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Abstract

This chapter presents a physical-computational model of sensory-motor

grounded language interpretation for simple speech acts. The model is

based on an implemented conversational robot. It combines a cybernetic

closed-loop control architecture with structured conceptual schemas. The

interpretation of directive and descriptive speech acts consists of translat-

ing utterances into updates of memory systems in the controller. The same

memory systems also mediate sensory-motor interactions and thus serve

as a cross-modal bridge between language, perception, and action. The

referential, functional, and connotative meanings of speech acts emerge

from the effects of memory updates on the future dynamics of the con-

troller as it physically interacts with its environment.

1 Introduction

This volume is the result of a meeting which was organized around a contrast
between two approaches for analyzing and modeling semantics. In the first
camp are cognitive scientists who model linguistic meaning as structural rela-
tions between symbols. The term “symbol” in this context is taken to mean,
roughly, discrete information elements that may be given word-like labels that
make sense to humans (e.g., DOG, IS-A). Examples of this approach includes
semantic networks such as WordNet (Miller, 1995) and Cyc (Lenat, 1995) and
statistical methods such as Latent Semantic Analysis (Landauer, Foltz, & La-
ham, 1998). In contrast to this “ungrounded” approach, the grounded camp
treats language as part of a larger cognitive system in which semantics depends
in part on non-symbolic structures and processes including those related to per-
ception and motor planning. Examples include Bates’ grounding of language in
sensory-motor schemas (Bates, 1979) and Barsalou’s proposal of a “perceptual
symbol system” that grounds symbolic structures in sensory-motor simulation
(Barsalou, 1999). The grounded camp pays more attention to how symbols arise
from, and are connected to interactions with the physical and social environment
of the symbol user.
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The ungrounded camp has the advantage of mature computational modeling
tools and formalisms. Although these have proved to be immensely useful, there
are also clear limits to the explanatory power of any approach that deals strictly
with relations among word-like symbols. Many aspects of linguistic phenomena
that depend on conceptual and physical processes, many of which are centrally
involved in child language acquisition, are beyond the scope of purely symbolic
analysis. For example, to understand the meaning of the assertion that “there
is a cup on the table” includes the ability to translate this utterance into expec-
tations of how the physical environment will look, and the sorts of things that
can be done to and with the environment if the utterance is true. Presumably,
those working with ungrounded models would readily acknowledge the limits of
their approach in dealing with such issues. Thus I am not sure whether there
is really a debate to be had between the two camps, but rather a difference of
opinion in choosing which parts of an immensely complicated overall problem
to focus on.

My contribution will be to offer a new model that I believe makes some
progress towards understanding interactions between linguistic, conceptual, and
physical levels in strictly mechanistic terms. I chose the phrase “mechanis-
tic model” in the title of this chapter to indicate that the model encompasses
both physical processes of sensory and motor transduction and computational
processes. My hope is that this model will illuminate some aspects of linguis-
tic meaning related to intentionality, reference, connotations, and illocutionary
force that are difficult if not impossible to address using conventional symbolic
modeling methods alone, but emerge naturally by emphasizing the underlying
processes of grounding.

The model bridges the symbolic realm of language processing with the
control-theoretic and machine perception realms of robotics. I will present the
model in stages, starting with a simple cybernetic control loop that provides the
foundation for goal directed systems. Memory systems and processes of this core
model are enriched with schema structures and refined planning mechanisms,
yielding a pre-linguistic cognitive architecture that is able to support processing
of language about an agent’s here-and-now environment. Once linguistic inter-
pretation processes are grafted onto this pre-linguistic substrate, the result is a
model of linguistic meaning with unique explanatory power. One novel aspect
of the model is an explanation of connotative meaning that is derived directly
from the design of the agent control architecture.

The model may be useful for guiding the construction of embodied/situated
natural language processing systems (e.g., conversational robots, video game
characters, etc.), and to shed light on aspects of human language processing,
especially children’s language acquisition. My emphasis on cognitive architec-
tures and processes in this paper complements an earlier paper (Roy, 2005) that
focuses on schema structures underlying language use.

The remainder of the paper is structured as follows. I begin by suggesting
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that a viable strategy for modeling language use is to focus on simple language
use, such as that of young children. I define three facets of “meaning” that need
to be explained, leading to functional specifications for a model of language
use framed as semiotic processing. The next section describes the embodiment
and behavior of Ripley, a conversational robot built in our lab that serves as a
concrete launching point for a more general model that is developed in the next
sections. The final sections discuss the meaning of “meaning” suggested by this
model.

1.1 Simple Languages

Given the immense complexity of language use, it is critical to focus on a man-
ageable subset of the phenomena if we are to gain traction. Rather than par-
tition the problem along traditional pragmatic-semantic-syntactic-phonological
boundaries, we can instead take a “vertical” slice through all of these levels by
modeling simple but complete language use. Language use by young children is
a paradigm case.

Children acquire language by hearing and using words embedded in the
rich context of everyday physical and social interaction. Words have meaning
for children not because they have memorized dictionary definitions but rather
because they have learned to connect words to experiences in their environment.
Language directed to, and produced by young children tends to be tightly bound
to the immediate situation. Children talk about the people, objects, and events
in the here-and-now. The foundations of linguistic meaning reside, at least in
large part, in the cognitive representations and physical processes that enable
this kind of situated language use.

Consider the language production capabilities of a normally developing tod-
dler at the two-word phase (e.g., “more milk”). The child’s lexicon is tiny; her
grammar is trivial compared to that of an adult. She will mainly refer to the
here-and-now – more complex reference to the past, future, and to distant and
imagined worlds will develop later. She will ignore most social roles in choosing
her words to express herself – sensitivity to social roles will also develop in time.
In other words, toddlers use simple language, simple along dimensions of lexicon
size, syntactic complexity, extent of reference, social/cultural sensitivities, and
so forth.

