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Abstract

A characteristic shared by most approaches to natu-
ral language understanding and generation is the use of
symbolic representations of word and sentence meanings.
Frames and semantic nets are examples of symbolic rep-
resentations. Symbolic methods are inappropriate for ap-
plications which require natural language semantics to be
linked to perception, as is the case in tasks such as scene de-
scription or human-robot interaction. This paper presents
two implemented systems, one that learns to generate, and
one that learns to understand visually-grounded spoken lan-
guage. These implementations are part of our on-going
effort to develop a comprehensive model of perceptually-
grounded semantics.

1. Introduction

Conversational robots and other multimodal situated
spoken dialogue systems raise serious design challenges
regarding the mappings between natural language seman-
tics and perception. Building on our previous investiga-
tions into cognitively-inspired computational models of lan-
guage acquisition [8, 7], this paper describes two spoken
language systems which ground semantics in visual percep-
tion. In both systems, the vision-to-language mappings are
learned using statistical learning algorithms and “show-and-
tell” training by a human teacher.

Grounding is used to refer, in part, to the process of con-
necting language to referents in the language user’s envi-
ronment. In contrast to methods which rely on symbolic
representations of semantics, grounded representations bind
words (and sequences of words) directly to non-symbolic
perceptual features. Crucially, bottom-up sub-symbolic
structures are available to influence symbolic processing
[5]. The systems presented in this paper exemplify our ef-
fort to develop grounded language generation systems that
couple language semantics with visual representations.

2 Learning to Generate Spoken Descriptions
of Visual Scenes

We have implemented a trainable system called De-
scriber which learns to generate descriptions of visual
scenes by example (a more detailed description of this sys-
tem can be found in [6]). A growing number of applications
such as automatic sports commentators, talking maps, and
web site description systems require the translation of per-
ceptual information into natural language descriptions. Our
eventual goal is to build a general purpose system which can
be trained by example to perform these kinds of tasks.

Natural language semantics in Describer are anchored in
features extracted from synthetic visual scenes. Input to the
system consists of visual scenes paired with naturally spo-
ken descriptions and their transcriptions. A set of statisti-
cal learning algorithms extract syntactic and semantic struc-
tures which link spoken utterances to visual scenes. These
acquired structures are used by a generation algorithm to
produce spoken descriptions of novel visual scenes. Con-
catenative synthesis is used to convert output of the gen-
eration subsystem into speech. In evaluations of semantic
comprehension by human judges, the performance of auto-
matically generated spoken descriptions is found to be com-
parable to human-generated descriptions.

The problem of generating referring expressions has
been addressed in many previous computational systems
(cf. [2, 1]). Most language generation systems may be
contrasted with our work in two main ways. First, our em-
phasis is on learning all necessary linguistic structures from
training data. Although some previous work has addressed
trainable generation (for example, [3]), our goal is to auto-
mate training of both lexical choice and grammatical con-
structions. A second difference is that we take the notion
of grounding semantics in sub-symbolic representations to
be a critical aspect of linking natural language to visual
scenes. All lexical and grammatical knowledge acquired
by Describer is ultimately tied to visual representations.
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2.1 The Verbal Description Task

Figure 1. A typical scene processed by De-
scriber. The arrow indicates the target object
that must be verbally described.

The description task is based on images of the kind
shown in Figure 1. The computer generated image contains
a set of ten non-overlapping rectangles. The height, width,
x-y position, and red-green-blue (RGB) color of each rect-
angle is continuously varying and chosen from a uniform
random distribution. We addressed the following learning
problem: Given a set of images, each with a target object
and a natural language description of the target, learn to
generate syntactically correct, semantically accurate, and
contextually appropriate descriptions of objects embedded
in novel multi-object scenes.

