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ABSTRACT

We present a trainable, visually-grounded, spoken language
understanding system. The system acquires a grammar and vo-
cabulary from a “show-and-tell” procedure in which visual scenes
are paired with verbal descriptions. The system is embodied in a
table-top mounted active vision platform. During training, a set
of objects is placed in front of the vision system. Using a laser
pointer, the system points to objects in random sequence, prompt-
ing a human teacher to provide spoken descriptions of the selected
objects. The descriptions are transcribed and used to automati-
cally acquire a visually-grounded vocabulary and grammar. Once
trained, a person can interact with the system by verbally describ-
ing objects placed in front of the system. The system recognizes
and robustly parses the speech and points, in real-time, to the ob-
ject which best fits the visual semantics of the spoken description.

1. INTRODUCTION

A central problem in the design of speech and text understand-
ing systems is the representation of the meaning of words and
sequences of words. We are investigating applications in which
spoken language is used to refer to objects in physical environ-
ments. These applications highlight the importance of designing
semantic representations that bridge the linguistic world of sym-
bolic structures and the continuous, non-symbolic world of visual
observations. Emerging application domains that require visually-
grounded language understanding include verbal communication
with robots and video retrieval by natural language (cf. [1, 2, 3]).

We describe a visually-grounded spoken language understand-
ing system named Newt. Newt processes spoken referring expres-
sions such as “The green apple to the left of the cup” and locates
the appropriate object in a visual scene. Newt is embodied in an
active vision system mounted on a two degree-of-freedom pan-
tilt base (Figure 1). The vision system includes two color video
cameras. The system reported here, however, uses only monocu-
lar vision. A small laser mounted between the cameras is used to
point to objects on a table top in response to spoken utterances.

This investigation builds on previous work in which we de-
veloped a trainable speech generation system called DESCRIBER
[4]. For DESCRIBER, training input consists of a set of syn-
thetically generated scenes of rectangles of varying shape, color,
size, and location paired with spoken descriptions of target ob-
jects within the scenes. DESCRIBER learns a three-level visually-
grounded language model based on this input. The trained system
generates syntactically correct, semantically accurate, and con-
textually appropriate referring expressing of objects in synthetic

Fig. 1. In response to a spoken object description, Newt (right part
of photo) points its laser at the best matching object (path of laser
indicated with a dashed line).

scenes. A typical utterance produced by DESCRIBER is “the
bright red square to the right of the large rectangle”.

The goal of the work reported in this paper was to ‘invert’
the processes in DESCRIBER, resulting in a speech understand-
ing system for a related but more difficult task. Instead of gener-
ating referring phrases of selected objects, we are now interested
in finding objects which match the meaning of novel spoken re-
ferring phrases. Additionally, the synthetic visual input used in
DESCRIBER has been replaced by a real-time color visual system
in Newt.

This paper proceeds by first describing Newt’s visual and speech
processing sub-systems, and then its language acquisition and un-
derstanding components.

2. VISUAL SYSTEM

Newt’s visual system tracks solid-colored objects placed on a ta-
ble top in real-time. The system extracts object properties and
inter-object spatial relationships which are passed to the language
processing system.

2.1. Object Tracking

Wemodel the color distribution of objects using mixtures of Gaus-
sian distributions. Although all objects are constrained to be single-
colored, shadow effects of three-dimensional objects necessitate



the use of a mixture of Gaussian distributions.
For each object used in the experiments, a color model is cre-

ated by collecting training images of each object and manually
specifying the region within each image that corresponds to the
object. The Expectation Maximization (EM) algorithm is used to
estimate both the mixture weights and the underlying Gaussian
parameters for each object. K-means clustering is used to provide
initial estimates of the parameters.

Local edge detection

Color model matching

Object tracker outputInput Image

Fig. 2. Object detection combines local edge finding with color-
based figure-ground separation.

As shown in Figure 2, input images are split into two parallel
processing paths. The first process performs local edge detection
in each of the RGB color planes. The outputs from the edge detec-
tors of all three planes are summed to provide an overall estimate
of local edges. This image is thresholded, resulting in a binary im-
age in which pixels located at edges are set to 0. We refer to this
image as the edge mask. In the second process, each 5x5 patch of
pixels is classified as belonging either to one of the known set of
objects or to the background. This is done by evaluating each color
model (described above) for each pixel patch and thresholding the
resulting values. Patches which have high matches with any color
model are set to 1 and the remainder are classified as 0. The lower
middle image in Figure 2 shows the result of this stage. We refer
to this as the object mask.