For all its simplicity, a toddler’s use of language nonetheless demonstrates
many of the hallmarks of mature adult language: descriptive and directive
speech acts consisting of compositions of symbols that relate to the child’s envi-
ronment and goals. How is it that young children produce and interpret simple
speech acts that simultaneously refer (are about something) and serve social
functions? How do the child’s mental lexicon and grammar interact? How do
symbolic (word-level) and subsymbolic (concept-level) processes interact? A de-
tailed mechanistic analysis of speech acts used by children has yet to be offered
in the cognitive sciences. Any such model must explain aspects of perception,
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memory, motor control, planning, inference, and reasoning capacities that play
a role in situated language use. In this paper, I will describe a model of em-
bodied, situated speech act interpretation that is motivated by these questions.
The goal of this model is to make progress towards a mechanistic explanation
of meaning, so first we need a working definition of “meaning”.

1.2 Three Facets of Meaning

To analyze and model the meaning of speech acts produced or interpreted by
humans there are (at least) three main facets we need to consider. First, speech
acts refer to objects, actions, properties and relations in the physical environ-
ment – words have referential meaning. Second, speech acts are produced
intentionally to achieve effects on the interpreter – speech acts have functional
meaning. Finally, words and larger linguistic structures have connotative
meaning where connotation is defined as “an idea or feeling that a word in-
vokes in a person in addition to its literal or primary meaning” (McKean, 2005).

Consider first referential meaning. Taking a semiotic perspective1 (Figure
1), we can view the symbolic constituents of language (words, clauses, etc.) as
a layer of interconnected structures that interacts with a conceptual layer via
language interpretation and production processes. The conceptual layer in turn
interacts with the physical environment of the language user via perception and
motor action. These three layers are essentially an expanded view of Odgen
and Richards’ classic semiotic triangle (Odgen & Richards, 1923) in which the
link from words to the environment are mediated by concepts (or “ideas”). In
contrast to the static structural view intimated by the original semiotic trian-
gle, Figure 1 identifies the dynamic processes that link each layer. The semiotic
relation brings our attention to referential meaning: language can be used to
refer to (and to depict) objects, events, and relations in the physical environ-
ment. To ensure that referential meaning is truly grasped by language users, we
can require that language users have the ability to verify referential assertions
against the physical environment for themselves2.

Figure 2 shows how all three facets of meaning may be analyzed in the
context of a conversational turn. Two people are at a table and there is a
cup on the table. The speaker says, “This coffee is cold”. What do these
words mean to the listener? The referential content of the utterance regards the
temperature of the liquid in a particular container. “This” and “is” bind the
referential meaning of the utterance to the here-and-now object that is physically
accessible to both speakers. The meaning of “coffee” and “cold” have shared

1I use the term semiotic based on my interpretation of C.S. Peirce which emphasizes the
process of interpreting sensory patterns as indications of the future possibilities for action.

2This is a strong requirement, one that we certainly would want to relax when we consider
reference to referents distant in space, time, and more obviously for fictive/hypothetical refer-
ents. But in the simplest case of talk about the here-and-now it is a reasonable requirement,
one that rules out any approach that relies merely on perceptual associations without the
ability to act.
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Figure 1: Semiotic processes.

meaning for the speaker and interpreter to the extent that they have associated
similar personal experiences to the terms. The connotative meanings of “coffee”
might differ markedly and depend on personal tastes. The speaker’s purpose
in producing this speech act (upper left thought bubble) is layered from higher
level to lower level intended functions. If communication succeeds as intended,
the cooperative interpreter should infer a set of layered beliefs and goals that
are aligned with those of the speaker.

The degree and kind of alignment of speaker and interpreter meaning is dif-
ferent for each facet of meaning. Referential meaning in the depicted situation
should overlap substantially. Shared sensory-motor access to a common phys-
ical environment forces alignment of referential meaning. Functional meaning
should be complementary at matched levels (e.g., A’s attempt to convince B
that X should translate to B believing that X; A wanting Y should translate
to B planning to get Y for A). Connotative meaning may in general diverge
significantly as in this example, or alignment might depend on similarities in
cultural background or personal experiences.

Within the framework of conventional computational linguistics typified by
WordNet and Cyc, my choice of three facets of meaning seems to miss an obvious
one: semantic relations. These are diagrammed as arrows within the top layer of
Figure 1. Virtually all computational models of semantics, from early semantic
networks (Quillian, 1968) to electronic thesauri such as WordNet (Miller, 1995)
and commonsense databases such as Cyc (Lenat, 1995) all the way to purely
statistical approaches such as latent semantic analysis (Landauer et al., 1998)
share one fundamental attribute: they model relations between words. Model-
ing semantic relations can be traced back to Saussarian tradition of structural
analysis and in modern semantic analysis in terms of lexical relations (Cruse,
1986). Without doubt semantic relations are essential for a mature language
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“This coffee is cold”

Intended functional meaning Interpreted functional meaning

Speaker (A) Interpreter (B)

Get hot coffee
Get B to get me hot coffee

Convince B that this coffee is cold

Get A hot coffee
A wants hot coffee

Believe that this coffee is cold

Referential
meaning

A‘s connotative meaning

yum, coffee!

B‘s connotative meaning

yuck, coffee!

Figure 2: Three facets of linguistic meaning.

user. We would never learn from texts (e.g., text books, dictionaries, news
articles, etc.) without them. These relations, however, must ground out in
non-linguistic relations. The meaning of semantic relations such as is-a, has, or
opposite must be fleshed out in terms of non-linguistic structures and processes.
My assumption is that semantic relations are derived from the three core facets
of meaning, thus my focus on these foundations. Ultimately, semantic relations
(and for that matter, syntactic word classes) will gain some degree of autonomy
from underlying conceptual structures3. The model I discuss here does not ad-
dress these more advanced aspects of linguistic structure but prepares a way for
them4.

3For example, although we might assume that syntactic word classes are grounded in con-
ceptual categories (nouns derived from objects, verbs from actions, etc.), a fully autonomous
syntax moves beyond conceptual groundings (e.g., “the flight” or “cup the ball”).

4The failure to realize the age-old AI dream of building machines that learn by reading
books is perhaps due to an underestimation of the value of first working out the non-linguistic
underpinnings of semantic interpretation.
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1.3 Modeling Approaches: Modularity vs. Holism

A grand challenge for the cognitive sciences, then, is to develop a mechanistic
model that simultaneously addresses all three facets of meaning. This is clearly
a tall order that will not be met any time soon, but tangible progress can be
made as I hope to show.

