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Interpretation of Spatial Language
in a Map Navigation Task

Michael Levit and Deb Roy

Abstract—We have developed components of an automated
system that understands and follows navigational instructions.
The system has prior knowledge of the geometry and landmarks
of specific maps. This knowledge is exploited to infer complex
paths through maps based on natural language descriptions. The
approach is based on an analysis of verbal commands in terms
of elementary semantic units that are composed to generate a
probability distribution over possible spatial paths in a map. An
integration mechanism based on dynamic programming guides
this language-to-path translation process, ensuring that resulting
paths satisfy continuity and smoothness criteria. In the current
implementation, parsing of text into semantic units is performed
manually. Composition and interpretation of semantic units into
spatial paths is performed automatically. In the evaluations, we
show that the system accurately predicts the speakers’ intended
meanings for a range of instructions. This paper provides building
blocks for a complete system that, when combined with robust
parsing technologies, could lead to a fully automatic spatial
language interpretation system.

Index Terms—Human–machine interaction, natural lan-
guage processing, navigational instructions, spatial language
understanding.

I. INTRODUCTION

W E PRESENT components of a system that converts ver-
bal descriptions of paths produced by human instruction

givers into sequence of actions that an automated agent must
take in order to successfully follow paths anticipated by the
instruction givers.

Many application areas, including robotics, video games,
and geospatial communications analysis, may benefit from an
automatic understanding of navigational language. In a video
game scenario, for instance, players can be enabled to guide
game characters throughout the virtual world of a game. This
may be especially powerful when there are large numbers of
computer controlled characters, in which case direct control
using keyboard and mouse can become cumbersome.

A number of related systems designed to operate in robotic
and domestic environment have been described in the literature
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Fig. 1. Sample portion of a map from the MAP-TASK corpus. The path
indicated by the broken line only appears on the map seen by the instruction
giver. The instruction follower’s goal is to recreate this path based on spoken
dialog with the instruction giver.

(e.g., [1]–[5]). In contrast to this previous work that involves
sensor-derived (and thus noisy and incomplete) knowledge of
the world, we consider the interpretation of relatively complex
spatial language by assuming high-level knowledge of the
entire map and all landmarks are available to the system.

The scenario that we adopted for this paper allows humans
to use speech which is unconstrained from both linguistic and
representation points of view. The MAP-TASK [6] corpus was
selected for system development and evaluation. This corpus
is a collection of transcribed human/human dialogs involving
cooperative path planning using maps. To collect data, pairs of
participants were given similar 2-D maps. One of the partici-
pants, the instruction giver, provided navigational instructions
to the other participant, the instruction follower, that would
guide the latter along a path drawn only on instruction giver’s
map. An example of a section of such a map with a reference
path is depicted in Fig. 1. There were no restrictions whatsoever
on language that could be used for navigation. An advantage of
this noninvasive “eavesdropping” scenario is that subjects do
not attune their navigation strategies to existing or presumed
limitations of any automated understanding system (see [7]).

Because of the very high complexity of spontaneous lan-
guage that arose from the choice of MAP-TASK, we decided
to focus on the understanding problem by initially ignoring

1083-4419/$25.00 © 2007 IEEE

Authorized licensed use limited to: MIT Libraries. Downloaded on April 2, 2009 at 14:12 from IEEE Xplore.  Restrictions apply.



668 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 3, JUNE 2007

syntactic parsing issues and turning our attention to different
basic strategies people used to convey navigational information.
Similar to the study in [3], we manually extract basic instruc-
tions [which we named navigational information units (NIUs)];
however, our units cover a much broader scope of possible
instructions. Some examples of NIUs include moving around
objects, moving in absolute directions (e.g., south, left), turning,
and verifying closeness to a specific landmark.

One contribution of this paper is in showing that most of
these NIUs can be decomposed in a number of “orthogonal”
constituents (e.g., type of a move and its reference object),
such that the meaning of each NIU or—following a functional
approach to understanding—the realization of the path interval
it describes can be obtained as a Cartesian product of the
meanings of all its constituents. Each of the NIUs can be repre-
sented as a parameterized rule with a certain degree of learned
flexibility and parameter slots filled by these constituents.

A second contribution of this paper is a novel algorithm that
processes sequences of NIUs in order to produce coherent paths
which are empirically shown to be similar to the reference paths
instruction givers intended to communicate to instruction fol-
lowers. This integration is possible by virtue of the constraints
implicated in the instructions (e.g., moving around an object
presupposes that we must be in its vicinity even before the
action can take place) and also by some common knowledge
(e.g., car–objects cannot be crossed, while bridges can).

II. NAVIGATIONAL INFORMATION UNITS

Extracting basic instruction elements from sentences con-
taining navigational information and grounding them in action
primitives are common strategies for understanding systems.
The task environment and designer’s preferences determine the
choice of elements for a particular system, but generally, the
idea of splitting instructions in motions and referential descrip-
tions [8] is widely accepted.

In [4], to describe the architecture of a system that under-
stands verbal route instructions in a robotic environment,
MacMahon uses four basic instructions: turning at a place,
moving from one place to another, verifying view description
against an observation, and terminating the current action.
While perception undoubtedly plays a crucial role in human
orientation and navigation abilities, in our route planning
scenario, geometries of all objects participating in a scene are
known beforehand, and so we can reformulate the instruction
categories above only in terms of this spatial knowledge, thus
rendering their procedural aspect more homogeneous.

The feasibility of an automated system that translates from
route descriptions to route depictions (and vice versa) is sug-
gested by Tversky and Lee [9]. After studying how humans
describe and depict routes, the authors observe that both
processes can be decomposed into equivalent sets of verbal and
graphic elements, respectively. The lexicon of elements used by
the authors consisted of (selecting) landmarks, (changing) ori-
entations, and actions (such as moves), and was borrowed from
the study in [10].

