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Abstract—Language is grounded in sensory-motor experience.
Grounding connects concepts to the physical world enabling hu-
mans to acquire and use words and sentences in context. Currently
most machines which process language are not grounded. Instead,
semantic representations are abstract, pre-specified, and have
meaning only when interpreted by humans. We are interested
in developing computational systems which represent words,
utterances, and underlying concepts in terms of sensory-motor
experiences leading to richer levels of machine understanding.
A key element of this work is the development of effective archi-
tectures for processing multisensory data. Inspired by theories of
infant cognition, we present a computational model which learns
words from untranscribed acoustic and video input. Channels
of input derived from different sensors are integrated in an in-
formation-theoretic framework. Acquired words are represented
in terms of associations between acoustic and visual sensory
experience. The model has been implemented in a real-time
robotic system which performs interactive language learning and
understanding. Successful learning has also been demonstrated
using infant-directed speech and images.

Index Terms—Cross-modal, language learning, multimodal, se-
mantic grounding.

I. INTRODUCTION

L
ANGUAGE is grounded in experience. Unlike dictionary

definitions in which words are defined in terms of other

words, humans understand basic concepts in terms of associ-

ations with sensory-motor experiences (cf. [1]–[4]). To grasp

the concepts underlying words such as red, heavy, and above

requires interaction with the physical world. This link to the

body and the environment is a fundamental aspect of language

which enables humans to acquire and use words and sentences

in context.

Although many aspects of human cognition and language

processing are not clearly understood, we can nonetheless draw

lessons from human processing to guide the design of intelligent

machines. Infants learn their first words by associating speech

patterns with objects, actions, and people [5]. The primitive

meanings of words and utterances are inferred by observing

the world through multiple senses. Multisensory grounding of

early words forms the foundation for more complex concepts

and corresponding linguistic capacities. Syntax emerges as

children begin to combine words to refer to relations between

concepts. As the language learner’s linguistic abilities mature,
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their speech refers to increasingly abstract notions. However,

all words and utterances fundamentally have meaning for hu-

mans because of their grounding in multimodal and embodied

experience. The sensory-motor basis of semantics provides

common ground for people to understand each another.

In contrast, currently most automatic spoken language pro-

cessing systems are not grounded. Machine training is based on

recordings of spoken utterances paired with manually generated

transcriptions and semantic labels. Depending on the task, the

transcriptions may vary in level of abstraction ranging from low

level phonetic labels to high level semantic labels. Various sta-

tistical methods including hidden Markov models (HMMs) and

neural networks are employed to model acoustic-to-label map-

pings. In this paper we refer to the general approach of mod-

eling mappings from speech signals to human specified labels

as “ungrounded speech understanding,” since the semantics of

the speech signal are only represented abstractly in the machine.

The use of abstract labels isolates the machine from the physical

world. The ungrounded approach has lead to many practical ap-

plications in transcription and telephony. There exist, however,

fundamental limits to the ungrounded approach.

We can anticipate the limitations of ungrounded speech un-

derstanding by comparison with human counterparts. At least

two interrelated advantages can be identified with the grounded

approach. First, the learning problem may be solved without la-

beled data since the function of labels may be replaced by con-

textual cues available in the learner’s environment. Language

does not occur in a vacuum. Infants observe spoken language in

rich physical and social contexts. Furthermore, infant-directed

speech usually refers to the immediate context [6]; caregivers

rarely refer to events occurring in another time or place. This

connection of speech to the immediate surroundings presum-

ably helps the infant to glean the meaning of salient words and

phrases by observing contexts in which speech occurs. The ad-

vantage to this approach is that the learner acquires knowledge

from observations of the world without reliance on labeled data.

Similar advantages are anticipated for machines.

A second advantage of the grounded approach is that speech

understanding can leverage context to disambiguate words

and utterances at multiple levels ranging from acoustic to

semantic ambiguity. The tight binding of language to the world

enables people to integrate nonlinguistic information into the

language understanding process. Acoustically and semantically

ambiguous utterances can be disambiguated by the context

in which they are heard. We use extra-linguistic information

so often and so naturally that it is easy to forget how vital

its role is in language processing. Similar advantages can be

expected for machines which are able to effectively use context
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Fig. 1. Levels of conceptual abstraction grounded in sensory-motor experience. Language is acquired by forming concepts, and learning associations from words
and utterances to conceptual structures.

when processing language. These advantages motivate us to

investigate grounded speech acquisition.

It is illuminating to examine the differences between learning

procedures for speech systems and infants. Traditionally, speech

understanding systems are trained by providing speech and cor-

responding transcriptions (which may include semantic labels

in addition to phonetic and word labels). This constitutes dras-

tically impoverished input when compared with infants. With

such a handicap, infants would be unlikely to acquire much lan-

guage at all. Training with labeled data does have its advantages.

The recognition task is well defined, and mature techniques of

supervised machine learning may be employed for parameter

estimation of classifiers. We propose new methods which ex-

plore more human-like learning frommultiple channels of unla-

beled data. Although the learning problem becomes more chal-

lenging, the potential payoffs are great. Our goal is to build mul-

timodal understanding systems which leverage cross-channel

information, leading to more intelligent and robust systems, and

which can be trained from untranscribed data.