A potential objection to taking the grand challenge seriously is the over-
whelming number of factors that must be considered together to analyze and
model situated language use. When we don’t understand how any one “module”
works, how can we possibly consider such a challenge? This objection leads to
a natural alternative strategy: divide and conquer. Kintsch conveys just this
sentiment in his chapter in this volume:

“...we would have images, concepts, somatic markers, S-R links,
features, schemata, abstractions, words, etc., etc., all linked some-
how organized in one grand system, at least in principle, for I have
no idea how one would go about constructing such a model. Al-
ternatively, one could model each level of representation separately.”
(emphasis added)

This is in fact a widely held attitude by those interested in developing com-
putationally precise models of language. For example, Chomsky expresses a
similar position when considering the prospects for explaining language use (as
opposed to mere syntactic competence) (Chomsky, 2000):

“It would...be a mistake, in considering the nature of perfor-
mance systems, to move at once to a vacuous “study of every-
thing”...[instead we should] try to isolate coherent systems that are
amenable to naturalistic inquiry and that yield some aspects of the
full complexity.” (emphasis added).

The idea of focusing on a single level or component is of course a reasonable
strategy. The problem is that we might miss the forest for the trees. For exam-
ple, although presumably the reason for studying any aspect of language is to
understand how words are used to communicate, as research into syntax delves
deeper and deeper into the subtleties of “rules” of word order, it is unclear how
progress towards understanding these rules in any way furthers our understand-
ing of the process of social communication. I believe that holistic models of
language use can be developed if we start with simple kinds of language use and
slowly expand the boundaries of analysis to more complex forms. This strategy
was anticipated by Wittgenstein (Wittgenstein, 1958):

“If we want to study the problems of truth and falsehood, of
the agreement and disagreement of propositions with reality, of the
nature of assertion, assumption, and question, we shall with great
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advantage look at primitive forms of language in which these forms
of thinking appear without the confusing background of highly com-
plicated processes of thought. When we look at such simple forms
of language the mental mist which seems to enshroud our ordinary
use of language disappears. We see activities, reactions, which are
clear-cut and transparent. On the other hand we recognize in these
simple processes forms of language not separated by a break from
our more complicated ones. We see that we can build up the compli-
cated forms from the primitive ones by gradually adding new forms.”
(emphasis added).

1.4 Functional Specifications for a Semiotic Processor

From a designer’s perspective, we can translate the task of here-and-now speech
act interpretation into a set of functional specifications that must be met by a
“semiotic processor”. There are two basic kinds of speech acts, descriptives and
directives, that I will be concerned with here. Descriptives are used by speakers
to make assertions about the current state of affairs, providing the same function
as perception. Directives are used to make requests/demands for actions upon
the environment. In contrast to descriptives and perceptual input that inform
the interpreter of how things are, directives suggest how things should be.

Imagine a robot that can see its environment through cameras and manipu-
late objects using its arms. A fly lands next to the robot and the robot happens
to be looking in the fly’s direction. The fly’s presence gives rise to a pattern
of activation in the camera. If successfully interpreted, the robot can come to
correctly believe that there is a fly out there at some location relative to the
robot, with certain properties of size, shape, color, and so forth. If instead of
seeing the fly, the robot is told (by a trustworthy source) that “there is a fly
next to you”, the robot must translate these words into beliefs that are of the
same format as those caused by the fly’s image. If the robot is asked to “swat
the fly”, those words must be translated into appropriate motor actions selected
to make appropriate changes to the environment, and that can be verified by
sensory-motor interaction. The robot must translate directives into goals that
are in a format compatible with its perceptually-derived beliefs.

This set of cross-modal (perception-action-language) requirements of com-
patible beliefs and goals constitute the functional specifications of a here-and-
now semiotic processor at an abstract level of description.

I will now turn to a specific robotic implementation to make some of these
ideas concrete, leading to a generalized model of speech act interpretation.
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2 Ripley, A Conversational Robot

Ripley is an interactive robot that integrates visual and haptic perception, ma-
nipulation skills, and spoken language understanding. The robot uses a situation
model, a kind of working memory, to hold beliefs about its here-and-now phys-
ical environment (Roy, Hsiao, & Mavridis, 2004). The mental model supports
interpretation of primitive speech acts (Mavridis & Roy, 2006). The robot’s
behaviors are governed by a motivation system that balances three top-level
drives: curiosity about the environment, keeping its motors cool, and doing as
told (which includes responding to directives and descriptives) (Hsiao & Roy,
2005). The following sections briefly describe Ripley’s embodiment and be-
havior, which are then translated into a general model that Ripley partially
instantiates.

2.1 Ripley’s Embodiment

Ripley’s body consists of a five-degree of freedom (DOF) arm (or torso) with a
gripper at its end. Thought of as an arm, the five DOFs provide a shoulder (two
DOFs), elbow (one DOF), and wrist (two DOFs). The gripper has one DOF
allowing it to open and close. A pair of miniature video cameras are mounted on
either side of the gripper. The torso is anchored to a table. The table top serves
as Ripley’s primary physical environment. The robot can examine objects on
the tabletop via vision and touch, and move objects around using its gripper.
Each DOF of the torso includes a position and a force sensor so that the robot
can sense both its body pose and the forces that are acting upon it (e.g., due to
gravity or if something resists the robot’s movements). The gripper tips house
pressure sensors that detect contact with objects.

2.2 Ripley’s Behavior

The robot is designed for physical and verbal interaction with a human partner
who sits across the table from the robot. Using a visual face detector, the robot
is able to detect and track the location of the person, using this information to
guide its motor movements (e.g., when handing the person an object) and to
guide its interpretation of speech (e.g., to differentiate the meaning of “my left”
versus “your left”). The following is a typical interaction between Ripley and a
human partner:

Ripley: Looks at left side of table, detects a new object that the human has
just placed on the table, updates its mental model to encode this new
information.

R: Looks to the right, finds that the table is empty there, which matches its
expectations based on its current mental model, so no further changes to
the model are needed.
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Figure 3: Ripley hands an apple to its human partner in response to a spoken
directive.

R: Goes to sleep by positioning its gripper to a resting position on the table
and cutting off electrical power to its motors in order to cool them.

Human: “Hand me the blue one”

R: Wakes up, leans down, picks up the blue cup, lifts it and holds it out towards
the human.