In a discussion on the semantics of spatial expressions,
Jackendoff [11, Ch. 9] provides linguistic evidence for a con-

Fig. 2. Hierarchy of NIUs.

ceptual distinction between places and paths. While paths spec-
ify trajectories of a traveler, places describe his/its locations.
The primary characteristic of a path is the change of location.
Turns can be viewed as changes in orientation. These consider-
ations led to four basic types of NIUs in our hierarchy: moves,1

turns, positions, and orientations. The distinction is not always
clear since moving can result in a change of orientation and
turning in a practical setting can imply a significant shift in
position. We discovered however that, even though different
procedures are used to realize moves and turns, the overall
path modeling performance does not suffer from the local
ambiguity of such issues. Altogether, moves and turns can be
subsumed under the general notion of actions, and positions
and orientations can be viewed as verifications. Fig. 2 shows
the full hierarchy of NIUs. The category compound reference
of type auxiliary information is a special type of NIUs that we
explain below.

Complex spatial instructions are decomposed into a set of
NIUs. For example, “now, could you go north past the house till
you are right by the forest” is decomposed into the following set
of NIUs:

• go north;
• go past the house;
• you are right by the forest.
Currently, human labelers must manually create this decom-

position of complex utterances into corresponding NIUs, as
well as their constituents (see below). The ultimate goal of this
paper is to automate this challenging process of robust parsing
and semantic analysis. We do not claim that all of the navi-
gational commands can be classified into the four categories
listed above. However, in the experiments, we have found that
most of the commands that subjects choose can be classified
or decomposed into these categories, and by considering only
such commands, we can replicate the paths with reasonable
accuracy.

III. CONSTITUENTS OF NIUS

We would like to understand the referential semantics of
NIUs extracted from a sequence of sentences that instruction
givers say to instruction followers, in order to execute the
instructions encoded within. The type of expected system be-
havior depends on the category of a particular NIU, and for
each category, this behavior must be modeled in an appropriate

1From now on, we refrain from using the term path in this sense in order to
avoid conflict with the notion of path as an end-to-end navigation route.
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machine representation. Consider the following move instruc-
tion: “move two inches toward the house.” Its meaning µ can
be decomposed into the following constituents:

µmove(“move two inches toward the house”)
= µpath descriptor(“move . . . toward”)
× µreference object(“the house”)
× µquantitative description(“two inches”).

If there is a rule for creating a “moving toward” trajectory
with respect to a landmark, then we apply this rule to the
object which is the meaning of the “the house” expression
(its grounding) and follow along this trajectory as far as the
meaning of “two inches.” In a similar way, we can represent
meanings of positions, turns, and orientations.

To reiterate a point made earlier, the currently implemented
system processes NIU-constituents, not speech signal, or word
transcriptions. While extracting these constituents is a sepa-
rate research issue that must be addressed in the future (see
Section VII), our present goal is to show the viability of this
intermediate representation for the understanding task.

In this section, we focus on moves because they represent the
most frequent and very informative kinds of instructions, while
mentioning other NIU-types whenever a particular constituent
is relevant for them. Appendix II illustrates the annotation
process by listing all NIUs and their constituents extracted from
four consecutive (slightly modified) instruction giver sentences
taken from one of the MAP-TASK dialogs.

A. Reference Objects

The first constituent type is a reference object, which denotes
an object that serves as an anchor for identifying directions
or positions [12], [13]. In our use of move descriptions, the
notion of reference objects is broader than just an object with
determinable location in space like the ones in [11]. Directions
treated as infinitely remote locations encoded in expressions,
like “north” or “left,” can also be used to describe end points or
entire trajectories of moves. The advantage of such an approach
will become evident when we consider path descriptor con-
stituents below. There are four major types of reference objects
that we have observed in the MAP-TASK corpus: absolute
targets, relative targets, landmarks, and compound references.

1) Landmarks are the most familiar class of reference ob-
jects; they have finite size and are placed at fixed finite
locations. Due to the specifics of the MAP-TASK prob-
lem where the objects on the map are drawings on a sheet
of paper, we further distinguish the subcategory of page
elements referred by expressions such as “page center,”
“lower edge,” “upper left corner,” etc., as opposed to
genuine landmarks (or simply landmarks): drawings that
have prespecified names attached to them (such as FLAT
ROCKS or SUSPENSION BRIDGE).

2) Absolute targets are infinite points in space, that are
fixed at least for the time of the interaction (for instance,
by being tied to the coordinate system of the immobile
instruction giver). In MAP-TASK, this is the coordinate

system of the map which is oriented in exactly the same
way for both instruction giver and instruction follower.2

Examples of expressions for absolute targets are: “south-
west,” “down,” and “left” (in the sense that is synonymic
to “west”).

3) Relative targets are infinite spatial deictic references
whose meaning changes as the navigation session pro-
ceeds. They are used to specify directions from the per-
spective of the traveler that actually moves along the path
and are attached to the traveler’s coordinate system. For
instance, in the instruction “keep moving,” an implicit
relative target FORWARD is used, which lies in an in-
finitely remote point along the traveler’s current orienta-
tion. Another example is the expression “left,” however,
this time in the sense of the left side of the traveler’s
current orientation.

4) Compound references are real or imaginary objects on
the map that require an explicit specification in terms of
other reference objects; we will deal with them in detail
in Section III-E.

Even though the second and third categories of reference
objects look more like directions than “objects,” they share a
very important common aspect with the landmarks: They can
be used as anchors to bind move trajectories. Before explaining
how this can be done, we note that reference objects are
equally important for other NIU-types as well (although not all
combinations are possible), e.g., one can “turn to face north” or
“be above the house.”