This paper presents a model of grounded language learning

called CELL (Cross-Channel Early Lexical Learning). CELL

leverages cross-modal structure to segment and discover words

in continuous speech, and to learn visual associations for those

words. Rather than rely on transcriptions or labels, speech pro-

vides noisy and ambiguous labels for video, and vice versa. We

describe new algorithms which have been developed to imple-

ment this model in a real-time audio–visual processing system.

The system has been embedded into a robotic embodiment

enabling language learning and understanding in “face-to-face”

interactions. We also present experimental evaluations with

infant-directed speech and co-occurring video in which word

learning was achieved in the face of highly spontaneous speech.

II. GROUNDING: CONNECTING MEANING TO THE WORLD

Grounding in its most concrete form is achieved by giving

machines the capacity to sense and act upon the physical world.

Since humans also sense and act upon the same world, this

shared physical context provides a common ground which me-

diates communication between humans and machines. Fig. 1 il-

lustrates how abstract concepts can emerge from sensory-motor

experience through layers of analysis. At the left side of the

figure, interactions with the physical world give rise to sensory

and motor (or action) categories. Structures which represent re-

lations between these categories are inferred at increasing levels

of abstraction to the right. Ultimately, causal and logical rela-

tions may be inferred if appropriate types of structured learning

are employed. Our current work is restricted to the first two

levels shown in the figure but the framework leads naturally

to higher levels of conceptual and linguistic learning. Based on

this philosophy, we have built communication systems which

ground all input in physical sensors.

Humans are endowed with similar sensory and motor capac-

ities. This shared endowment results in similar semantic repre-

sentations at least at the lowest levels of abstraction. No person

is able to perceive infrared or ultraviolet rays, and thus no young

child will naturally acquire words grounded in these referents.

Young children’s first nouns label small objects [7], probably

since those are the objects they are able to manipulate with their

hands and thus build up sufficiently accurate models. Names of

larger objects are only acquired in later stages of development.

The design of sensors and manipulators regulates the type of

concepts which a machine can acquire. We argue that machines

must at a functional level share the abilities and limits of our

physiology if they are to acquire human-like semantics.

An emphasis is placed on grounding all learning in sensors,

avoiding any reliance on human-generated labels or transcrip-

tions. This ensures that themachinewill develop representations

which capture the richness inherent in continuous variations of

the physical world. From an engineering perspective, sensory

grounding forces us to adopt statistical approaches which are

robust to various types of noise encountered in sensory signals.

Although this paper focuses on grounding language in the

physical world, in many situations it may also be useful to

ground semantics in virtual worlds [8]–[11]. For example, in

[11], we created a video game in which a synthetic character

could “see” objects in a virtual world using synthetic vision.

The semantics of spoken words were grounded in attributes of

virtual objects enabling speech-based human–machine interac-

tion in the course of playing the video game. In many situations,

the level of semantic abstraction required in a communication

task might render direct physical grounding impractical. In

such cases, a virtual representation of the task may serve as a

useful proxy to ground human–machine communication. The

common denominator across virtual and physical grounding

is that both humans and machines have perceptual access to

shared nonlinguistic referents.
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Fig. 2. Framework for learning from untranscribed sensory data. Feature
detectors extract channels of input from sensors. The input channels are divided
into two sets. The first carries symbolic information such as words and signed
gestures. The second set carries representations of referents which may be
associated with symbols. For example, visual channels may represent the shape
or color of objects which are associated with shape and color symbolic terms.

III. LEARNING CROSS-CHANNEL STRUCTURE

The world does not provide infants with transcribed data. In-

stead, the environment provides rich streams of continuously

varying information through multiple modes of input. Infants

learn by combining information from multiple modalities. A

promising path of research is to build machines which similarly

integrate evidence across modalities to learn from naturally oc-

curring data without supervision [12], [13]. The key advantage

to this approach is that potentially unlimited new sources of un-

tapped training data may be utilized to develop robust recog-

nition technologies. Ultimately, we envision machines which

actively explore their world and acquire knowledge from sen-

sory-motor interactions.

Fig. 2 shows our framework for learning from multisensory

input. A set of sensors provides input. Feature detectors extract

channels of input from the sensors. In general the number

of input channels is greater than the number of sensors. For

example, shape, color, texture, and motion channels might

be extracted from a camera. Phonemes, speaker identity, and

prosody (e.g., pitch, loudness) are examples of channels which

might be extracted from acoustic input. A subset of the input

channels are assumed to represent symbolic information (words

and phrases). The remaining channels represent the referents of

these symbols. The goal of learning is to appropriately segment

and cluster incoming data in the input channels in order to

identify and build associations between symbols and referents.

Recent models of language acquisition include models

of speech segmentation based on minimum description

length encoding of acoustic representations [14], [15], and

cross-situational learning from text coupled with line drawings

representing simple visual semantics [8]–[10]. Algorithms for

acquiring syntactic structure and semantic associations for

acoustic words based on semantic transcriptions have been

demonstrated [16]. This work has lead to tabula rasa learning

of acoustic vocabularies and higher level language structures

from speech recordings transcribed at only the semantic level

[17]. Physical grounding of concepts has been explored in the

context of robotics as an alternative to the symbol processing

view of artificial intelligence [18], [19]. The model presented

in this paper departs from previous work in language learning

in that both words and their semantics are acquired from sensor

input without any human-assisted transcription or labeling of

data.