H: Takes the cup from Ripley.

R: Goes back to sleep.

R: Wakes up by lifting its torso back to an upright position, then looks up
towards the human to verify the human’s location based on face detection.
The person has shifted slightly, so an appropriate update is made to the
mental model.

H: “There is a red cup on your left”

R: Updates its mental model to integrate a new belief, that there is a cup on
the table but currently not in view, says “OK”

H: “Where is the red cup?”

R: “On the left”

H: “How big is the red cup?”

R: “I have no idea” (Ripley has only been told about the color of the cup, but
has no information about its size)
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H: “Look to the left”

R: Ripley looks to the left, detects the cup, consolidates new visually derived
information (precise location, precise color, size) into mental model.

H: “How big is the red cup?”

R: “It is small”

H: “Pick up the red cup”

R: Attempts three times to grasp object but fails because it is too slippery,
updates mental model to record this failure, says “sorry”.

The following sections explain Ripley’s behavior in terms of cognitive archi-
tecture, information structures and processes. This model yields an analysis
of all three facets of meaning, from Ripley’s point of view. The model focuses
on interpretation of speech acts. Although Ripley does generate limited speech
output, speech production is not yet addressed by the generalized model.

3 A Model of Situated Language Interpretation

In a previous paper (Roy, 2005) I developed the concept of semiotic schemas
which “serve as structured beliefs that are grounded in an agent’s physical envi-
ronment through a causal-predictive cycle of action and perception.” The focus
of that paper was on conceptual structures underlying lexical semantics. I chose
the term semiotic to highlight the cross-modal (language-action-perception) in-
terpretive and control issues at stake in grasping physically situated language.
The following sections build on these ideas but turn attention to the architec-
ture and processes required for semiotic processing. I will treat Ripley as a
concrete instance of a class of cognitive architectures. My goal is to develop a
model with minimal complexity that yields the capacity for interpreting (i.e.,
acting successfully in response to) descriptive and directive speech acts about
the physical here-and-now.

3.1 Goal Directed Behavior

As we shall see, to account for any of the three facets of meaning, the language
interpreter must have its own autonomous interests/goals/purposes. A frame-
work for goal-directed behavior is thus a natural starting point. In cybernetic
terms, at the core of the simplest goal driven system is a comparator that drives
the agent’s actions (Rosenblueth, Wiener, & Bigelow, 1943). A comparator, or
difference engine, is shown in Figure 4. Rectangles indicate memory systems
and ovals indicate processes. The difference engine compares target and actual
situations and generates a plan of action designed to eliminate differences. The

11



specification of the target situation must be in a format compatible with the
contents of the situation model although the levels of specificity may differ (e.g.,
the target might specify a constraint on acceptable situations but not specify a
particular target situation).

Situation 
model

Target 
situation

plan of 
action

Difference
engine

Figure 4: Core elements of a goal driven system.

Since we are interested in physically situated here-and-now semantics, the
difference engine must be embodied and embedded in a physical environment.
Figure 5 introduces interaction processes that couple the difference engine to the
agent’s environment. A simple (and classic) example of an embodied, situated
difference engine is a thermostat coupled with heating and cooling equipment.
Consider how parts of the thermostat system map onto Figure 5. The target
situation is a desired temperature, perhaps dialed in by a human. The situation
model is a reading of the current air temperature. The body of the thermostat
includes a temperature sensor. Bodily interaction includes mapping the sensor
reading into a format compatible with the encoding of the target temperature
stored in the target situation memory system. The difference engine must com-
pare inputs and decide whether to turn on a furnace, air conditioner, or neither.
The output of the difference engine which encodes this three-way decision con-
stitutes its plan of action. The bodily controller (which is part of the bodily
interaction processes) executes actions by activating appropriate bodily actua-
tors (furnace, air conditioner). Acting upon and sensing the environment form
a cycle, enabling the system to adapt to changes in either the environment or
the target temperature.

3.2 Semiotic Schemas for Conceptual Representation and
Control

To begin scaling up the capabilities of the basic architecture of Figure 5, we will
need to endow our system with richer situation models. Rather than elaborate
on specific implementation details, a description of Ripley’s software system at
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Figure 5: Embodied, situated goal driven system.

the level of semiotic schemas (Roy, 2005) provides a clearer functional explana-
tion suited to our current purposes. Several key attributes of semiotic schemas
are:

• Actions, objects, properties, and spatial relations are all represented using
a common set of primitives. In other words, rather than treat objects and
actions as distinct basic ontological types, both are constructed from the
same elementary structures.

• Schemas are used both to encode representations and guide control. Be-
liefs, goals, and plans are created by instantiating schemas in the situation
model, target situation, and plan memory systems respectively.

• Schema types encode concepts and are stored in long term memory. Schema
tokens are instantiations of schema types. Tokens can be created in target,
situation, or plan memory systems. Schemas are instantiated in response
to (as an interpretation of) bodily and linguistic interactions with the
environment as described below.
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• Actions are chains of precondition-movement-result triplets. The result of
each action provides the precondition of the next. An action chain may be
represented compactly by suppressing all but the initial precondition and
final result, providing a causal representation of what the chain achieves
without specifying the means by which the change is achieved (Drescher,
1991).

• Objects schemas are collections of possible actions that are licensed by
the existence of external objects. As a result, the composition of actions
and objects is seamless. To lift a cup is to activate the appropriate action
schema from the collection of schemas that represents the cup5.

• The properties of an object are parameters of schemas which may be
measured when those schemas are executed (e.g., the weight of an object
is represented in terms of expected forces on joints when that object is
lifted).

• Schemas may be used to represent both topological concepts (e.g., that a
triangle has three sides corresponding to three connected actions that are
spatially mutually constrained) and graded effects (e.g., that blue occupies
a certain part of color space with certain parts of the space that are most
typical).

An example of an object schema in Ripley is shown in Figure 6. A detailed
explanation of the elements of this schema are provided in (Roy, 2005). The
main idea is that for Ripley to believe that there is a cup at location L is to
believe that two sensory-motor control loops will execute successfully. The upper
control loop involves visually detecting a region at location L. The lower loop
involves grasping, touching, and moving the object. Both the visual and the
haptic loop can effect change in the value of L. Shape and color parameters may
optionally be measured while the visual loop is executed. Although not shown
in this figure, touch information may also inform the shape parameter (this
was not implemented in Ripley since Ripley’s touch sensors are too primitive to
characterize object shapes).

