the ground.

distEndGroundBoundary The distance between the end
of the figure and the closest point on the ground.

distStartGroundBoundary The distance between the start
of the figure and the closest point on the ground.

peakDistance The maximum distance between the figure
and the ground.

visibleProportionFigureGround The fraction of the fig-
ure which is visible from the ground, taking into ac-
count obstacles in the environment.

3.1.5 Around
“Around” uses a subset of features from “along”, plus av-

erageDistStartGroundDistEndGround, which is the av-
erage of distStartGroundBoundary and distEndGround-
Boundary.

4. CORPUS COLLECTION
In order to train and evaluate our models, we collected a

corpus of natural language descriptions of video clips. This
corpus gives insight into the types of descriptions humans
use when labeling video, and provides a source of data for
training and evaluating the system. We plan to make this
corpus publicly available. Check the authors’ home page
for more information. Our aim in collecting the corpus was
to pair a person’s movement in a video clip with a prepo-
sitional phrase describing the movement, so that a system
could use these mappings to train classifiers which model
the meanings of spatial prepositions. In order to do this, we
showed annotators short clips with the location of a person
marked in each frame of the clip. The interface displayed
the partial sentence “The person is going” with a text entry
box at the end. We instructed annotators to complete the
sentence with a single prepositional phrase that described
the person’s motion. Annotators were asked to skip the clip
if there was a tracking failure, or if they could not write a
description for the clip. Table 1 shows the number of tracks
skipped by annotators. The video was overlayed with labels
marking the location of non-moving objects such as the re-
frigerator, doors, and cabinets. Annotators were asked to
try to use those labels in their descriptions, but were not
required to use them. Our corpus contains data from five
different annotators.

Annotators were shown video clips from two days of video.
To focus on prepositions describing movement, we showed
annotators only tracks that were longer than four seconds,
where the distance between the first and last points in the
track was larger than 200 pixels. Clips were shown in ran-
dom order drawn from the two days of data, and each clip
appeared in the data set three times in order to collect mul-
tiple descriptions from the same annotator for the same clip.

After annotation, each clip in our data set had up to fif-
teen descriptions associated with it, with an average of 10.7
Figure 3 shows a frame from a clip in our corpus, together
with some descriptions. Figure 4 shows a histogram of the



Corpus Size

tracks left blank 971
grounding and parsing failures 393
parse successes 7051
total 8415

Table 1: The size of the corpus, together with num-
bers of tracks excluded for various reasons.

frequency of the descriptions that appeared in the corpus,
color coded by annotator, while Figure 5 shows the distri-
bution of prepositions in our corpus. From the histograms,
it seems that annotators tend to reuse descriptions, rather
than inventing an entirely new one for each track. Despite
this tendency, a diverse set of spatial prepositions appears
in our corpus

Figure 6 shows the distribution of ground objects used in
the corpus. Ambiguous ground objects such as “the door”
and “the counter,” which appeared more than once in the
kitchen are resolved through manual annotations. Descrip-
tions which resolved to more than one ground object were
excluded from the evaluation. Examples of descriptions re-
jected for this reason include“from one counter to the other,”
“back and forth,” and “through both doors.”

All descriptions that the system successfully parsed and
had associated ground objects were included in the evalua-
tion. Table 1 shows the number of tracks that annotators
skipped, and the number of parse failures for the tracks used
in the evaluation.

Figure 4: Histogram of the frequencies of various
descriptions in the corpus.

5. EVALUATION
We used our corpus to train classifiers for spatial preposi-

tions and evaluate the performance of the classifiers. In or-

Figure 5: Histogram of the prepositions in our cor-
pus.

Figure 6: Histogram of ground objects used to la-
bel tracks in our corpus. Each ground corresponds
to a specific object in the camera’s visual field; the
mapping was determined from human annotations.

der to train classifiers for each preposition, each description
was converted into a training example. If the description
used a preposition, it was treated as a positive training ex-
ample for that preposition, and if the description used some
other preposition, it was treated as a negative training ex-
ample, following Regier [17]. For example, the description
“around the island” paired with a video clip was treated as
a positive example of “around,” and a negative example of
“to.” This heuristic is imperfect: a track that is “along the
island” may also be “around the island.” In some of these
ambiguous cases, we excluded similar spatial prepositions
from the training and test sets. For example, for “to,” we
excluded examples labeled with “towards,”“out,”“through,”
and “into” because a track labeled “out the door” was often,
in our judgement, a good example of “to the door.” Data
was separated into training and testing by track: all descrip-
tions associated with a track appeared either in the training
set or the test set. 80% of the tracks were used as training
data, and the rest as test data.



Figure 7: Performance of classifiers for“to,” with ex-
amples containing “out,” “through,” “towards,” and
“into” excluded.

To visualize classifier performance we report ROC curves.
All results use the Naive Bayes classifier in the Orange Data
Mining library [2]. We measured the performance of a classi-
fier trained using all features, as well as one trained on each
feature in isolation, to see how well each feature works on
its own. It is possible a classifier would perform even bet-
ter with a subset of the features. We have reported perfor-
mance broken down in this way for some spatial prepositions
elsewhere [21], but we chose not to do it here for brevity.
Although our aim is to use our models to support video
retrieval, this evaluation does not directly measure retrieval
performance, but rather the effectiveness of our classifiers at
capturing the semantics of spatial prepositions that might
be used in natural language queries.