IV. CELL: CROSS-CHANNEL EARLY LEXICAL LEARNING

To explore issues of grounded language, we have created

a system which learns spoken words and their visual seman-

tics by integrating visual and acoustic input [20]. The system

learns to segment continuous speech without an a priori lexicon

and forms associations between acoustic words and their vi-

sual semantics. This effort represents a step toward introducing

grounded semantics in machines. The system does not repre-

sent words as abstract symbols. Instead, words are represented

in terms of audio-visual associations. This allows the machine

to represent and use relations between words and their phys-

ical referents. An important feature of the word learning system

is that it is trained solely from untranscribed microphone and

camera input. Similar to human learning, the presence of mul-

tiple channels of sensory input obviates the need for manual an-

notations during the training process. In the remainder of this

paper we present the model of word learning and describe ex-

periments in testing the model with interactive robotics and in-

fant-directed speech.

We have developed a model of CELL, summarized in Fig. 3

[20], [21]. This model discovers words by searching for seg-

ments of speech which reliably predict the presence of co-oc-

curring visual categories. Input consists of spoken utterances

paired with images of objects. In experiments presented later in

this paper, we present results using spoken utterances recorded

from mothers as they played with their infants in natural set-

tings. The play centered around everyday objects such as shoes,

balls, and toy cars. Images of those objects were paired with the

spontaneous speech recordings to provide multisensory input to

the system. Our goal was to approximate the input that an infant

might receive when listening to a caregiver and simultaneously

attending to objects in the environment. The output from CELL

consists of a lexicon of audio-visual items. Each lexical item

includes a statistical model (based on HMMs) of an acquired

spoken word, and a statistical visual model of either a shape

or color category. To acquire lexical items, the system must (1)

segment continuous speech at word boundaries, 2) form visual

categories, and 3) form appropriate correspondences between

word and visual models.

The correspondence between speech and visual streams is

extremely noisy. In experiments with infant-directed speech

described in Section IX, the majority of spoken utterances in

our corpus contained no direct reference to the co-occurring

visual context. Thus the learning problem CELL faces is

extremely challenging since the system must “fish out” salient

cross-channel associations from noisy input.

Camera images of objects are converted to statistical

representations of shapes. Spoken utterances captured by a mi-

crophone are mapped onto sequences of phoneme probabilities.

A short term memory (STM) buffers phonetic representa-

tions of recent spoken utterances paired with representations

of co-occurring visual input. A short-term recurrence filter

searches the STM for repeated subsequences of speech which

occur in matching visual contexts. The resulting pairs of speech

segment and shape representations are placed in a long term

memory (LTM). A filter based on mutual information searches

the LTM for speech-shape or speech-color pairs which usually

occur together, and rarely occur apart within the LTM. These
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Fig. 3. CELL model. A layered memory architecture combined with recurrence and mutual information filters (see text) are used to acquire an audio–visual
lexicon from unlabeled input.

pairings are retained in the LTM, and rejected pairings are

periodically discarded by a garbage collection process.

V. REPRESENTING AND COMPARING SPOKEN UTTERANCES

Motivated by the fact that infants at the age of six months1

possess language-specific phonemic discrimination capabili-

ties [22], [23], the system is “endowed” with pretrained English

phoneme feature extraction. Spoken utterances are represented

as arrays of phoneme probabilities. A recurrent neural network

similar to [24] processes RASTA-PLP coefficients [25] to esti-

mate phoneme and speech/silence probabilities. The RNN has

12 input units, 176 hidden units, and 40 output units. The 176

hidden units are connected through a time delay and concate-

nated with the RASTA input coefficients. The RNN was trained

off-line using back-propagation in time [26] with the TIMIT

database of phonetically transcribed speech recordings [27].2

The RNN recognizes phonemes with 69.4% accuracy using the

standard TIMIT training and test datasets. Session recordings

are segmented into utterances by detecting contiguous segments

of speech in which the probability of silence estimated by the

RNN are low.

Spoken utterances are segmented in time along phoneme

boundaries, providing hypotheses of word boundaries. To

locate phoneme boundaries, the RNN outputs are treated as

state emission probabilities in a HMM framework. The Viterbi

dynamic programming search [28] is used to obtain the most

1Aswith any learning system, certain structuresmust bemade “innate” to sup-
port data-driven learning. Given our goal of word learning, we chose to start at
the “six-month-old” stage, a point at which infants are able to discern phonemic
speech sound differences but have not begun word learning. To model different
stages of language acquisition such as phonological or syntactic learning, dif-
ferent choices of what to make innate would have been made.
2Note that the use of transcribed data was strictly for the purpose of training

the RNN to serve as a feature detector for generating phoneme probabilities.
Word learning was performed by CELL on our new experimental database
without transcriptions.

likely phoneme sequence for a given phoneme probability

array. After Viterbi decoding of an utterance, the system

obtains 1) a phoneme sequence: the most likely sequence of

phonemes in the utterance and 2) the location of each phoneme

boundary for the sequence (this information is recovered from

the Viterbi search). Each phoneme boundary can serve as a

speech segment start or end point. Any subsequence within an

utterance terminated at phoneme boundaries can form a word

hypothesis.

We define a distance metric, , which measures the sim-

ilarity between two speech segments. One possibility is to treat

the phoneme sequence of each speech segment as a string and

use string comparison techniques. This method has been applied

to the problem of finding recurrent speech segments in contin-

uous speech [29]. A limitation of this method is that it relies on

only the single most likely phoneme sequence. A sequence of

RNN output is equivalent to an unpruned phoneme lattice from

which multiple phoneme sequences may be derived. To make

use of this additional information, we developed the following

distance metric.