An example of an action schema corresponding to the verb lift is shown in
Figure 7. Executing this action causes the lifted object to change from location
from L1 to L2. Note that the lift schema is embedded within the cup schema.
This embedding relation enables composition of schemas corresponding to the
compositional semantics of “lift the cup”.

Equipped with schemas, Ripley can move beyond the stimulus-response
world of thermostats and represent its physical environment in an object-oriented
fashion. In Figure 8, bodily interpretation processes gain access to a long term

5In contrast, other models of verb grounding that use schemas (e.g., (Narayanan, 1999;
Siskind, 2001) do not provide a direct path for modeling composition with objects that are
acted upon. I view this as a serious shortcoming of these alternative approaches.
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Figure 6: Cup schema.

TOUCH stable_grip

senseTouch touchCat moveHand(L2)closeGripdetectHandContact(L1)

successsuccess success

Figure 7: The lift schema is embedded in the cup schema.

memory store of schema types (concepts). Ripley’s implemented schema store
includes representations of simple handle-able objects, their color, size, weight,
and compliance (i.e., soft, hard) properties, and a few actions that may be per-
formed on objects to move them about the table top and to give them to the
human partner.

Schema use is goal driven. The first of three top-level drives implemented in
Ripley is its curiosity drive. The purpose of the curiosity drive is to maintain an
up-to-date set of beliefs about the objects in Ripley’s environment. Belief main-
tenance is challenging for Ripley due to its limited visual field of view. Ripley’s
cameras allow it to see only a portion of the table top at a time (recall that
the cameras are mounted at the end of Ripley’s gripper so its visual perspective
shifts whenever the robot moves). Also, when Ripley looks up to detect and
track humans, its field of view only covers part of the space where the human
might stand and loses sight of the table altogether.

Ripley’s environment is dynamic since the human partner may move around,
and may introduce, remove, and move objects on the table. To keep track of
changes, Ripley must continuously visually scan its environment. The curiosity
drive is implemented as follows (for more details see Hsiao and Roy (2005)).
The visible environment (defined by the full extent of motions of the robot) is
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Figure 8: Conceptual schemas in long term memory constrain and accelerate
interpretation of bodily interactions with the environment.

partitioned into a number of visual zones. A scalar weight that ranges from 0
to 1 is associated with each zone and tracks when that zone was last updated
based on visual input. The longer it has been since Ripley looks at a zone, the
higher its associated weight grows. After a sufficiently long period without a
visual update, the weight for the zone will hit the ceiling value of 1 and not
change further. The collection of weights constitutes Ripley’s curiosity and is
stored in the situation memory.

A corresponding set of target curiosity values that are stored in the target
situation memory (in the current implementation all target curiosity values are
set to 0). The difference engine strives to satisfy curiosity by executing a basic
control loop in which each iteration consists of selecting the zone with the highest
difference between target and actual curiosity levels, and instantiating a plan to
eliminate this difference. The plan is constructed by selecting a target pose for
the robot that corresponds to the targeted visual zone, computing a sequence
of body poses that will guide the body to that pose, and then pausing at that
pose for a sufficient period (about 0.5 seconds) for Ripley’s visual processes to
incorporate new input into the situation model.
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3.3 Bodily Interaction Processes using Object Schemas

Object schemas guide Ripley’s interactions with the environment via a set of
object schema management processes:

Create Instantiates a new object schema token in situation memory when a
visual region is detected and no existing token corresponds to (explains
away) the region. Correspondence is determined by comparing location,
color, and size properties of the region to those predicted by each object
already in situation memory.

Destroy Deletes an object schema token from situation memory if sensory-
motor evidence does not support existence of an object. This may happen,
for example, if an object is removed from the table while Ripley is not
looking or if the schema was instantiated due to perceptual errors.

Update Modifies parameters of an existing object schema (e.g., size, color,
position) based on current perceptual input. Moving objects are tracked
by continuous updates of the position parameter based on visual sensing.
Although not yet implemented, changes in parameters over time may be
attributed to causes within the object (self-driven or agentive objects) or
due to external causes (e.g., naive physics).

Temporal-merge Implements object permanence by tracking objects over per-
ceptual discontinuities. If Ripley looks at an object on the table at time
T1, looks away at time T2, and then looks again at the same object at T3,
using only the processes listed so far would lead to creation of an object
schema (call it Token 1) at time T1, then destruction of Token 1 at T2,
and then creation of a new Token 2 at T3. The temporal-merge process
detects such sequences and merges Token 2 (and all subsequent tokens)
into Token 1. This process provides the basis for individuating objects,
and grounding proper names.

Similar processes are used to maintain beliefs about the human’s position
using a special purpose face detector rather than generic region detectors. The
collection of object schemas in situation memory provide referential content for
both linguistic communication and motor actions. Various details regarding
real-time operation of these bodily control and interpretation processes may be
found in (Roy et al., 2004).

Several object schema management processes that have not been imple-
mented in Ripley but a more complete maintenance system for a situation model
should include are:

Temporal-split The complement of temporal-merge, this process splits tokens
that have been mistakenly merged in the past back into separate tokens.
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Spatial-merge type 1 Merges object schema tokens in situation memory that
were erroneously instantiated by a single distal object. An object that is
visually split by another object in front due to occlusion of it might cause
such errors.

Spatial-split type 1 Splits an object schema token into two to correct for a
previous interpretation error. Two similarly colored objects that are next
to one another might initially be mistaken for a single object, but when
one object is moved, this process would account for the unexpected split
in visual regions by creating a new object token.

Spatial-merge type 2 Merges object schema tokens in situation memory that
were instantiated in response to two objects that have since become con-
nected. This process should be executed, for example, if the robot observes
one object being attached to another.

Spatial-split type 2 Splits an object schema token into two to account for
an actual split in what was originally a single object. For example, if an
object is cut into two, the token corresponding to the original object is
split into two tokens. This process is needed to ground conceptual actions
(and ground corresponding verbs) for actions such as cutting or tearing.