One basic problem is to establish the semantics of indi-
vidual words. To bootstrap the acquisition of word associa-
tions, utterances are treated as “bags of words”. Each word
in an utterance may potentially be a label for any subset of
co-occurring visual properties of the target. Thus the lan-
guage learner must select relevant properties, that is, choose
the subset of potential features which should be bound to
a word. A second problem is to cluster words into word
classes based on semantic and syntactic constraints. Word
classes are a necessary first step in acquiring rules of word
order. For example, before a language learner can learn the
English rule that adjectives precede nouns, some primitive
notion of adjective and noun word classes needs to be in
place. A third problem is learning word order. We address
the problems of learning adjective ordering (“the large blue
square” vs. “the blue large square”) and phrase ordering for
generating relative spatial clauses. In the latter, the seman-
tics of phrase order needs to be learned (i.e., the difference
in meaning between “the ball next to the block” vs. “the
block next to the ball”).

Once word semantics and syntax have been learned, the
system has at its disposal a grounded language model which
enables it to map novel visual scenes to natural language de-
scriptions. The language generation problem is treated as a

search problem in a probabilistic framework in which syn-
tactic, semantic, and contextual constraints are integrated.

2.2 Word and Grammar Learning

The ‘perceptual system’ of Describer consists of a set of
feature extractors which operate on synthetic images. Each
rectangle is described by a vector of 8 real-valued visual
features: red, green, and blue color components, height-
to-width ratio, area, x-position, y-position, and the ratio of
the smaller dimension to the larger dimension. The train-
ing data consists of visual feature vectors of all objects in a
scene paired with transcriptions of expressions referring to
targets. Learning consists of six stages.

Stage 1: Word Class Formation
In order to generate syntactically correct phrases such

as ‘large red square’ as opposed to ‘red large square’ or
‘square red’, word classes that integrate syntactic and se-
mantic structure must be learned. Two methods of cluster-
ing words into syntactically equivalent classes were inves-
tigated. The first relies on distributional analysis of word
co-occurrence patterns. The basic idea is that words which
co-occur in a description are unlikely to belong to the same
word class since they are probably labeling different prop-
erties of the target object. The second method uses shared
visual grounding as a basis for word classification. A hybrid
method which combines both methods led to optimal word
clustering.

Stage 2: Feature Selection for Words and Word Classes
A subset of visual features is automatically selected and

associated with each word. This is done by a search algo-
rithm that finds the subset of visual features for which the
distribution of feature values conditioned on the presence
of the word is maximally divergent from the unconditioned
feature distribution. Features are assumed to be normally
distributed. The Kullback-Leibler divergence is used as a
divergence metric between word-conditioned and uncondi-
tioned distributions. This method reliably selects appropri-
ate features from the eight dimensional feature space. Word
classes inherit the conjunction of all features assigned to all
words in that class.

Stage 3: Grounding Adjective/Noun Semantics
For each word (token type), a multidimensional Gaus-

sian model of feature distributions is computed using all
observations which co-occur with that word. The Gaussian
distribution for each word is only specified over the subset
of features assigned to that word’s class in Stage 2.

Stage 4: Learning Noun Phrase Word Order
A class-based bigram statistical language model is esti-

mated (based on frequency) to model the syntax of noun
phrases.

Stage 5: Grounding the Semantics of Spatial Terms
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A probabilistic parser uses the noun phrase bigram lan-
guage model from Stage 4 to identify noun phrases in the
training corpus. Training utterances which are found to con-
tain two noun phrases are used as input for this stage and
Stage 6. Three spatial features between object pairs is intro-
duced to ground spatial terms: the proximal angle, center-
of-mass angle, and proximal distance [4]. The procedures in
Stages 2 and 3 are re-used to ground spatial words in terms
of these spatial features.

Stage 6: Learning Multi-Phrase Syntax
Multi-noun-phrase training utterances are used as a basis

for estimating a phrase-based bigram language model. The
class-based, noun phrase language models acquired in Stage
4 are embedded in nodes of the language model learned in
this stage.