Let be the best-path sequence of

phonemes observed in a speech segment. This sequence may be

used to generate a HMM model by assigning an HMM state

for each phoneme in and connecting each state in a strict

left-to-right configuration. State transition probabilities within

the states of a phoneme are inherited from a context-indepen-

dent set of phonememodels trained from the TIMIT training set.

Consider two speech segments, and decoded as phoneme

sequences and . From these sequences, we can generate

HMMs and . We wish to test the hypothesis that gener-

ated (and vice versa).

The Forward algorithm [28] can be used to compute

and , the probability that the HMM derived

from speech segment generated speech segment and vice

versa. However, these probabilities are not an effective measure
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Fig. 4. Extraction of object shape and color channels from a CCD camera.

for our purposes since they represent the joint probability of a

phoneme sequence and a given speech segment. An improve-

ment is to use a likelihood ratio test to generate a confidence

metric [30]. In this method, each likelihood estimate is scaled

by the likelihood of a default alternate hypothesis, :

The alternative hypothesis is the HMM derived from the

speech sequence itself, i.e., and . The

symmetric distance between two speech segments is defined in

terms of logarithms of these scaled likelihoods:

(1)

In practice, we have found this metric to robustly detect

phonetically similar speech segments embedded in spontaneous

speech. It is used as the basis for determining acoustic matches

between segments in the recurrence filter used by the STM,

and by the mutual information filter used to build lexical items

from LTM (see Section VII).

VI. VISUAL PROCESSING

Motivated again by the visual abilities of preverbal infants

[31], [32], the system is “endowed” with color and shape feature

extractors. Three-dimensional (3-D) objects are represented

using a view-based approach in which multiple two-dimen-

sional (2-D) images of an object captured from multiple

viewpoints collectively form a model of the object. The 2-D

representations were designed to be invariant to transformations

in position, scale and in-plane rotation. The representation of

color is invariant under changes in illumination. Fig. 4 shows

the stages of visual processing used to extract representations

of object shapes and colors.

Figure-ground segmentation is accomplished by assuming

that the background has uniform color. A Gaussian model of the

illumination-normalized background is estimated from a set of

20 images. Given a new image, the Gaussian model is evaluated

at each pixel and thresholded (using an empirically determined

threshold value) to classify pixels as either background or

foreground. Large connected regions of pixels classified as

foreground indicate the presence of an object.

The 3-D shape of an object is represented using a set of

histograms, each of which represents the silhouette of the object

from a different viewpoint.3 We assume that with sufficient

stored viewpoints, a novel viewpoint of an object may be

matched by interpolation. Given the pixels of an image which

correspond to an object using figure-ground segmentation, the

following steps are used to build a representation of the object’s

silhouette.

• Locate all outer edge points of the object by finding all

foreground pixels adjacent to background pixels. Edge

points in the interior of the object are ignored.

• For each pair of edge points, compute two values: 1) the

Euclidean distance between the points, normalized by the

largest distance between any two edge points of that sil-

houette, and 2) the angle between the tangents to the edge

of the object at the two edge points.

• Accumulate a 2-D histogram of all distance-angle

measurements.

The resulting histogram representation of the object silhou-

ette is invariant under rotation (since all angles are relative) and

object size (since all distances are normalized). Using multi-

dimensional histograms to represent object shapes enables the

3Schiele and Crowley have shown that histograms of local images features
are a powerful representation for object recognition [33].
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use of information theoretical or statistical divergence functions

for the comparison of silhouettes. Through experimentation we

found the -divergence to be most effective:

(2)

where and are two histograms indexed by

and and are the values of a histogram cell.

The representation of three dimensional shapes is based on a

collection of 2-D shape histograms, each corresponding to a par-

ticular view of the object. For all results reported in this paper,

each three dimensional object is represented by 15 histograms.

The 15 viewpoints are chosen at random. We found that for

simple objects, 15 views are sufficient to capture basic shape

characteristics. We refer to a set of histograms as a view-set.

View-sets are compared by summing the divergences of the four

best matches between individual histograms.

The color of objects is also represented using histograms. To

compensate for lighting changes, the red , green , and

blue components of each pixel are divided by the sum of all

three components resulting in a set of “illumina-

tion-normalized” values. Since all triplets of illumination-nor-

malized values must add to 1.0, there are only two free parame-

ters for each pixel. For this reason, the normalized blue value of

all pixels are not stored (any one of the three colors could have

been dropped). For each image, a 2-D color histogram is gen-

erated by accumulating illumination-normalized red and green

values for each foreground pixel in the object. The normalized

red and green values are divided into eight bins leading to and

8 8 histogram. Similar to the representation of shape, 15 color

histograms are recorded for each image to capture color differ-

ence from different viewpoints. Also similar to shape compar-

isons, the sum of the -divergences of the four best matching

views is used to compare the color of object.

VII. AUDIO-VISUAL LEXICAL ACQUISITION

The heart of the CELL model is a cross-channel learning al-

gorithm which simultaneously solves the problems of speech

segmentation, visual categorization, and speech-to-vision asso-

ciation. A key problem in clustering across different representa-

tions is the question of how to combine distance metrics which

operate on distinct representations. In CELL, mutual informa-

tion is used to quantify cross-channel structure. This section de-

scribes CELL’s cross-channel lexical learning architecture; the

following two sections provide results of using this algorithm

for learning from robot-directed and infant-directed speech and

images of objects.