B. Path Descriptors

Path descriptors specify how the trajectory of a move is
related to its reference object. In [12], Talmy demonstrated that
spatial language is schematic insofar as it reduces the informa-
tion of a scene down to a body of conceptual material assembled
on a skeleton of closed-class elements such as prepositions
that define spatial relations (“object dispositions”) in the scene.
Please refer to the study in [12] for a detailed explanation of
possible spatial dispositions and how they are constructed using
different prepositions. As far as moves are concern, Jackendoff
[11] distinguishes four categories: directions with the reference
object on a trajectory extension (expressed by prepositions
“toward” and “away from”), bounded paths with the reference
object in an endpoint of the trajectory (e.g., “from” and “to”),
and routes with the reference object related to some interior
point of the trajectory (e.g., “via”). We adopt this set of cate-
gories, but also extend it to allow each category to be repre-
sented by a single rule that we call path descriptor. There are ten
path descriptors that are supported by our system (see the upper
part of Table I); the trajectory of each of them can be modeled
by a circular arc, a straight line interval, or a sequence thereof.
For instance, we model a TO-move as a straight line between
the current traveler location and the closest point from this

2It is certainly true that the real-world orientations of the two maps can be
different (instruction giver’s west will be instruction follower’s east if they face
each other), but the crucial fact is that both participants understand each other
as long as each of them identifies herself with her map.
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TABLE I
PATH AND POSITION DESCRIPTORS. SEE THE

MODELING RULES IN APPENDIX I

location that lies on the perimeter of the reference object. In
addition, there is one open-end class OTHER to account for all
those moves that do not fit in any of the ten classes.

Similarly, it is also useful to introduce position descriptors
for position modeling. Currently, our system supports three
position descriptors listed with examples in the lower part
of Table I.

C. Quantitative Aspect

Some path descriptors, such as TOWARD or AROUND,
under specify trajectories in that they encode their shape but do
not encode how far the traveler should move. In other words,
there is a need for a quantitative aspect in the NIU-descriptions,
which would eventually allow a more precise understanding of
commands like “move two inches down.” With that in place, the
traveler will know exactly what to do: select the absolute target
SOUTH, extend a TOWARD-move toward it, and follow it for
a distance of two inches. Even when a move has an implicit
distance specification as in the TO-move “go to the house,” the
instruction giver may still provide it explicitly (“go one inch to
the house”), in which case the instruction follower might need
to make some adjustments to accommodate it.

The importance of the quantitative element for direction
specifications and problems that arise from it have been ad-
dressed by many authors (see for instance the study in [14]
and [15]). We distinguish two dimensions in a space of distance
specifications. First of all, a distance can relate to a length of
the move itself (as in the examples above) or to gaps between
trajectories and reference objects (e.g., “pass half an inch above
the truck”). Furthermore, there are three distance categories
that require different knowledge to the model. Modeling is the
simplest when exact units are used: “go about two centimeters
to the west.” Here, one merely needs to parse the expression
“two centimeters” as a measure equal to 2 cm. Such commands
are commonly observed in the MAP-TASK corpus. When
relative units are used as in “slide down half a page” or “move
forward the length of the bridge” (a specification preferred by
many authors because it catches relational aspects of distances

that define structure of the scene [16]), a more situational com-
petence is required. Finally, in the commands like “keep going
for some time” and “move a bit more toward page bottom,”
the intuitive distance descriptions are used, which demand a
significant amount of world knowledge from the interpreter.

Quantitative aspect is also relevant for other NIU types.
Therefore, the traveler could be “three inches to the left of the
grove” in a position specification or he could “turn forty degrees
to the north.”

D. Coordinate Systems

Many authors have observed that spatial descriptions are
given in terms of a coordinate system in which the scene is
taking place. For example, position-NIUs “you are one inch
below the house” and “the house is one inch below you”
both have reference object “the house” and position descriptor
POS_AT_DIRECTED, but their meanings contrast each other
clearly because, in the first case, the coordinate system is
centered in the house and, in the second case, in the traveler.

From the perspective of cognitive psychology, the most
important question about coordinate systems is whether the sys-
tem is bound to the experiencer (egocentric3 coordinate system)
or is independent of her (allocentric coordinate system) [17].
These two major categories can be further subdivided according
to where exactly the coordinate system is centered and what it
uses as a reference object. Regarding spatial deictic references,
Levelt [13, Ch. 2] distinguishes among the following three
major cases.

1) Primary deictic reference: Here, the speaker is the origin
of the coordinate system and also the reference object
(relatum) (example: “the ball is in front of me”).

2) Secondary deictic reference: The speaker is the origin of
the coordinate system, but not the reference object: “the
ball is behind the tree.”

3) Intrinsic reference: The reference object (not speaker) is
also the origin of the coordinate system; here, the refer-
ence object must possess its own “intrinsic” orientation
with front and back: “the ball is in front of the house”
(see also [12, p. 241]).

Similar categorization suggestions can also be found in [18]
and others. By virtue of the examples above, we could see
that orientation is indeed important when defining a coordi-
nate system. As an arbitrary coordinate system is defined by:
1) its origin; and 2) its orientation, our approach to the spatial
language in MAP-TASK is to organize all possible coordinate
systems into a 2-D grid presented in Table II. Here, there
are two possible origin placements and three different orien-
tation types for the coordinate systems in which NIUs can be
specified.

There are three possible perspectives in the MAP-TASK: one
of the instruction giver, one of the map traveler (often identified
with the instructions follower), and finally, a perspective from
some reference object on the map (landmark or page element).
However, only two of them can have an origin associated with

3In reality, the egocentric system itself is hypothesized to be an acquired
complex coordination of several sensory-motor manifolds [17].
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TABLE II
TYPES OF COORDINATE SYSTEMS IN WHICH NIUS CAN BE

SPECIFIED WITH NIU-EXAMPLES

them since the instruction giver is not really located “on the
map” and can only define orientation. There exists a certain
redundancy in the choice of a coordinate system and specifica-
tion of reference objects. For instance, whenever the reference
object of a move is a relative target, the coordinate system is
always placed where the traveler is and oriented according to
the traveler’s orientation. Besides, the exact specification of a
coordinate system or at least of its orientation can be irrelevant
for certain NIU-types. For instance, in the position-NIU “it is
close to the barn,” orientation of the coordinate system (which
is placed in “the barn”) cannot be determined and is, in fact, not
needed for understanding.