2.3 Pilot Acquisition Results

To train Describer, two human participants verbally de-
scribed approximately 700 images. Figures 2-4 illustrate
the results of the learning algorithm using this transcribed
training corpus. The language model has a three-layer struc-
ture. Phrase order is modeled as a Markov model which
specifies possible sequences of noun phrases and connec-
tor words, most of which are spatial terms (Figure 2). Two
of the nodes in the phrase grammar designate noun phrases
(labeled TARGET OBJECT and LANDMARK OBJECT).
These nodes encapsulate copies of the phrase grammar
shown in Figure 3. The semantics of relative noun phrase
order have thus been learned and are encoded by the dis-
tinction of target and landmark phrases.

START

TARGET_OBJECT

above

to_the_right_of

below

to_the_left_of

touching

directly

LANDMARK_OBJECT

and

END

Figure 2. A grammar for combining object de-
scriptions using relative spatial terms.

Each word class in Figure 3 is a result of learning Stage
1. Each word in the noun phrase language model is linked

START

the

CLUSTER 2
light, white, dark

CLUSTER 3
pink, yellow, salmon, orange, 

grey, red, green, 
purple, colored, blue, 

brown

CLUSTER 4
horizontal, vertical, bright

CLUSTER 5
rectangle, square

CLUSTER 6
small, thin, large, largest, 

smallest

tall

olive

CLUSTER 9
leftmost, rightmost

CLUSTER 11
lowest, highest

END

Figure 3. Noun phrase structure acquired by
Describer.

to an associated visual model. The grounding models for
one word class are shown as an example in Figure 4. The
words ‘dark’, ‘light’ and ‘white’ were clustered into a word
class in Stage 1. The blue and green color components were
selected as most salient for this class in Stage 2. The ellipses
in the figure depict iso-probability contours of the word-
conditional Gaussian models in the blue-green feature space
learned for each word in Stage 3. The model for ‘dark’
specifies low values of both blue and green components,
whereas ‘light’ and ‘white’ specify high values. ’White’
is mapped to a subset of ‘light’ for which the green color
component is especially saturated.

-2-2 -1.5-1.5 -1-1 -0.5-0.5 0 0.50.5 1 1.51.5-1.5-1.5

-1-1

-0.5-0.5

0

0.50.5

1

1.51.5

2

dark

white

light

green

bl
ueCLUSTER 2

light, white, dark

Figure 4. Visual grounding of words for a sam-
ple word class.
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2.4 Language Generation

A planning system uses the grounded grammar to gen-
erate semantically unambiguous, syntactically well formed,
contextualized text descriptions of objects in novel scenes.
A concatenative speech synthesis procedure is used to au-
tomatically convert the text string to speech using the in-
put training corpus. The final output of the system are spo-
ken descriptions of target objects in the voice of the human
teacher. The planner works as follows:

Stage 1: Generate Noun Phrases
Using the noun phrase model as a stochastic generator,

the most likely word sequence is generated to describe the
target object, and each non-target object in the scene. Each
word cluster specifies a probability distribution function for
each word within the cluster. The Viterbi algorithm is used
to find the most probable path through the graph (Figure 3)
given a target object’s visual features. The best path speci-
fies a natural language referring expression.

Stage 2: Compute Ambiguity of Target Object Noun
Phrase

An ambiguity score is computed based on how well the
phrase generated in Stage 1 describes non-target objects in
the scene. If the closest competing object is not well de-
scribed by the phrase, then the planner terminates, other-
wise it proceeds to Stage 3.

Stage 3: Generate Relative Spatial Clause
A landmark object is automatically selected which can

be used to unambiguously identify the target. Stage 1 is
used to generate a noun phrase for the landmark. The
phrase-based language model is used to combine the target
and landmark noun phrases.

Sample output is shown in Figure 5 for four novel scenes
which were not part of the training corpus. Describer is able
to generate descriptive utterances for each scene. Language
generation is creative in the sense that the word sequences
generated by Describer did not occur in the training set.

2.5 Evaluation

We evaluated spoken descriptions from the original
human-generated training corpus and from the output of
the generation system. Three human judges evaluated 200
human-generated and 200 machine-generated referring ex-
pressions. For each expression, judges were asked to select
the best matching rectangle. Table 1 shows the evaluation
results.