A final step merges the information from the two processes
by performing a pixel-wise multiplication of the edge and object
masks. A contour finding algorithm [5] identifies connected re-
gions in the resulting binary image. The integration of edge masks
and color based object masks deals effectively with partial occlu-
sions of different colored objects. In Figure 2, four objects are
identified and assigned unique indices.

2.2. Object Properties

Once object contours are determined, object properties are ex-
tracted and passed to the language acquisition / understanding sys-
tem. The features extracted include object color, shape, center of
area coordinates and bounding box parameters.

The color of an object is represented by the mean of 10x10
pixels centered on the object. The shape of an object is represented
by a visual distance metric first proposed in [6]. For each pair-wise
pixel on the edge of an object, , the Euclidean distance is
computed and normalized by the mean distance between all pairs
of edge points. A one-dimensional histogram is accumulated
for all such pair-wise edge pixel combinations. The inter-pixel
distances are divided into 8 bins, i.e., is composed of 8 bins.

The distance between two object shapes is estimated by computing
the divergence between the objects’ shape histograms.

An additional set of four shape related features is computed
based on the bounding box of each object. These parameters are:
height, width, height-to-width ratio, and area.

2.3. Inter-object Spatial Relations

To enable the system to ground the semantics of spatial terms such
as “above” and “to the left of”, a set of spatial relations similar to
[7] is measured between each pair of objects. The first feature is
the angle (relative to the horizon) of the line connecting the cen-
ters of area of an object pair. The second feature is the shortest
distance between the edges of the objects. The third spatial fea-
ture measures the angle of the line which connects the two most
proximal points of the objects.

In summary, the vision system provides real-time tracking of
multiple objects at approximately 15 frames per second. For each
frame, the system determines the number of objects in the scene, a
set of object properties and spatial relations.

3. SPEECH RECOGNITION

We have significantly extended our continuous speech recognition
system [8] to support processing of interactive spoken language.
The recognizer performs real-timemedium vocabulary (up to 1000
word) recognition. We chose to develop our own recognizer in
anticipation of non-standard decoder features which will be nec-
essary to support rich integration with visual processing. The cur-
rent system uses a 24-band Mel cepstra representation of acoustics.
Subword units consist of triphone modeled by continuous density,
three state, Hidden Markov Models. A back-off trigram language
model is trained from a mixture of domain specific and domain
general speech transcriptions. Speech decoding is accomplished
using a time-synchronous Viterbi beam search. A tree-based lex-
icon network represented by a finite state transducer constitutes
the search space in our implementation. The finite state transducer
incorporates language model parameters dynamically.

In the standard MAP decoding approach, the recognizer out-
puts a string of words corresponding to the most likely state se-
quence. Relying on a single word recognition hypothesis, how-
ever, leads to brittle behaviour since recognition errors are inevitable.
To gain robustness in our system, acoustic ambiguities are com-
pactly represented using a reduced word lattice structure based on
the methods reported in [9]. The word lattice incorporates poste-
rior probabilities based on acoustic and language model parame-
ters. The lattice possesses the topology of a directed acyclic graph
that is represented as a weighted Non-deterministic Finite State
Acceptor (NFSA). The NFSA is determinized and minimized to
yield a compact posterior word graph representing the set of can-
didate hypotheses. Such a word graph represents edge weighted
word level confusions in a compact sequential format. Ambiguous
representations are preferred since they retain multiple hypotheses
which are better resolved in later stages of processing. Currently,
Newt only uses the best hypothesis, but we plan in the near future
to consider multiple parses within the word lattice, constrained by
semantic possibilities encoded by the visual system.