Input to CELL consists of a series of spoken utterances paired

with view-sets. We refer to an {utterance, view-set} pair as an

audio-visual event, or AV-event. AV-events are generated when

an object is in view while an spoken utterance is detected.

Lexical acquisition is comprised of two steps. In the first

step, AV-events are passed through a first-in-first-out short

term memory (STM) buffer. The buffer has a capacity of five

AV-events.4 When a new event is inserted into the buffer, a

recurrence filter searches for approximately repeating audio

and visual patterns within the buffer. If a speaker repeats a word

or phrase at least twice within a five contiguous utterances

while playing with similar shaped objects, the recurrence filter

would select that recurrent sound-shape pair as a potential

lexical item. The recurrence filter uses the audio and visual

distance metrics presented earlier to determine matches. The

distance metrics are applied independently to the visual and

acoustic components of AV-events. When matches are found

simultaneously using both metrics, a recurrence is detected.

The recurrence filter performs an exhaustive search over all

possible image sets and speech segments (at phoneme bound-

aries) in the five most recent AV-events. To summarize, output

from the recurrence filters consists of a reduced set of speech

segments and their hypothesized visual referents.

In the second step, the hypotheses generated by the recurrence

filter are clustered using an information-theoretic measure, and

the most reliable clusters are used to generate a lexicon. Let us

assume that there are sound-shape hypotheses in LTM. For

simplicity we ignore the color channel in this example, but the

same process is repeated across both input channels. The clus-

tering process would proceed by considering each hypothesis as

a reference point, in turn. Let us assume one of these hypotheses,

, has been chosen as a reference point. Each remaining

hypotheses may be compared to using and . Let

us further assume that two thresholds, and are defined

(we show how their values are determined below). Two indi-

cator variables are defined with respect to :

if

if
(3)

if

if
(4)

where is the hypothesis, for . For a given

setting of thresholds, the and variables indicate whether

each hypothesis matches the reference acoustically and visu-

ally, respectively. The mutual information between and is

defined as [34]

(5)

The probabilities required to calculate are estimated

from frequency counts. To avoid noisy estimates, events which

occur less than four times are disregarded. Note that

is a function of the thresholds and . To determine

and , the system searches for the settings of these thresholds

which maximizes the mutual information between and .

Smoothing of frequencies avoids the collapse of thresholds to

zero.

Each hypothesis is taken as a reference point and its point of

maximum mutual information (MMI) is found. The hypotheses

4The size of the STMwas determined experimentally and represents a balance
between learning performance and speed. Smaller STMs lead to poor learning
performance; larger STMs did not significantly improve learning, but dramati-
cally increased learning speed.
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which result in the highest MMI are selected as output of the

system. For each selected hypothesis, all other hypotheses

which match both visually and acoustically are removed from

further processing. In effect, this strategy leads to a greedy

algorithm in which the hypotheses with best MMI scores are

extracted first.

The process we have described effectively combines acoustic

and visual similarity metrics via theMMI search procedure. The

mutual information metric is used to determine the goodness

of a hypothesis. If knowledge of the presence of one cluster

(acoustic or visual) greatly reduces uncertainty about the pres-

ence of the other cluster (visual or acoustic), then the hypothesis

is given a high goodness rating and is more likely to be selected

as output by the system.

An interesting aspect of using MMI to combine similarity

metrics is the invariance to scale factors of each similarity

metric. Each metric organizes sound-shape hypotheses in-

dependently of the other. The MMI search finds structural

correlations between the modalities without directly combining

similarity scores. As a result, the clusters which are identified

by this method can locally and dynamically adjust allowable

variances in each modality. Locally adjusted variances cannot

be achieved by any fixed scheme of combining similarity

metrics.

A final step is to threshold the MMI score of each hypothesis

and select those which exceed the threshold. Automatic deter-

mination of this MMI threshold is not addressed in this work. In

current experiments, it is set manually to optimize performance.

VIII. INTERACTIVE ROBOTIC IMPLEMENTATION

To support human-machine interactions, CELL has been

incorporated into a real-time speech and vision interface

embodied in a robotic system. Input consists of continuous

multiword spoken utterances and images of objects acquired

from a video camera mounted on the robot. The visual system

extracts color and shape representations of objects to ground

the visual semantics of acquired words. To teach the system,

a person places objects in front of the robot and describes

them. Once a lexicon is acquired, the robot can be engaged in

an object labeling task (i.e., speech generation), or an object

selection task (i.e., speech understanding).

A. Robotic Embodiment

A four degree-of-freedom robotic armature has been con-

structed to enable active control of the orientation of a small

video camera mounted on the end of the device (Fig. 5). An an-

imated face has been designed to give the robot the appearance

of a synthetic character. Facial features including eyelids, mouth

and feathers are used to convey information about the state of

the system to the user in a natural manner.

Direction of gaze: A miniature camera is embedded in the

right “eyeball” of the robot. The direction of the camera’s

focus is apparent from the physical orientation of the robot

and provides a mechanism for establishing joint attention.

Facial Expressions: Several servo-controlled facial fea-

tures are used to convey information about the internal

state of CELL. The eyes are kept open when the vision

Fig. 5. A robot with four degrees of freedom used to capture images of objects.
A small CCD camera is mounted in the right eyeball. A turntable provides a fifth
degree of freedom for viewing objects from various perspectives. The turntable
was only used for collecting images for the infant-directed speech experiments
described in Section IX.

system is in use. Feathers mounted on the head are

extended to an attentive pose when the audio processing

system detects the start of an utterance. The robot’s mouth

(beak) moves in synch with output speech.