E. Compound References

If the language of instruction givers were constrained to the
kind of examples we have seen before, it would have only a
limited expressive capacity because it would not allow for a
very large portion of potential reference objects to be taken
into account. The set of landmarks and page elements is too
sparse and lacks the needed expressive means to allow for
high-precision navigation. Instructions such as “go to the lake”
under specify the required action because the lake can occupy a
large portion of a map. Instead, something like “go to the north-
west corner of the lake” is needed. Similarly, if the target of a
particular TO-move is a point an inch above the house, there is
no way to avoid an explicit specification of this point, “move to
a spot slightly above the house,” or even simpler, “move above
the house.” All these are examples for what we call compound
references. Nested compound references are also possible:
“continue toward [the spot an inch under (the bottom of the
monument)]” as well as compound references that have stretch
(“you are level with the springs”).

The description language for compound references is very
similar to the one of positions, except for one special case where
the compound reference is a part of its own reference object as
in “you should be right under the gate of the castle,” and so
(even though their semantic role is clearly different from that
of actions and verifications) we decided to include compound
references in the list of supported NIU types (see Fig. 2). In
the present version, we are not trying to estimate positions of
compound references; instead, we assume they are known and
thus look them up in manual annotations.

F. Designing and Validating Rules

Up to now, we have largely ignored the question of how to
model individual NIUs, concentrating mainly on the possibility
of such modeling. This section describes how we design and
use a lexicon of action and verification primitives.

The first part of the process is a manual step of designing
prototypes for each rule. Then for each NIU type, we compare
the designed prototype with actually observed instances4 in or-
der to estimate spatial templates [19]. Later, when path intervals
corresponding to individual NIUs are merged together to form
a continuous replica of the reference path, these spatial tem-
plates will guide this process, which helps in finding the most
probable realization for each NIU that allows for such a merge.

We first consider position-NIUs of type POS_AT_
DIRECTED. There is an extensive prior work on modeling
spatial language (e.g., expressions “above,” “to the left of,” etc.)
[19]–[21]. We chose an easily implementable model similar to
the hybrid model of the study in [21] to model these NIUs. Two
metrics determine goodness of a particular position with respect
to its reference object: first, the angle between the defining axis
(e.g., vertical axis in case of “above”) and the beam emanating
from the reference object’s center of mass and passing through
the position and, second, the projection of the distance from the
extreme point of the reference object in the given direction (e.g.,
the highest point for “above”) to the position on the defining
axis (e.g., distance of y coordinates for “above”). For NIUs of
type POS_AT, there is only one metric: absolute distance from
the position to the closest point of the reference object.

For moves and turns, creating spatial templates is similar:
First, for each actually observed move/turn, we seed its cor-
responding prototype into its starting point and, thus, obtain
its predicted version. Second, the radial and angular deviations
between the end points of the predicted and observed path
intervals are computed. Prototypes and intuitive explanations
of these distances for moves of types TO and FOLLOW_
BOUNDARY are shown in Fig. 3. Here, we execute a
FOLLOW_BOUNDARY-move by “expanding” the perimeter
of the reference point to traverse the current traveler position
and moving along this expanded perimeter in the direction (of
the two possible) that has the smallest angle with the orientation
that the traveler had before reaching her current position.5

For a detailed investigation of when and how people use path
descriptors of this type as opposed to path descriptors of type
PAST, please refer to the study in [22].

In short, radial distance is the difference in lengths of the
observed and predicted moves, and the angular deviation shows
how far from the predicted trajectory the actual trajectory devi-
ates. For some of the prototypes (like, for instance, TOWARD-
moves), we need to provide not only the path descriptor but
also the default distance. In our experiments, this distance was
estimated empirically.

4As we have mentioned earlier, these instances (path intervals) are part of
manual annotations that we create prior to the experiments.

5In practice, we used a computation scheme for angular and radial deviations
for FOLLOW_BOUNDARY, which is slightly different from the depicted one
and approximates it instead.
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Fig. 3. Prototypes and radial and angular deviations for moves of types
(a) TO and (b) FOLLOW_BOUNDARY.

Angular and radial deviations collected for each NIU type
are compiled into a 2-D spatial template. This template contains
probabilities of all realizations of this NIU type that start in the
same point but deviate from the prototype in due course. This is
also why there is no need for searching for the perfect prototype
for each NIU type. Indeed, the spatial template will compensate
for potential mistakes.

To summarize, the models of individual NIUs are combi-
nations of handcrafted structures combined with data-driven
parameter adaptation that make these models flexible. Positions
are 2-D probability distributions for all locations, and moves
and turns are 2-D probability distributions as well, but for the
end points of actions they represent (and indirectly also for dif-
ferent trajectories that lead to these endpoints). In experiments
reported below, we ignore orientation-NIUs because they occur
fairly seldom in the corpus.

IV. COMBINING NIUS INTO CONTIGUOUS PATHS

Now that we have described how NIUs are grounded in
particular action and verification primitives, we turn to the issue
of combining sequences thereof into a contiguous path on the
map. This task can be considered as the one of route planning,
where instructions are given before the actual following of the
route takes place.