Although the processes have been described with an emphasis on visual
perception, touch plays a parallel role for all processes (e.g., creating an object
schema instance upon touching it).

Schema types guide and limit bodily interpretation process. Since object
schemas are collections of possible actions, the situation memory encodes pos-
sible actions that the robot expects would succeed if they were to be executed.
Which of these possible actions is actually taken depends on the active drive(s)
of the agent. When an action is performed on the basis of situated beliefs, fail-
ure of the action may lead to belief revision (e.g., removal of a object schema if
the robot fails to touch it, update of properties such as weight or slipperiness if
the robot fails to lift it).

Schemas in situation memory have intentionality (aboutness) with respect to
their referents through causal histories and future-directed expectations. Phys-
ical objects cause patterns to impinge on sensors of the agent which are in-
terpreted by the agent by creating object schema tokens (causal relationship).
Instantiated schemas are the agent’s beliefs about the here-and-now and guide
future actions upon the environment (predictive relationship). Interpretation er-
rors may be discovered when predicted outcomes of bodily interactions diverge
from actual experiences, triggering belief revision.

With only the curiosity drive in place, Ripley’s motor behavior is straight-
forward: it scans visual zones in a predictable sequence, always choosing the
zone with highest curiosity value. We now consider a second top-level drive
that competes with curiosity and enriches Ripley’s autonomous behavior.
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3.4 Multiple Top-Level Drives and Autonomy of Behavior

For practical reasons, Ripley has been designed to keep its motor tempera-
tures within a target operating range. In early versions of Ripley’s controller,
the robot would sometimes be accidentally left operating over extended pe-
riods, causing motor burnout from overexertion. Since introducing the self-
maintenance drive, Ripley has never lost another motor. This drive is imple-
mented in a similar fashion to the curiosity drive. The situation model main-
tains the current estimated temperature of three motor zones. Each zone is
the average temperature of a group of motors. The target situation memory is
programmed to hold target temperatures for each zone. The difference engine
compares actual and target temperatures and if any zone level of “tiredness” is
too large, it generates a plan for the robot to bring its body down to a resting
position on the table, and power to all motors is shut off for a cool down period.

The drive for self-maintenance conflicts with the drive for curiosity. If both
drives are active at the same time the robot will not effectively satisfy either
goal since it cannot rest at the same time that it moves to update its situation
model. Ripley’s architecture adds a layer of control beyond the components of
a thermostat as shown in Figure 9. The drive memory system maintains long
term motivations of the robot (e.g., target temperatures of motor zones, target
curiosity values for visual zones) along with priority weights for each drive. The
target selector compares the contents of situation memory and drive memory
to select which drive “takes control” of the body. Once a new drive is selected,
the target selector copies the associated drive variables into the target situation
memory, and then the difference engine goes into action.

The interaction of self-maintenance and curiosity drives in Ripley often leads
to surprisingly rich behavior. From a designer’s point of view, it is difficult to
predict when the robot will tire of visual scanning and decide to rest. Once it
rests sufficiently to cool off its motors, it is also difficult to predict which visual
zone it will first update in its situation memory.

The most unpredictable element of Ripley’s environment is the human. For
the human to affect Ripley’s behavior using words, Ripley must be equipped
with language interpretation skills. To get there, let us briefly reconsider in-
terpretation of sensory-motor interaction as a kind of semiotic process, or sign
interpretation. This view leads directly to a path for language interpretation.

3.5 Bodily Interpretation: Signs and Interpretive Frames

Recall the situation memory processes (Section 3.3) that make sense of an object
when it first comes into Ripley’s view. The visual presence of the object causes a
two-dimensional pattern to impinge on the robot’s camera sensor. This pattern,
when properly interpreted, causes the creation of an object schema token in
situation memory. The same is true of touch patterns. Patterns may signify
the presence of an object in the here-and-now. The robot interprets patterns as
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Figure 9: Autonomy of goal selection based on multiple top-level drives.

signs of objects that caused them.
The proper treatment of patterns as signs requires that the interpreter have

contextual knowledge about where, when, and how the pattern was received.
For example, if Ripley feels no sensation of pressure at its finger tips, how
should this touch pattern be interpreted? In a contextual vacuum, this pattern
is meaningless. The robot must integrate contextual knowledge of its body pose
(which determines the position of its gripper) and whether the gripper is in
motion, and which way it is moving. By combining these bits of knowledge, a
touch sensation can be interpreted. Suppose Ripley holds the belief that there
is an object within its grasp (i.e., an object schema is in situation memory
that predicts grasp-ability), and that Ripley reaches to the location of this
object and closes its gripper. The sensation at its finger tips now has clear
meaning: either a tangible object is in fact present or it is not. I will call
the collection of contextual information necessary to interpret a pattern its
frame of interpretation. Streams of patterns that emerge as a result of bodily
interactions are interpreted using the current frame of interpretation. Over
time, the meaning of signs are integrated into situation memory.

The foundation is now laid for grounding language use. Words serve as
signs, and syntax provides frames of interpretation for words. Sensory-motor
signs embedded in their interpretive frames provide the equivalent of descriptive
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speech acts – the environment makes “assertions” about how things are. Like
linguistic assertions, beliefs derived from the environment may be faulty and
thus always susceptible to revision. The meanings of speech acts are created
in the process of translating word strings into updates on situation memory (in
the case of descriptive speech acts) and drive memory (directive speech acts).

3.6 Grounding the Lexicon: Words as Signs

Open class words are defined by three components:

Spoken Form The sensory-motor schema for generating and recognizing the
spoken form of the word. In Ripley these are implemented using standard
speech recognition methods based on hidden Markov models combined
with model-based speech synthesis.

Conceptual Association Associated schema type in conceptual schema mem-
ory.

Proto-syntactic class The word class on which syntactic rules will operate.
In contrast to a fully autonomous syntax in which word classes are inde-
pendent of conceptual categories, the proto-syntactic model instantiated
by Ripley assumes that word classes are fully determined by their concep-
tual groundings.

Open class words that Ripley uses include names for objects, actions, object
properties, and spatial relations. Examples of schema types for objects and ac-
tions were mentioned in Section 3.2. Property schemas specify expected values
on measurable parameters of action schemas. Since object schemas embed ac-
tion schemas, properties can be specified for either actions or objects. Spatial
schemas specify expected results of movements between objects.