On average, the original human-generated descriptions
were correctly understood 89.8% of the time. This result
reflects the inherent difficultly of the task. An analysis of
the errors reveals that a difference in intended versus in-
ferred referents sometimes hinged on subtle differences in

The highest vertical rectangle.The thin pink rectangle.

The dark green rectangle above
the light green rectangle.

The dark purple rectangle touching
the light purple rectangle.

Figure 5. Sample Describer output.

Table 1. Results of an evaluation of human
and machine generated descriptions (chance
performance is 10%).

Judge Human-generated Machine-generated
(% correct) (% correct)

A 90.0 81.5
B 91.2 83.0
C 88.2 79.5
Average 89.8 81.3

the speaker and listener’s conception of a word. The aver-
age listener performance on the machine-generated descrip-
tions was 81.3%, i.e., a difference of only 8.5% compared
to the results with the human-generated set. An analysis of
errors reveals that the same causes of errors found with the
human set also were at play with the machine data.

In summary, Describer learns to generate verbal descrip-
tions of objects in synthetic scenes with semantic accura-
cies comparable to human performance. The next section
describes our efforts to address the converse problem: con-
necting verbal descriptions to objects in visual scenes.

3 Learning to Understand Descriptions of
Objects in Video

Newt is a visually-grounded spoken language under-
standing system. The system processes spoken referring
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Figure 6. Newt is an interactive multimodal
system which points to objects in response
to verbal descriptions.

expressions such as “The green apple to the left of the
cup” and locates the appropriate object in a visual scene.
Newt is embodied in an active vision system mounted on
a two degree-of-freedom pan-tilt base (Figure 6). A laser
mounted in the device is used to point to objects on a table
top in response to spoken utterances. This section provides
an overview of Newt’s implementation (more detailed de-
scriptions are forthcoming).

3.1 Visual System

Newt’s visual system tracks solid-colored objects placed
on a table top in real-time. The system extracts object prop-
erties and inter-object spatial relationships which are passed
to the language processing system. We model the color
distribution of objects using mixtures of Gaussian distri-
butions. Although all objects are constrained to be single-
colored, shadow effects of three-dimensional objects neces-
sitate the use of a mixture of Gaussian distributions. For
each object used in the experiments, a color model is created
by collecting training images of each object and manually
specifying the region within each image that corresponds
to the object. The Expectation Maximization (EM) algo-
rithm is used to estimate both the mixture weights and the
underlying Gaussian parameters for each object. K-means
clustering is used to provide initial estimates of the param-
eters.

Shapes and colors are represented using multidimen-
sional histograms of local color and geometrical features as
introduced in [9]. These representations have been found to
be robust to changes in lighting, scale, and in-plane rotation.
An additional set of four shape related features is computed
based on the bounding box of each object. These parame-
ters are: height, width, height-to-width ratio, and area.

To enable the system to ground the semantics of spatial
terms such as “above” and “to the left of”, the set of spatial
relations used in Described and described in [4] is measured

between each pair of objects. The first feature is the angle
(relative to the horizon) of the line connecting the centers
of area of an object pair. The second feature is the shortest
distance between the edges of the objects. The third spatial
feature measures the angle of the line which connects the
two most proximal points of the objects.

3.2 Speech Recognition

We have significantly extended our continuous speech
recognition system [10] to support processing of interac-
tive spoken language. The recognizer performs real-time
medium vocabulary (up to 1000 word) recognition. We
chose to develop our own recognizer in anticipation of non-
standard decoder features which will be necessary to sup-
port rich integration with visual processing. The system
uses a 24-band Mel-scaled cepstral front-end, continuous
density HMM triphone acoustic sub-word models, and a
back-off trigram statistical language model trained on a
mixture of domain-specific and domain-independent data.