A. Dynamic Programming Approach

The “plan-as-communication” view on plans in [23] suggests
that plans constrain possible space of actions and require some
interpretative effort from the agent whenever execution of a
particular action is due; in other words, it enforces by consid-
ering each action in a context of the whole plan and of the

environment the plan operates in. Our approach is motivated
along similar lines. In our system, interpretation of instructions
like “turn left” or “go to the house” takes place only when
they are next to be executed, and probabilistic assessment
of geometries of their reference objects with respect to the
traveler’s current position and orientation can be made. Only
then “left” and “go to” will, for the first time, acquire a concrete
meaning attached to them. However, this meaning is by no
means final, for instructions that follow can still change it later
on. If we do have a map in front of us at the planning time,
we can mentally follow the route right away and “rehearse”
execution of all navigational instructions in the sequence one by
one. If at some point in time we realize that a mistake has been
made on previous stages because no consistent continuation of
the path is possible, we can always back-off to the point where
the mistake was made and choose other alternatives leading
from there. Moreover, we can simultaneously maintain several
alternative routes in the first place, scoring and extending them
in parallel as we progress and dynamically preferring one of
them over the others. This view of the task suggests a dynamic
programming approach.

Dynamic programming, however, cannot operate on a con-
tinuum of R2, which is the case for maps in MAP-TASK, but
rather needs a set of discrete alternative states. In order to
achieve that, we impose a rectangular grid on the maps and
consider only cell centers as potential alternatives for traveler’s
locations at the end of each action.

At this point, let us restrict the NIUs to moves and turns only
and assume that the entire path is split in N intervals; each of
which is covered by exactly one NIU.6 Let us also assume that
our map is split in I square cells ci, i ∈ 1, I . Then, on each
step n ∈ 0, N , there will be a separate probability distribution
ending up in cell ci∀i ∈ 1, I after this step has been taken. Since
the starting point of the path is considered given, the initial
probability distribution (n = 0) is 0.0 for all cells except the
one containing the starting point, where it is 1.0.

Assume now that we know the probability distribution pn(j)
on step n. Conditional probabilities pγn(i|j) of ending NIU γn

in ci, given that it starts in cj , can be interpolated for all j ∈ 1, I
from spatial templates that have been discussed in the previous
section (see Fig. 4).

Then, the total probability of reaching ci on step n and
passing through cj before that is

pn+1(i, j) = pn(j) · pγn(i|j). (1)

With the decision-oriented approach to probabilities, we
select the predecessor index j∗

j∗ = arg max
j

pn+1(i, j) (2)

such that cell cj∗ is the predecessor of ci on the optimal path
and declare

pn+1(i) := pn+1(i, j∗). (3)

6We will show later how this unrealistic assumption can be removed.
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Fig. 4. Computing probabilities of endpoints for NIU: “go north.” For each
cell cj , the probability of starting there and ending up in cell ci is encoded
as the darkness of the corresponding arrow and of the cell center. It depends
on the deviation from the north direction as well as on the distance between
cj and ci.

After all N NIUs have been processed, the entire optimal
path must be recovered. For that, we start in the cell cj∗ from
the last distribution and traverse backward the sequence of the
distributions for all NIUs, following the line of predecessors all
the way up to the very first distribution.

It is important to see that, in this simplified task formulation,
the “winning” cells describe not only the most probable
position after having processed the last NIU but also the
orientation of the traveler that goes along with this particular
NIU realization.

B. Natural Task Constraints

At first sight, it might appear unclear why spatial templates
are needed at all. Indeed, if no constraints existed in the task,
for all n’s, the nth step of the dynamic programming algorithm
would always result in selecting the realization of γn that
possesses angular and radial deviations corresponding to the
maximum in γn’s spatial template. Fortunately, there are, in
fact, several constraints that come along with the choice of the
task domain that we call “natural” constraints of the task. In
general, we can say that these constraints are task dependent
and arise from the working conditions of the system.

First, our domain expertise and intuition suggest that some
of the landmarks cannot be crossed. The maps designed for
MAP-TASK comply with this consideration to a great extent.
For example, while a path can pass through the drawing of a
bridge, it will never cross a rock. This knowledge is one of the
main sources of constraints that shape possible paths. In the
same way, we might want to prohibit self-crossings of a path
and restrict all the paths to the inside of the visible map. One
should keep in mind, however, that banning self-crossings hurts
the optimality principle of the dynamic programming saying
that solutions of partial problems never need to be recalculated
[24] and thus can lead to not finding a good path.

Second, we propose that a reasonable bias is to favor junc-
tions that are smooth, i.e., large changes in orientations when

finishing modeling γn−1 and starting γn should be penalized.
In particular, this bias will eliminate abrupt near-180◦ turns.

Finally, for many move types that have landmarks for refer-
ence objects, it is reasonable to presume spatial proximity of
the starting point to the landmark. In fact, in the MAP-TASK
corpus, there are, rarely, instructions to move around some
landmark that is on the other end of the map, far away from our
current position. This means that only those realizations of such
an NIU that ended close to the landmark will be considered in
the next step. Indirectly, these constraints are modeled in spatial
templates; however, we found out that imposing explicit upper
thresholds on maximum distances between starting point of an
NIU and its reference point is helpful as well. Besides, we can
require a certain degree of consistency from action trajectories
and end points. For instance, the end point of a BETWEEN-
move must, indeed, lie between its reference objects, and the
PAST_DIRECTED-move expects the instruction follower to be
on a particular side of the reference object.

C. Integrating Positions

Another source of constraints is verification-NIUs, in partic-
ular positions. They too restrict the working space to a small
area tied to a reference object or (in the case of POS_AT_
DIRECTED) to one of its sides. Consider how positions can be
integrated in the framework we have developed so far. Recall
that we update the distribution of locations after each action.
Similarly, we can update them after each position specification
as well. Here, however, we can multiply the position prob-
abilities pγn(i) (interpolated from the corresponding spatial
template) with the distribution pn(i) obtaining a new adjusted
distribution pn+1(i) as

pn+1(i) : pn(i) · pγn(i). (4)

Even though we do not model rare orientation-NIUs in the
experiments of this paper, they can be handled in exactly the
same way as positions.