3.7 Grounding Proto-Syntax:
Frames of Interpretation for Words

Just as signs can only be interpreted within the context of a frame, words
too require an interpretive frame which is provided by syntactic structure. In
Ripley, a small set of context free grammar rules are used to encode allowable
word sequences. CFG rules are augmented with interpretation rules that specify
the semantic roles and argument structure assigned to words based on syntactic
structure6. Parsing according to these augmented CFG rules generates a seman-
tic analysis of an utterance in terms of its propositional structure and speech
act class. Closed class words (e.g., “there”, “is”) used in the CFG rules have
meaning purely in their role in determining speech act classes and propositional

6Ripley’s parser is adapted from (Gorniak & Roy, 2004).
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structure. Of course other cues beyond syntax (e.g., prosody) may also be in-
tegrated to classify speech acts. The propositional structure specifies the role
relations between the open class words of the utterance. The structure guides
interpretive processes that translate word sequences into memory updates. The
speech act class determines whether updates are made to situation or drive
memory corresponding to descriptive and directive speech acts respectively.

Figure 10 introduces three final components of the model. The lexicon and
rules of syntax are stored in dedicated memory systems, and the speech inter-
preter applies these memory structures to parse incoming spoken utterances and
interpret them. As the figure shows, the effects of interpretation are to modify
either situation memory in the case of descriptive speech acts, or drive memory
in the case of directive speech acts.

3.8 Interpretation of Descriptive Speech Acts

A descriptive speech act is an assertion by the speaker about how the world
is. Assuming a trustworthy relationship between speaker and interpreter, the
literal meaning of a descriptive is constructed by making appropriate changes
to the situation memory in order to translate the speaker’s assertion into beliefs
about the here-and-now environment.

When the syntactic parser determines that the utterance is a descriptive
speech act, interpretation consists of translating the propositional structure of
the utterance into execution of appropriate schema management processes ap-
plied to situation memory. Recall that these processes were defined in Section
3.3 and are also used for interpreting bodily interactions with the environment.
The open class lexical items in the spoken utterance serve as indices into the
schema types.

Let us work through an example to clarify the process of descriptive speech
act interpretation. Suppose Ripley’s human partner says, “there is a bean bag
on your left” while Ripley is looking up at the person, and there are currently no
object schemas instantiated in Ripley’s situation memory. Interpretation of this
descriptive speech act results in the creation of an object schema in situation
memory. Here are the stages that lead to this result:

Speech recognition Speech is detected and translated into a sequence of lex-
ical entries. The acoustic form of words are retrieved from the lexicon and
constrain the recognition process.

Parsing The output of the speech recognizer is parsed using the augmented
CFG rules. The parse will result in classification of this utterance as a
descriptive speech act, which routes the resulting memory update to the
situation memory. The parse also generates a propositional structure with
the form there-exists(bean-bag(location=left(landmark=ego), color=red)).
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Figure 10: Interpretation of descriptive speech acts about the here-and-now en-
vironment parallel interpretation of bodily interactions with environment. The
semantics of descriptives are fully constituted by their effects on the contents of
the situation model.
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Create schema token The top level of the propositional structure is inter-
preted by creating a new bean bag object schema in situation memory.
The lexical item with form “bean bag” provides a link into the concep-
tual memory store for the corresponding object schema type. By default,
the parameters of the schema (location, color, size, etc.) are set to be
unknown. Parameters are encoded using probability density functions
(pdfs). To specify a parameter as unknown, the corresponding pdf is set
to a uniform distribution over all possible values (maximum entropy).

Update schema location parameter The location parameter of the object
schema token is updated by replacing its location pdf with a new distri-
bution that concentrates the probability density to the left region of the
table top. The location distribution corresponding to “left” is stored in
the concept memory as a property schema type. The meaning of “I” and
“your” in the current implementation of Ripley is limited to the impact
of these words in interpreting spatial semantics (Roy et al., 2004).

Update schema color parameter The color parameter of the object schema
token is updated by replacing its color pdf with a new distribution that
concentrates the probability density in the region corresponding to the
English color term “red”. This idealized color distribution is stored in the
concept memory as a property schema type.

This example demonstrates the semiotic underpinnings of the model. To
process language that depicts an object triggers the same processes that would
be used to interpret bodily interactions with an object. As a result, the semiotic
requirement of a consistent cross-modal format is met. Words are translated
into the same format as sensory patterns since in both interpretive processes, the
results are encoded in a common form in situation memory. This enables Ripley
to come to believe in the existence of an object via language, and later verify,
modify, or even discredit this belief via embodied sensory-motor interaction.

There are differences in the level of ambiguity provided by sensory patterns
versus words which are handled naturally in the model through the schema
parameter update process. In some cases language is more ambiguous, in other
cases less. Suppose Ripley is told that “there is a cup on the table”. This
assertion provides no constraints on the location of the cup beyond the fact
that it is resting somewhere on the surface of the table. It also says nothing
about the cup’s size, color, orientation and so forth. In contrast, one clear view
of the cup would provide far more precise information about all of these aspects
of the object. Although the interpreter might not choose to actually extract and
encode all information available in the visual pattern, the information is visually
available as opposed to the less informative verbal evidence. This is a case where
language is more ambiguous than perception. In contrast, suppose Ripley knows
about (has conceptual schemas of) three-dimensional balls and cylinders7. If

7Ripley does not encode shapes as part of its concept schemas, but other robots we have
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Ripley were to view an object from above and see a circular form, this pattern
would be ambiguous since it might signify either a ball or a cylinder (which
would also appear round when upright). On the other hand, the utterance
“there is a ball on the table” would not harbour the same ambiguity. More
generally, of course, language is a powerful medium for conveying information
that is not perceptible at all (i.e., historical facts, theoretical assertions, etc.).

3.9 Interpretation of Directive Speech Acts

A directive speech act transmits a request for action (or in the case of a negative
directive, a constraint on actions). The directive might specify an action (e.g.,
“hand me the cup”), a desired change in situation (“clear the table”), a request
for information (“is that box heavy?”), and so forth. I will focus here on the
directives that specify actions on objects by working through another example,
“hand me the blue cup”, which triggers the following interpretive processes:

Speech recognition Speech is detected and translated into a sequence of lex-
ical entries using the same processes as descriptives.