Figure 7 shows the performance of various binary classi-
fiers for the spatial preposition “to.” The classifier trained
using all the features clearly performs the best. An alter-
native interface to search for people going “to the sink” is
to manually specify a region of interest, for example by
drawing a bounding box. The two features, numInterior-
Points and endpointsInGroundBoundingBox, capture
this heuristic, and perform quite poorly on their own. This
result implies that a user searching for people going “to the
sink” would be better served by an explicit model of the
meaning of “to,” implemented in terms of a combination of
features, than they would be by a query interface in which
they drew a bounding box around a region of interest.

In an earlier paper [21], we analyzed “across” based on
binary annotations, in which annotators marked whether a
video clip matched a query such as “across the kitchen.”
There we found that the feature ratioFigureToAxes was
critical to good performance, and other features performed
poorly on their own. In this corpus, figureCenterOfMassToGround-
Centroid is also effective on its own. Possibly difference is
due to the different tasks in the two papers: it is possible
the methodology of collecting natural language descriptions
for clips yields fewer borderline “across” examples, changing
which features work the best.

“Through” and “out” use a subset of the features used
by the “across” classifier. For “out”, the feature ratioFig-

Figure 8: Performance of classifiers for “across.”

Figure 9: Performance of classifiers for “through.”

ureToAxes performed the best. This feature captures the
degree to which the figure moves from one point on the
boundary of the ground to another point. Both of these spa-
tial prepositions are somewhat problematic in this domain
because our tracks do not extend beyond a single camera.
When an annotator wrote “through the door,” the system
saw a track that extended to the door and then stopped.
We are currently exploring the usage of these words in a
corpus of natural language directions, which has a more sat-
isfying representation, and developing person trackers that
work between different cameras to create longer tracks.

The results for “along” are shown in Figure 11. We report
the performance of a classifier trained on all features, and
on all features except visibleProportionFigureGround.
This feature is the only feature (so far) which requires addi-
tional context from the environment besides the geometry of
the figure and ground: it must know about obstacles in the
environment which can prevent the figure from being visible
from the ground. We added this feature because a classifier
for “along” trained on a corpus of explicitly labeled positive
and negative examples of “along the right side of the island”
sometimes returned tracks that were along the left side of



Figure 10: Performance of classifiers for “out,” with
examples containing “towards,”“through,” and “to”
excluded.

Figure 11: Performance of classifiers for “along.”
!visibleProportionFigureGround is a classifier
trained on all features except visibleProportionFig-
ureGround.

the island. We hoped that adding features that referred to
obstacles in the environment would alleviate this problem,
but so far we have not found an effect.

Figure 12 shows the performance of the classifier for“around.”
As it turned out, the most common use of around by far was
“around the island,” so although the system performs well, it
probably does not generalize well to other examples. Inter-
estingly, the feature distStartToGround performs much
better than distEndToGround, despite the bias in our cor-
pus for the spatial preposition “to” compared to “from,” and
despite evidence that people pay more attention to the goal
of a spatial motion event[16].

Overall our results are promising. We have identified a
set of features that can successfully classify examples in our
corpus. Although we have not yet evaluated the classifiers
in an end-to-end retrieval context, the performance on this
task is encouraging because it indicates that the features
are capturing important aspects of the semantics of spatial

Figure 12: Performance of classifiers for “around.”

prepositions. A major remaining issue is that in a retrieval
context, even a low false positive rate can yield a poor F-
scores if there are many more negative examples in the cor-
pus than positive examples. Despite this issue, our models
for the meanings of spatial prepositions are a promising path
forward to a natural language video retrieval. The task is a
challenging one, and we do not expect perfect performance.
An interface using our models could successfully find match-
ing clips, enabling video search by natural language query.

6. CONCLUSION
The work described here focuses on single prepositional

phrases. We plan to use our models as components of a
more complicated natural language understanding system
that can handle chains of prepositional phrases (e.g., “from
the dining room to the sink along the right side of the is-
land”) and a richer variety of words, such as “wandering,”
“loitering,” and “pacing.” Our methodology - collecting nat-
ural language descriptions of video clips and using the re-
sulting corpus to train and test semantic models - enables
us to build up robust models of meaning that are useful for
solving real-world problems.

We see natural language as one component of a multi-
modal retrieval interface, complemented by other input modal-
ities. In addition to natural language queries, our retrieval
interface already supports several graphical query methods.
Users can draw an example trajectory with the mouse, and
the system finds similar clips. They can also query by bound-
ing box, using the mouse to draw boxes indicating regions of
interest. These query interfaces complement a natural lan-
guage interface, making a tool more powerful than either on
its own. We are also applying our models to enable a robot
to understand natural language directions such as “go out
the door to the computers.” Our long-term goal is to build
models of spatial semantics that work in many different re-
alistic domains.

We have presented a multi-modal retrieval system that
finds video clips that match natural language queries such
as “to the stove,” “along the right side of the island,” or
“across the kitchen.” To train and evaluate our system, we
collected a corpus of video clips paired with natural language
descriptions. This corpus provides a snapshot of the ways



people describe movement in video. Using this corpus, we
trained and tested binary classifiers for spatial prepositions
in English, and measured their performance. This method-
ology enables us to identify important concepts underlying
the semantics of spatial prepositions.
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