D. Dealing With Redundancy

No matter how many position specifications there are, all
of them can be subsequently treated as shown in (4). This,
however, is not true for actions. If several action-NIUs compete
for one path interval or even describe path intervals that only
start in approximately the same location, their contributions
must be considered simultaneously. Let Γn = {γk

n}, k ∈ 1,Kn

be a set of NIUs competing to define the next path interval. In
order to compute joint probabilities pn+1(i, j), we average over
individual NIUs in Γn and, assuming equal priors for all NIUs
in the set, modify (1) into

pn+1(i, j) = pn(j)
1

Kn

∑

k

pγk
n
(i|j). (5)

After that, selection of the optimal predecessor and compu-
tation of the next distribution pn+1(i) is done as before.

In contrast to the remark at the end of Section IV-A, the
resulting orientation after Γn is yet to be determined since it
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is a product of several NIUs at the same time. Our approach
to this problem is to select the NIU that delivers the highest
conditional probability pγk

n
(i|j∗) to represent the group, but to

use the orientation computed as a weighted average over all
NIUs in Γn to control smoothness of the path.

One issue we have not addressed yet is how to establish a
partial relation on all NIUs of a session, i.e., which NIU should
be considered when, and what are the sets Γn of competing
NIUs. For now, our system looks up this information in the
annotations, looking at the starting points of all NIUs.7 This
information is usually contained in the language, and from
proximity of NIUs in dialog transcriptions, we can usually
conclude at least on proximity of the intervals they describe. For
instance, the sentence “go left to the creek” contains two NIUs,
“go left” and “go to the creek,” that should be put in the same
set Γn. A more sophisticated linguistic analysis is required if
precedence must be determined as well (see Section VII). In
other situations where the instruction giver comes back to one
of the already described path intervals reiterating or rephrasing
extractions given earlier, there are dialog context clues (e.g.,
instruction follower’s feedback) to signal this fact.

We employed one general rule regarding splitting the set of
NIUs with close starting points, that resulted in performance
improvement. If there are verification-NIUs, we first create a
set out of them. Then, if there are action-NIUs that are reliable
in guessing directions, such as TO- and TOWARD-moves, and
turns with absolute targets or landmarks as reference objects,
we make a separate set out of them, and process this set only
after the first one. Next, a set of other moves with such reference
objects is processed. Finally, if and only if no action groups
could be created, actions with relative targets as reference
objects are considered.

V. EVALUATION METRICS

There are two classes of evaluation metrics that are of in-
terest for this paper. The first class of instruction-level metrics
concerns modeling of individual NIUs and sheds light on the
quality of path descriptor rules by assessing deviations of
observed actions around their prototypes. The second class of
path-level metrics evaluates the entire paths and judges their
overall quality by comparing them to their references on the
instruction givers’ maps.

On the instruction level, we can judge shapes and, in
particular, compactness of spatial templates (distributions of
angular and radial deviations). Visual assessment is important
for the entire paths; however, we can also use criteria such
as percentage of landmarks on a correct side of the path and
average trajectory deviations to perform their formal evaluation.
A reasonable figure of merit for the latter is the area between the
observed and predicted paths. If we augment the predicted path
so that it ends in exactly the same point where the reference path
ends (human objects in the original MAP-TASK experiment
knew the position of the finish), then the two paths together
will form a closed contour, and we can use standard filling

7Note that we do not look up the exact positions of these starting points on
the path, but rather only the fact that they are close for two or several NIUs.

Fig. 5. Area between the observed reference path and predicted paths can be
used to assess quality of modeling.

Fig. 6. Occurrence statistics of NIU categories and move types.

techniques such as SCAN LINE algorithm [25] to compute
the cumulative area of the “mismatch”-zones (see Fig. 5). The
smaller the area is, the better is the model.

VI. RESULTS

Our experiments were conducted on the commercially avail-
able HCRC MAP-TASK corpus [6]. This corpus consists of
128 navigation sessions with audio recordings and a number of
different annotations available in XML-format for each session.
We randomly selected 25 of these sessions for our experiments
and focused our analysis on instruction givers’ speech. Based
on a set of previously existing annotations of this speech data
in terms of moves in conversational games [26], we selected the
subset annotated as either instructions or clarifications. These
sentences were then manually annotated with respect to the
NIUs they contain. We defined the NIUs reported in this paper
on the basis of analyzing only five of the 25 sessions. On
average, we obtained 85 NIUs per session. Relative frequency
distributions of categories of the extracted NIUs as well as of
move types within the move category are shown in Fig. 6. These
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Fig. 7. Angular and radial deviation statistics estimated for moves of types
FOLLOW_BOUNDARY, TOWARD, and TO.

plots show that moves clearly dominate among all analyzed
NIUs and the TOWARD type, that includes instructions such
as “draw your line toward the northeast,” “move down,” “keep
going,” etc., is the most frequent type among moves. Less than
5% of the 2133 annotated NIUs could not be identified as one
of the five NIU categories from Fig. 2, and less than 5% of
the 1526 annotated moves have been labeled with the path
descriptor OTHER. The high coverage of these NIUs for the
complete set of 25 sessions suggests that this set of NIU-models
is well suited to the task and perhaps also spatial language for
navigation tasks, more generally.

Another reassuring confirmation comes from the following
measurements. Interannotator agreement with respect to the
extraction of NIUs and their labeling with one of the five
supported types as well as with respect to path descriptors of
detected moves was roughly estimated for two labelers using
the F -measure. It amounted to 0.86 and 0.8, respectively, with
the absolute majority of mismatches due to ambiguities of
cases like “go above the house,” which can be interpreted
either as a TO-move with a compound reference object or
as a PAST_DIRECTED-move. Nonetheless, our experiments
showed that such ambiguities do not impair the understanding
of complete paths.