4. LANGUAGE ACQUISITION FROM SHOW-AND-TELL

Newt learns visually grounded language by a ‘show-and-tell’ pro-
cedure. During training sessions, Newt randomly points (using
its laser pointer) to one of the objects in its view and waits for
the trainer to speak. Newt then forwards the features extracted by
the visual system and the utterance detected by the speech recog-
nizer as a training example to its language acquisition system, and
proceeds to point to another object on the table. The language ac-
quisition system is distributed amongst a large number of separate
processes, each responsible for a different aspect of learning to
robustly parse visually-grounded language. The system includes

w-procs - word processes, that each attach to a single unique word
and estimate context-free visual semantics for this word,

c-procs - cluster processes, that measure similarities between the
w-procs and encapsulate the output of similar w-procs to
make them appear to originate from a single process,

g-procs - grammar processes, that combine the outputs of several
other processes covering adjacent parts of an utterance us-
ing a set of possible combination functions, and an

a-proc - an action process, that listens to all other process ac-
tivations occurring for a given utterance and rewards cor-
rect outputs or acts according to the outputs, depending on
whether the utterance appears to be a training example (i.e.
is paired with an indicated object) or a command.

The central idea is to gain robustness in parsing by using a
distributed set of processes, each of which parses only an island
of words within the utterance. The processes self-assemble in hi-
erarchical structures to explain complete utterances and bind them
to visual referents. We describe the acquisition of this distributed
grammar in the following sections.

4.1. Visually-GroundedWord Learning

Training examples consist of visual features of a target object and
its spatial relation to other objects paired with transcriptions of
spoken descriptions provided by a human trainer. As training ex-
amples arrive, a spawning process ensures that a process is cre-
ated for each unique word encountered. These word processes
(w-procs) are responsible for modeling the visual grounding of a
word in a context-free manner. For example, the w-proc respon-
sible for ‘blue’ tries to answer the question: How did the objects
I saw when I heard ‘blue’ differ from the other objects I have en-
countered? To do so, each w-proc estimates a multivariate Gaus-
sian over all the features offered by the visual system, conditioned
on the occurrence of its assigned word. When the word associated
with the w-proc occurs, the process both gives the features of the
object that Newt is pointing to as an example to the Gaussian, and
publishes the current Gaussian to other running processes. When-
ever activated this way, the w-proc also measures how strongly its
word is grounded by computing the Kullback-Leibler distance

between the word-conditioned Gaussian and a Gaussian
background model that is compiled from all objects ever encoun-
tered. If its grounding strength is ever below a certain threshold,
the process dies. This happens for words that are not grounded in
basic visual features in Newt’s world, like ‘the’.

Along with each w-proc a clustering process (c-proc) is spawned
and attached to the w-proc. Periodically this c-proc polls all other
c-procs for their grounded similarity to itself. This grounded sim-
ilarity is computed by first forming the semantic word profile

...

where is the Kullback-Leibler distance computed after re-
moving feature from the Gaussian. This profile measures how
much each feature contributes to the overall grounding strength of
the word. The grounded distance is then calculated as

which measures the degree of overlap between the feature of two
words. If the similarity is greater than a threshold, the two c-procs
combine into one, relinking all w-procs associated with either to
feed into the new c-proc. For a c-proc with multiple associated
word groundings, all combinations of similarities between words
are calculated and averaged to give a consensus similarity. In ef-
fect, c-procs funnel the activations of multiple similar w-procs to
make them look identical in origin to higher level processes.

4.2. Learning Grounded Grammar Fragments

As w-procs begin to be activated by words and c-procs channel
their outputs, they take responsibility for parts of the utterance
heard. For example, the ‘blue’ w-proc signals that it can inter-
pret, in a context-free sense, the occurrence of the word ‘blue’ in
a specific location in the current utterance. Whenever two pro-
cesses cover utterance fragments either next to each other (where
ungrounded words are ignored or taken as arguments, as discussed
below), the spawning process ensures that grammar processes (g-
proc) exist to attempt to combine the outputs of these processes.
Each g-proc is linked to two other processes’ output and performs
a specific function to attempt to combine them. For example, a
g-proc might perform logarithmic pooling on the Gaussians it re-
ceives. For Newt, such a process accounts for the concept asso-
ciated with the phrase ‘yellow cone’, made up of the concepts
attached to ‘yellow’ and ‘cone’. During training, other g-procs
identify the objects best indicated in the current visual scene by
the two Gaussians they receive, and compute a new Gaussian on
the spatial features measured between these objects. G-procs are
also spawned for grounded concepts that occur with ungrounded
words in between them or surrounding them. In this way, ‘rect-
angle above the’ is grounded in spatial features, where ‘rectangle’
describes every object ever encountered and thus turns up as un-
grounded. Notice that g-procs can stack to arbitrary depths, pars-
ing phrases like ‘the large horizontal blue rectangle below the thin
red square’.