3.3 Language Learning by Show-and-Tell

Similar to Describer, Newt learns visually grounded lan-
guage by ‘show-and-tell’. During training sessions, Newt
randomly points (using its laser pointer) to one of the ob-
jects in its view and waits for a human trainer to speak.
This point-and-listen cycle is repeated with a variety of ob-
jects and object configurations as a rapid means of multi-
modal data collection. An on-line learning algorithm pro-
cesses video-speech training pairs in order to acquire a
visually-grounded grammar and lexicon which can be used
for speech understanding.

Training examples consist of visual features of a target
object and its spatial relation to other objects paired with
transcriptions of spoken descriptions provided by a human
trainer. As training examples arrive, statistical models of vi-
sual associations are spawned for each observed word. The
association strength of a word to a particular visual feature
is inspired by the methods developed for Describer. For
each word, a record of all past visual contexts in which that
word was observed are combined to estimate the parameters
of Guassian distributions over all possible combinations of
visual features. A background Gaussian model is computed
using all past visual observations. The visual association
strength of a word is computed as the Kullback-Leibler dis-
tance between the word-conditioned Gaussian and the back-
ground Gaussian model.

Word classes are formed using a hybrid strategy which
combines distributional co-occurrence patterns of word us-
age with visual association similarities. For example, the
words red and green are likely to be clustered because they
rarely co-occur in the description of a single object, and
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both terms have a strong visual association with color fea-
tures (and no other visual features).

A hierarchical clustering process learns grammar frag-
ments which encode the semantics of pairs of word classes
or other grammar fragments. This hierarchical structure en-
ables Newt to learn arbitrary depths of embedded phrase
structure when provided with sufficient training data. In
contrast, Describer is limited to a three level embedding of
phrases, word classes, and words.

3.4 Situated Language Understanding

The language model acquired by Newt is suited to ro-
bust parsing of speech due to the distributed structure of
the grammar fragments. To parse novel input, each gram-
mar fragment attempts to explain the output of the speech
recognizer. The set of fragments which best covers the in-
put utterance is selected as the interpretation of the speech.
Islands of words are sufficient for the understanding sys-
tem to operate – a complete parse is not necessary nor ex-
pected. Each acquired word has an associated visual model
(an expected Guassian distribution over a subset of visual
features). The operation of the language-to-vision matching
is best explained through an example. Consider the utter-
ance “the ball above the red cup”. The phrase red cup will
be covered by a color-shape grammar fragment. A three-
place grammar fragment will cover (the ball) (above) (the
red cup). The visual model associated with ball will in-
duce a probability mass distribution over all objects in the
scenes, assigning most of the probability mass to round ob-
jects (assuming that ball has been learned correctly as label-
ing round shapes). Red cup will induce a second pmf over
the objects which meet the conjunctive semantics of red and
cup (conjunction is achieved at the moment by multiplying
the pmf induced independently by each constituent term).
Finally, ‘above’ picks out the object pair which individually
have been assigned high probabilities, and whose spatial re-
lation best fits the model associated with ‘above’.

In a preliminary evaluation, we collected a dataset of 303
utterances from two trainers. Each utterance describes one
object in a scene of four objects chosen from a collection
of 10 objects in total, including objects with like shapes but
different colors and vice versa. When trained on three of the
sessions and evaluated on the fourth for all four sessions in
turn, Newt achieves 82% accuracy in picking out the correct
object, compared to a random baseline of . Due to the
small size of the dataset, we allowed Newt to use an exam-
ple in the fourth session as a training example after Newt
had selected an object for the example’s utterance. Doing
this increases performance by almost , indicating that
the dataset size is too small to achieve full performance.
However, even this preliminary study shows that Newt does
learn the correct visual groundings for words and their com-

binations.

4 Future Directions

We are currently expanding the set of visual features ex-
tracted from scenes to include topological features neces-
sary for grounding spatial terms such as through, in, and
between.

Not all natural language semantics seem to be grounded
in perceptual representations. Some of the most frequent
words in a young child’s vocabulary include I, you, my, yes,
no, good, and want. Motivated by such words (and their un-
derlying concepts), we are investigating rudimentary mod-
els of intentionality and social reasoning to ground these
non-perceptual concepts and make use of them in situated
spoken dialogue.
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