We then produced discrete versions of the reference paths,
representing them as sequences of many “stops” placed densely
along the original curve. Each NIU was annotated with a path
interval (delimited by the first and last stops on the path) that
it, in labelers’ view, accounts to. Based on these annotations,
we estimated spatial templates for each of the move types,
position types, and turns, expressing them in terms of radial and
angular deviations from manually designed prototype rules. As
expected, the main source of deviations came from the under-
determined quantitative aspect of NIUs; for example, in Fig. 7,

Fig. 8. Snapshot of a modeled path after processing several groups of NIUs.

we see that, while estimated angular deviations statistics pos-
sess rather compact distributions (meaning that the rules we
designed to represent these move types are in fact consistent
with annotations), radial deviations of the moves (variations of
their stretches) along the given trajectory are flatter for those
move types that intuitively require explicit stretch specification
(such as TOWARD-moves).

Next, we show how the dynamic programming approach can
be used to integrate models of individual NIUs in a joined
consistent and smooth path. A snapshot of one of the replicated
paths (in progress) is shown in Fig. 8. Several aspects of this
path are noteworthy. First, the snapshot sheds light on the
way the drawing is discretized. For each landmark, we marked
its perimeter that cannot be crossed unless there is no other
way to proceed with the path. This otherwise exceptional case
happened to occur here at the beginning, where the instruction
giver insisted on going down and the spatial template for a
TOWARD-move prohibits angular deviations of more than 50◦.
Also, the rectangular grid of cells for which a new distribution is
estimated after each processed group of NIUs can be seen here:
The darker the cell is, the higher is the probability of ending
up there; the cell with the highest probability is chosen to
determine the most probable path so far (sequence of circles and
lines and arcs between them). The distribution in this snapshot
takes place after one NIU that sends the traveler a specified
distance toward the southwest and another one that commands
to go on along the same direction. From this distribution, it
can be seen that self-crossings are prohibited and perplexity of
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Fig. 9. Excerpt of the same path after the next instruction (position-NIU “near
to the abandoned cottage”).

such a distribution can get very high. One of the possibilities
to reduce the perplexity is to issue a verification-NIU. In the
presented session, the next instruction was indeed position-NIU
“near to the abandoned cottage,” and the new distribution with
a lower perplexity resulting from it is shown in the excerpt of
the map in Fig. 9. It is more compact, with the only allowed
cells located around the landmark.

As far as the quality of the predicted path, it can be seen
that it lies reasonably close to its reference path. In order to
formalize the visual assessment, we computed areas of the
“mismatch”-zones for each pair of reference/predicted paths
(see Section V) and normalized them by the length of the
corresponding reference paths. This criterion can be interpreted
as the average diameter of an “error tube” of deviations that
we enwrap the reference paths into. The smaller the error
tube diameter is, the more precise is the modeling mechanism.
Evaluation of the predicted paths for all 25 sessions resulted in
an average diameter of 19.5 pixels (one fortieth of the height of
the maps) with a sample deviation of five pixels. For com-
parison, the baseline strategy of connecting start and finish
landmarks with a straight line resulted in an average error tube
diameter of 280 pixels. We take this as a clear sign of success
for our modeling algorithm. Unfortunately, the original corpus
contained no paths drawn by instruction followers on their
maps. This kind of information would have provided another
important baseline for our experiments.

In order to investigate the importance of the natural con-
straints and verifications for a successful path modeling
(Section IV-A), we conducted one replicating experiment with-
out any restrictions on landmark and self-crossing, and another
one where all the position-NIUs were ignored.8 For the first
experimental setup, we obtained an average diameter of the
error tube of 23 pixels (sample deviation is 5.5 pixels). For the
second one, one session could not be completed at all, and for
those that could be completed, we obtained an average diameter
of 21 pixels (sample deviation is five pixels), which amounts to

8The remaining moves still had a number of constraining elements (like
PAST_DIRECTED- or TO-moves), so that the modeling did not break apart.

Fig. 10. Error tube diameters for all sessions computed for cases where all
available information is used, no landmark and self-crossing restrictions are
imposed, and only move- and turn-NIUs are considered.

a relative precision loss of 18% and 7%, respectively. In terms
of a number of landmarks passed on the wrong side, removing
all position-NIUs increased their proportion by almost 50%
relative. All of the above experiments were conducted using
leave-one-out strategy, i.e., in order to replicate each session,
we trained the spatial templates on the remaining 24.

These results demonstrate the importance of natural con-
straints and verifications in navigational tasks. Fig. 10 shows the
error tube diameters for all sessions for all these experiments
where sessions are arranged in such an order that the diameter
increases for our final system with no landmark and self-
crossings allowed and with position-NIUs accounted for.

Another promising result comes from ignoring stretch
specifications for moves. In the previous experiments, if the
quantitative constituent of a move was specified, we would
temporarily shift a corresponding spatial template to peak in
this stretch. However, looking up the meaning of expressions
like “a little bit” is not quite fair because it requires serious
semantic analysis and a great deal of world knowledge. As it
turns out, we can ignore such explicit specifications altogether,
and the integration procedure will still deliver accurate models.
In our experiments, the average error tube diameter remained
under 20 pixels.