4.3. Reinforcement Feedback

An active process (a-proc) listens to the output of all processes
and tries to account for fragments of an utterance. It computes the
probabilities for each object in the scene based on each process’
output, and sends a reward to the process that assigns the highest
probability to the object actually indicated and that covers the most
words in the utterance. The reward is proportional to the normal-
ized difference between the probability of the correct object and
the probability of the closest runner-up. Together with this reward
the a-proc sends back the object indicated during training. Each



"purple"
w-proc

"horizontal"
w-proc

"green"
w-proc

"below"
g-proc

Shape/Color
g-proc

Color
c-proc

Shape
c-proc

"horizontal"
w-proc

"the horizontal purple rectangle below the horizontal green rectangle"

"horizontal purple" "horizontal green"

"horizontal"/"horizontal" "purple"/"green"

Fig. 3. A sample parse by the language understanding processes.

process that receives a reward in turn sends this reward to the pro-
cesses that it used to cover a part of the current utterance. If it
used different parts of the utterance to designate different objects
(as in the case of spatially grounded words like ‘above’) it sends
back the appropriate object with the reward message. G-agents
maintain an energy measure that they subtract from each time they
send a message and add to when they get rewarded. Processes with
energy below zero die, trimming useless functions like measuring
spatial features to explain ‘yellow cone’. C-agents currently do
not use the reward message, but could do so to adjust their clus-
tering threshold and re-cluster to make themselves more useful.
W-agents, finally, can be caused to take a different object than the
one indicated by the reward message, making sure that the ‘green’
w-proc learns from the right object in ‘the square above the green
rectangle’.

5. LANGUAGE UNDERSTANDING

The language acquisition process described in the preceding sec-
tions is an on-line process, meaning that the system easily switches
from learning to understanding at any point and does the best it can
with the examples encountered so far. This switch merely implies
that if no object is currently indicated, the w-procs do not take any
examples, and the a-proc does not send a reward message. Rather,
the a-proc sends the most likely object indicated by the process
that covers the most words in the sentence to Newt’s motor con-
troller, which in turn points at the object. Figure 3 shows a sample
utterance parsed by the relevant processes, leaving out the a-proc
which gathers all other processes’ results.

As a preliminary evaluation, we collected a small dataset of
303 utterances from two trainers in two sessions per trainer. Each
utterance describes one object in a scene of four objects chosen
from a collection of about 10 objects total, including objects with
like shapes but different colors and vice versa. When trained on
three of the sessions and evaluated on the fourth for all four ses-
sions in turn, Newt achieves 82% accuracy in picking out the cor-
rect object, compared to a random baseline of . Due to the
small size of the dataset, we allowed Newt to use an example in
the fourth session as a training example after Newt had selected
an object for the example’s utterance. Doing this increases perfor-
mance by almost , indicating that the dataset size is too small
to achieve full performance. However, even this preliminary study
shows that Newt does learn the correct visual groundings for words
and their combinations.

6. CONCLUSIONS AND FUTURE DIRECTIONS

We have presented a complete speech understanding system which
maps spoken referring expressions to visually-observed objects.
The semantics of referring expressions are grounded in visual prim-
itives provided by a real-time color vision system which tracks
multiple objects and extracts their properties and inter-object rela-
tions. The system understands color, shape, and spatial language.
This work is part of our long term effort to develop a complete se-
mantic representation of spoken language which is based in large
part on sensory-motor grounding.

We are expanding on this work in two significant ways. First,
we are investigating semantic representations which integrate mo-
tor control primitives to encode meanings of words such as “give”,
“heavy” and “soft”. Second, we are developing a comprehensive
semantic framework which also grounds non-sensory-motor words
such as “not”, “because”, and “happen”.
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