Spoken Output: A phoneme-based speech synthesizer5

is used to convey internal representations of speech

segments. The Viterbi decoder is used to extract the

most likely phoneme sequence for a given segment of

speech. This phoneme sequence is resynthesized using the

phoneme synthesizer. Naturalness of output is improved

by controlling the duration of individual phonemes based

on observed durations in the Viterbi decoding.

B. Acquiring a Lexicon

The robot has three modes of operation: acquisition, genera-

tion, and understanding. The mode is toggled manually through

a software switch. In acquisition mode, the robot searches for

the presence of objects on a viewing surface. When an object is

detected, the system gathers multiple images to build a view-set

of the object. If a spoken utterance is detected while the view-set

is being gathered, an AV-event is generated and processed by

CELL.

To teach the system, the user might, for example, place a cup

in front of the robot and say, “Here’s my coffee cup.” To verify

that the system received contextualized spoken input, it “par-

rots” back the user’s speech based on the recognized phoneme

sequence. This provides a natural feedback mechanism for the

user to understand the nature of internal representations being

created by the system.

C. Acquiring Lexical Order: A First Step Toward Syntax

To learn word order, a language learner must have some

method of clustering words into syntactic categories. A syntax

can then be used to specify rules for ordering word classes. In

CELL, acquired lexicons are divided into two natural classes:

words grounded in shape, and words grounded in color. Distri-

butional analysis is used to track the ordering of word classes in

utterances that contain both color and shape words in adjacent

position (i.e., spoken with no intervening words).

In a pilot experiment, a single user provided the robot with

100 spoken utterances describing eight objects of varying

5The TrueTalk speech synthesizer made by Entropic Research Laboratory,
Inc., 600 Pennsylvania Ave. SE, Suite 202, Washington, DC 20003.
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Fig. 6. Objects used during play in the infant-caregiver interactions.

shapes and colors. Approximately equal numbers of utterances

were produced to describe each object. The speech was gath-

ered in a spontaneous “face-to-face” setting with the robot

running in its acquisition mode. From this small data set, the

system learned that color terms precede shape terms in English.

This information was encoded by a single statistic: a higher

probability of shape-color compared to color-shape word pairs.

This statistic was used to determine the sequence of words for

speech generation, and to build a simple language model for

speech understanding.

This experiment in word order learning represents a first step

toward semantically grounded syntax acquisition. This method

of linking early lexical learning to syntax acquisition is closely

related to the semantic bootstrapping hypothesis which posits

that language learners use semantic categories to seed syntactic

categories [35], [36]. According to this theory, perceptually ac-

cessible categories such as objects and actions seed the syntactic

classes of nouns and verbs. Once these seed categories have

been established, input utterances are used to deduce phrase

structure in combination with constraints from other innate bi-

ases and structures. In turn, the phrase structure can be used

to interpret input utterances with novel words. Distributional

analysis can be used to expand syntactic classes beyond initial

semantically bootstrapped categories. In future work we plan

to expand CELL to enable more complex aspects of grounded

syntax learning.

D. Speech Generation

Once lexical items are acquired, the system can generate

spoken descriptions of objects. In this mode, the robot searches

for objects on the viewing surface. When an object is detected,

the system builds a view-set of the object and compares it to

each lexical item in LTM. The acoustic prototype of the best

matching item is used to generate a spoken response. The

spoken output may describe either shape or color depending on

the best match.

To use word order statistics, a second generation mode finds

the best matching LTM item for the color and shape of the ob-

ject. The system generates speech to describe both features of

the object. The order of concatenation is determined by the ac-

quired word order statistics. When presented with an apple, the

robot might say “red ball” (as opposed to “ball red”) assuming

it has already learned the words “red” and “ball,” even if it had

never seen an apple or heard that specific word sequence before.

E. Speech Understanding

When in the speech understanding mode, input utterances are

matched to existing speech models in LTM. A simple grammar

allows either single words or word pairs to be recognized. The

transition probabilities between word pairs are determined by

the acquired word order statistics.

In response to speech, the system finds all objects on the

viewing surface and compares each to the visual models of the

recognized lexical item(s). In a forced choice, it selects the best

match and returns the robot’s gaze to that object. In effect, the

person can speak a phrase such as “brown dog,” or “brown,” or

“dog,” and the robot will find the object best matching the vi-

sual semantics of the spoken word or phrase.

To provide additional feedback, the selected object is used

to index into LTM and generate a spoken description. This

feedback leads to revealing behaviors when an incorrect or

incomplete lexicon had been acquired. The nature of the

errors provides the user with guidance for subsequent training

interactions.

IX. EXPERIMENTS WITH INFANT-DIRECTED

SPONTANEOUS SPEECH

To evaluate CELL on natural and spontaneous spoken input,

experiments were conducted with a corpus of audio–visual data

from infant-directed interactions [20]. Six caregivers and their

prelinguistic (seven to 11 months) infants were asked to play

with objects while being recorded. We selected seven classes of

objects commonly named by young infants: balls, shoes, keys,

toy cars, trucks, dog, horses [7]. A total of 42 objects, six objects

for each class, were obtained (see Fig. 6). The objects of each

class vary in color, size, texture, and shape.