VII. DISCUSSION

We have reported first steps toward automatic understanding
of unconstrained navigational instructions in the MAP-TASK
domain. Clearly, substantial aspects of the problem remain
unmodeled and pose significant challenges for future research.
For example, we still need to extract NIUs from instruction
transcripts, impose a partial precedence relation on them, and
understand the meaning of distances and angles depending on
manual interpretation as well. As far as the latter is concern,
we showed in the previous section that the quantitative aspect
of NIUs can be ignored without significant loss in performance
if we consider them in context of other NIUs. Extracting NIUs
from text is a task similar in spirit to the task of named entity
extraction and may be achieved using well-established tagging
algorithms [27]. Our preliminary experiments in this direction
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Fig. 11. Automatic path replication. System diagram.

produced promising results (not reported in this paper). Deter-
mining the partial order of NIUs would remain a challenge. For
instance, the instructions “at the corner go left” and “go left
till you are at the corner” both contain one position describing
being at the corner and one move describing going to the left.
But in the first case, the position precedes the move, and in
the second, it is the inverse. Ultimately, more robust syntactic
processing must be brought to bear on the problem. We believe
that our approach of propagating spatial constraints based on
NIUs in a dynamic programming framework provides an ex-
tensible framework for such future investigations.

To put the work completed thus far into context from a prac-
tical perspective, we sketch how the implemented components
might play a role in a larger end-to-end language understanding
system. Extraction of NIUs from text or speech transcripts is the
only transition that has not been completely automated yet; it is
identified by the thick gray arrow in Fig. 11. Given a sequence
of extracted groups of competing NIUs whose spatial templates
are learned from a training corpus, we then use the DP-based al-
gorithm from Section IV-A to produce a contiguous path, while
also taking into account scene geometry and the scenario’s
natural constraints. In a video game scenario mentioned in the
beginning of this paper, for instance, our system can reside
inside an action interpreter that reads multistep natural language
path descriptions submitted by the players via keyboard or
microphone and sends virtual game characters to follow the
complex trajectories that arise from them.

VIII. CONCLUSION

We have described a system that infers paths on maps by
processing natural language instructions represented as NIUs.
This translation process from linguistically derived symbolic
representations to geometric spatial representations is an exam-
ple of language grounding (see [28] and [29]). Our focus in this
effort was to automate the translation of NIUs into probability
distributions over possible paths on maps. We defined four cat-

egories of NIUs, moves, turns, positions, and orientations, and
developed an approach for composing NIUs in order to interpret
the semantics of complex natural utterances that are analyzed
as comprising multiple NIUs. In the evaluations, this approach
successfully produced semantically correct interpretations for a
wide range of utterances.

APPENDIX I
DEFINITIONS OF PATH AND POSITION DESCRIPTORS

This section explains the path and position descriptors that
can be used to classify moves and positions, as well as turns.

1) TO: in a straight line, approach the closest point of a
reference object.

2) FROM: by keeping the previous direction, make sure the
move goes away from a reference object.

3) TOWARD: move in the direction of the center mass of a
reference object.

4) AWAY_FROM: move in the direction opposite to center
mass of a reference object.

5) PAST: by keeping the previous direction, proceed in a
straight line up to the point where the farthest point of
a reference object projects on this direction.

6) THROUGH: in a straight line, proceed through the center
mass of a reference object and up to its farthest point in
this direction.

7) PAST_DIRECTED: this path descriptor can have one
of the following four subcategories (sides): “above,”
“below,” “to the left of,” and “to the right of” a reference
object. It consists of one or two straight line intervals. If
the traveler is not already on the required side of a refer-
ence object, he has to take the shortest path to get there
(possible directions: north, south, west, and east). The
second step leads from the past projection of the center
mass of a reference object on the required side to a pro-
jection of the farthest point of the reference object on it.

8) AROUND: in a circular arc, move around the center
mass of a reference object; among two possible initial
directions, select the one closest to the previous direction.

9) FOLLOW_BOUNDARY: “expand” the perimeter of a
reference object to pass through the starting point of
the move. Follow this expanded perimeter; among two
possible initial directions, select the one closest to the
previous direction.

10) BETWEEN: this move requires two reference objects.
Compute intervals of view angles not crossing any of
the reference objects and consider two directions in their
middles. Select the one closest to the previous direction
and proceed in a straight line up to the projection of the
farthest point of both reference objects on this direction.

11) TURN: turns are modeled similar to the AROUND-
moves with a small radius arc. Traveler follows the arc
till needed orientation is achieved.

12) POS_AT: this position descriptor generates score that
depends on the traveler’s distance to the closest point of a
reference object.

13) POS_AT_DIRECTED: similar to PAST_DIRECTED,
there are four possible sides for this position descriptor
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(“above,” “below,” “to the left of,” and “to the right of”),
each one determining its active direction (e.g., north for
“above”). The score depends on the traveler’s distance
along the active direction to the reference point’s extreme
in this direction and also on the angle that a beam from
the reference point’s center mass to the traveler creates
with the active direction.

14) POS_BETWEEN: here, the score is generated based
on a difference between distances from the traveler
to the closest points of the first and second reference
objects.

APPENDIX II
ANNOTATION EXAMPLES

Consider the following four (slightly modified) instructions
from one of the MAP-TASK dialogs (see also Fig. 8).

• “Continue up north slightly.”
• “. . . to the tip of the lake.”
• “. . . and then we’re going to turn down above the

trig point.”
• “. . . and we’re going to turn immediately to your right.”

For these sentences, the following NIUs have been annotated.

1) MOVE with path descriptor TOWARD (“continue”),
absolute reference object NORTH (“up north”), and in-
tuitive stretch from start (“slightly”).

2) COMPOUND REFERENCE of the type PART-OF (“the
tip of”).

3) MOVE with path descriptor TO (“to”) and the above
compound reference as a reference object.

4) TURN with absolute reference object SOUTHEAST
(“down,” southeast direction observed on the map).

5) POSITION with position descriptor POS_AT_
DIRECTED (“above”) and coordinate system with a
center in the reference object TRIGPOINT (“trig point”)
and absolute orientation.

6) TURN with relative reference object RIGHT (“your
right”).
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