Each caregiver-infant pair participated in six sessions over

a course of two days. In each session, they played with seven

objects, one at a time. All caregiver speech was recorded using
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Fig. 7. Mutual information as a function of the acoustic and visual thresholds for two lexical candidates.

a wireless headset microphone onto DAT. In total we collected

approximately 7600 utterances comprising 37 000 words across

all six speakers. Most utterances contained multiple words with

a mean utterance length of 4.6 words.

The robot described in SectionVIII was used to gather images

of each object from various randomly determined viewpoints.

These images are a simple approximation of the first-person per-

spective views of the object which the infants had during play.

In total, 209 images were captured of each object resulting in a

database of 8778 images. View-sets of objects were generated

from these images as described below. For these infant-directed

speech evaluations, only the shape channel was extracted from

images, so color terms were unlearnable (ungroundable).

To prepare the corpus for processing, we performed the fol-

lowing steps. 1) Segment audio at utterance boundaries. This

was done automatically by finding contiguous frames of speech

detected by the recurrent neural network. 2) For each utterance,

generate a view-set of the object in play by taking 15 randomly

chosen images from the 209 available images of the object.

Video recordings of the caregiver-infant interactions were used

to determine the correct object for each utterance.

Each utterance-image set constituted an AV-event. Input to

the learning system consists of a sequence of AV-events, pre-

sented to the system in the same order that the utterances were

observed during infant interactions. The audio-visual data corre-

sponding to each of the six speakers was processed separately.

The top 15 items resulting from the MMI maximization step

were evaluated for each speaker. As noted earlier, the learning

problem posed by this data set is extremely challenging: less

than 30% of the spoken utterances contain words which directly

refer to the object in play. For example, the caregiver often said

phrases such as “Look at it go!” while playing with a car or

ball. CELL had to identify reliable lexical items such as “ball”

or “car” despite such poor correspondences.

As described in Section VII, lexical hypotheses are analyzed

by searching for maximummutual information across channels.

Fig. 7 presents two examples of mutual information surfaces

for two actual lexical hypotheses generated from one of the

speakers in this experiment. In each plot, the height of the sur-

face shows mutual information as a function of the thresholds

and . On the left, the speech segment corresponding to the

word “yeah” was paired with the images of a shoe. The resulting

surface is relatively low for all values of the thresholds. The lex-

ical candidate on the right paired a speech segment of the word

“dog” with images of a dog. The result is a strongly peaked sur-

face form. The thresholds were selected at the point where the

surface height, and thus mutual information, was maximized.

X. RESULTS

Results of the experiments were evaluated using three mea-

sures. For each acoustic and visual prototype used to generate

a lexical item, a pointer to the source speech recording and

view-set were maintained. An interface was built to allow an

evaluator to listen to the original speech recording from which

a prototype was extracted. The interface also displayed the im-

ages of the corresponding view-set. The used this tool to assess

the results.

Each lexical item was evaluated using three different

measures:

Measure 1–Segmentation Accuracy: Do the start and end

of each speech prototype correspond to word boundaries

in English?

Measure 2—Word Discovery: Does the speech segment

correspond to a single English word? We accepted words

with attached articles and inflections, and we also allowed

initial and final consonant errors. For example the words

/dag/ (dog), /ag/ ( dog, with initial /d/ missing), and / dag/

(the dog), would all be accepted as positive instances of

this measure. However /dagIz/ (dog is) would be counted

as an error.

Measure 3: Semantic Accuracy If the lexical item passes

the second measure, does the visual prototype associated

with it correspond to the word’s meaning? If a lexical item

fails onMeasure 2, then it automatically fails onMeasure 3.

It was possible to applyMeasure 3 to the acoustic-only model

since the visual prototype was carried through from input to

output. In effect, this model assumes that when a speech seg-

ment is selected as a prototype for a lexical candidate, the best

choice of its visual association is whatever co-occurred with it.

For comparison, we also ran the system with only acoustic

input. In this case it was not meaningful to use the MMI method
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TABLE I
CONTENTS OF LTM USING CELL TO PROCESS ONE PARTICIPANT’S DATA

so instead the system searched for globally recurrent speech pat-

terns, i.e. speech segments which were most often repeated in

the entire set of recordings for each speaker. This acoustic-only

model may be thought as a rough approximation to a minimum

description length approach to finding highly repeated speech

patterns which are likely to be words of the language [14], [15].

Table I lists the contents of the lexicon generated by CELL

for one of the participants. A phonetic and text transcript of

each speech prototype has beenmanually generated. For the text

transcripts, asterisks were placed at the start and/or end of each

entry to indicate the presence of a segmentation error. For ex-

ample “dog ” indicates that either the /g/ was cutoff, or addi-

tional phonemes from the next word were erroneously concate-

nated with the target word. For each lexical item we also list the

associated object based on the visual information. The letters

A–F are used to distinguish between the six different objects of

each object class.

Several phoneme transcripts have the indicator “(ono.)”

which indicate onomatopoeic sounds such as “ruf-ruf” for

the sound of a dog, or “vroooommmm” for a car. The corre-

sponding text transcript shows the type of sound in parentheses.

We found it extremely difficult to establish accurate boundaries

for onomatopoeic words in many instances. For this reason,

these lexical items were disregarded for all measures of perfor-

mance. It is interesting to note that CELL did link objects with

their appropriate onomatopoeic sounds. They were considered

meaningful and groundable by CELL in terms of object shapes.

This finding is consistent with infant learning; young children

are commonly observed using onomatopoeic sounds to refer

to common objects. The only reason these items were not

processed further is due to the above stated difficulties in

assessing segmentation accuracy.

The final three columns show whether each item passed the

criterion of each accuracy measure. In some cases a word such

as fire is associated with a fire truck, or lace with a shoe. These

are accepted as valid by Measure 3, since they are clearly

grounded in specific objects. At the bottom of the table, the

measures are accumulated to calculate accuracy along each

measure.

For comparison, the lexical items acquired by the

Acoustic-only Model are shown in Table II. These results

are derived from the same participant’s data as Table I. In

cases where no discernible words were heard, the text tran-

script is left blank. CELL out-performed the Acoustic-only

Model on all three measures. Similar results were found for

all subjects. Table III summarizes the performance of CELL
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TABLE II
CONTENTS OF LTM USING THE ACOUSTIC-ONLY MODEL TO PROCESS THE DATA FROM THE SAME PARTICIPANT AS TABLE I

and the acoustic-only model for all six speakers in the study.

Cross-modal learning achieved higher scores almost without

exception.6

Measure 1, segmentation accuracy, poses an extremely

difficult challenge when dealing with raw acoustic data. The

acoustic-only model produced lexical items which corre-

sponded perfectly to English words in only 7% of the lexical

items. In contrast, 28% of lexical items produced by CELL

were correctly segmented single words. Of these 28%, half of

the accepted items were not correctly grounded in the visual

channel (i.e., they fail on Measure 3). For example, the words

choose and crawl were successfully extracted by CELL and

associated with a car and ball respectively. These words do

not directly refer to objects and thus failed on Measure 3.

Yet, there was some structural consistency between the word

and the shape which aided the system in producing these

segmentations.

For Measure 2, word discovery, approximately three out of

four lexical items (72%) produced by CELL were single words

6The only exception was that the segmentation accuracy for Participant CL
was 33% using the acoustic-only compared with 20% using CELL.

(with optional articles and inflections). In contrast, using the

acoustic-only model, performance dropped to 31%. These re-

sults demonstrate the benefit of incorporating cross-channel in-

formation into the word learning process. The cross-channel

structure lead to a 2.3-fold increase in accuracy compared with

analyzing structure within the acoustic channel alone.

On Measure 3, the large difference in performance between

CELL and the acoustic-only system is not surprising since

visual input is not used during lexical formation in the latter.

CELL’s performance is very promising since 57% of the

hypothesized lexical candidates are both valid English words

and linked to semantically relevant visual categories.

For all three measures, we found that cross-channel struc-

ture is leveraged to improve learning performance. By looking

for agreement between different channels of input, CELL is

able to find lexical candidates effectively through unsupervised

learning.

The Acoustic-only Model performed well considering the

input it received consisted of unsegmented speech alone. In

fact it learned some words which are not acquired by CELL

including “go,” “yes,” “no,” and “baby. This result suggests
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TABLE III
SUMMARY OF RESULTS USING THREE MEASURES OF PERFORMANCE.
PERCENTAGE ACCURACY OF CELL FOR EACH CAREGIVER IS SHOWN.

PERFORMANCE BY THE ACOUSTIC-ONLY MODEL IS SHOWN IN PARENTHESES

that in addition to cross-channel structure, within-channel

structure is useful and should also be leveraged in learning

words. Using other processes, the learner may later attempt to

determine the associations of these words.

XI. CONCLUSIONS AND FUTURE DIRECTIONS

We have successfully implemented and evaluated CELL,

a computational model of sensor-grounded word learning.

The implemented system learns words from natural video

and acoustic input signals. To achieve this learning, three

difficult problems are simultaneously solved: 1) segmentation

of continuous spontaneous speech without a pre-existing

lexicon, 2) unsupervised clustering of shapes and colors, and

3) association of spoken words with semantically appropriate

visual categories. Mutual information is used as a metric

for cross-channel comparisons and clustering. This system

demonstrates the utility of mutual information to combine

modes of input for multisensory learning.

The results with CELL show that it is possible to learn to seg-

ment continuous speech and acquire statistical models of spoken

words by providing a learning systemwith untranscribed speech

and co-occurring visual input. Visual input serves as extremely

noisy labels for speech. The converse is also true. The system

learns visual categories by using the accompanying speech as

labels. The resulting statistical models may be used for speech

and visual recognition of words and objects. Manually trained

data is replaced by two streams of sensor data which serve as

labels for each other. This idea may be applied to a variety of

domains where multimodal data is available, but human anno-

tation is expensive.

We are now exploring several applications of this work for ro-

bust and adaptive human-computer interfaces. Current spoken

language interfaces process and respond only to speech signals.

In contrast, humans also pay attention to the context in which

speech occurs. These side channels of information may serve to

ground the semantics of speech, leading to reduced ambiguity

at various levels of the spoken language understanding problem.

Based on ideas presented in this paper, we are exploring the use

of grounded speech learning and understanding to create sys-

tems which are able to resolve ambiguities in the speech signal.

Learning in CELL is driven by a bottom-up process of

discovering structure observed in sensor data. In the future,

we plan to experiment with learning architectures which inte-

grate top-down purpose driven categorization with bottom-up

methods. In doing so, cross-channel clusters and associations

can be acquired which are optimized to achieve high level

goals.
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