Parsing The parser will classify the utterance as a directive, which routes the
resulting memory update to the drive memory. The parser also generates a
propositional structure with the form there-exists(cup(color=blue), target-
location=partner).

Create target structure The propositional structure is converted into a sit-
uation target linked to a top-level do-as-told drive. The situation target
specifies a desired action (lift object and offer to human partner) and tar-
get object which specified by selecting an active object schema in situation
memory which best matches the contents of the propositional structure.
If no object schema in situation memory matches the requested object,
this stage will fail.

Once the requested action is placed into drive memory, it will remain there
until the target selector determines that the do-as-told drive should gain control.
When this happens, the verbally triggered target situation is copied into target
memory, which in turn triggers planning processes that carry out the requested
motor action.

3.10 Summary

The model begins with the classic cybernetic structure of a closed loop con-
troller. This skeletal structure provides scaffolding for introducing richer mem-
ory structures and processes for control and interpretation. A pre-linguistic ar-
chitecture is developed that integrates drive arbitration with conceptual schemas

built do (Roy, 2003).
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that guide the interpretation of sensory-motor interactions with the environ-
ment. Interpretation of bodily interactions can be viewed as a semiotic process
of sign interpretation, where the results of interpretation lead to modifications of
situation memory. We can then graft machinery for linguistic interpretation onto
this underlying architecture. Interpretation of descriptive speech acts parallels
the process of making sense of sensory-motor patterns by effecting situation
memory. The meaning of directive speech acts emerges from the modification
of drive memory structures.

This model addresses only a sliver of the linguistic phenomena exhibited by
a young child. The list of what is missing is long and includes language pro-
duction, understanding any kind of non-literal meanings, anaphoric resolution,
reference beyond the here-and-now, and so forth. At a prelinguistic level, the
conceptual representations I have sketched are also very incomplete. Object
schemas as presented here only encode “do-to” affordances, i.e., the kinds of ac-
tions the agent can expect to take on an object such as grasping it or pushing it.
Eventually we must also model “do-with” affordances (i.e., one can carry things
in a cup) and “reacts-to” affordances (i.e., what a ball does when pushed). Type
hierarchies for actions, objects, properties, and relations are also surely impor-
tant, as is goal and belief attribution to communication partners. I believe all of
these issues may eventually be addressed by building on the approach developed
here, an approach that might be called embodied interactionist semantics8.

This model makes some progress in explaining language use in holistic yet
mechanistic terms. In contrast to typical computational models of language
that focus on one aspect (e.g., syntax, semantic networks, word-to-percept as-
sociations, etc.), this model strives to encompass a broad range of cognitive
structures and processes in a coherent framework to yield explanatory power.

4 Meaning, From Ripley’s Point of View

In Section 1.2, I suggested three facets of meaning that are in need of explanation
by a unified mechanistic model. In the model presented here, meaning arises as
a consequence of the effects of words on an agent’s memory systems, and the
ensuing effects on the dynamics of the agent’s control processes that are affected
by these memory systems. Let us consider how the model relates to each facet
of meaning.

4.1 Referential Meaning

The propositional content of descriptives and directives are bound to the en-
vironment via situation memory. Schema instances in situation memory are

8In philosophical terms, the approach is closely connected to Pierce’s pragmatism (Peirce,
1878) and in contemporary philosophy to Millikan’s functional semantics (Millikan, 2004) and
Bickhard’s interactivism (Bickhard, 1993)
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cashed out in how they make predictions of, and are shaped by referents in
the environment. Individual words provide constraints on the establishment of
reference. For example, the meaning of “blue” constrains parameters of visual
schemas embedded in whatever object is described to be blue. The model sug-
gests that reference is the result of dynamic interactive processes that cause
schemas to come into being and that keep them attuned to specific objects.

4.2 Functional Meaning

Functional semantics of speech acts emerge from their embeddings in the overall
behavior system of the agent. The functional class of a speech act is determined
by word order and the location of specific closed-class words. The meaning of
the classification is determined by the memory system that is effected. Descrip-
tive speech acts are translated into updates on situation memory, effectively
committing the agent to new beliefs that have potential “cash value” in terms
of future bodily interactions with the environment. Directive speech acts are
translated into updates on drive memory, effectively biasing the agent to act in
new ways in order to satisfy the new goals expressed by the speech acts.

4.3 Connotative Meaning

Connotation refers to the implied, subjective meaning of a word or phrase as
opposed to its conventional, literal meaning. In the model, connotative meaning
of a word is the accumulated effect of the word’s conceptual structure with
respect to the motivational drives of the language user. For example, consider
the connotation of “heavy” for Ripley, given that the robot is driven by curiosity,
the need to stay cool, and to do as its told. In terms of doing what it is told to do,
the meaning of “heavy,” like any property name, is useful since it lets Ripley pick
out the object that the human wants. In this respect, the connotation of heavy
is positive - we might say, positive with respect to the verbal response drive. In
contrast, any object that is heavy will be negative with respect to Ripley’s other
top-level drives, since manipulating heavy objects accelerates motor heating,
and heavy objects often slip. Although Ripley’s curiosity drive is currently
based on visual evidence, it would be possible to extend curiosity to include
the weight of objects in which case Ripley would be compelled to lift all novel
objects to characterize their weights. In such a setting, the negative relation
of heaviness to motor heat would also emerge during the activity of satisfying
curiosity, which would now involve lifting all novel objects. Overall, we might say
that the meaning of “heavy” is neither totally negative nor positive, but rather
is bittersweet. This mixed attitude is due to the interaction of Ripley’s multi-
dimensional drives, the particular conceptual structure underlying “heavy”, and
the physical laws of force and heat that govern Ripley’s bodily interactions with
its environment. The model yields an analysis of connotative meanings as the
agent’s embodied experiences “projected” through the lens of the particular
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concept. Even with Ripley’s simple drive system we obtain a three-dimensional
space for connotative meanings. More generally, the richness of connotative
meanings grows with the richness of the drive system of the language user. As
a child grows and acquires culturally rooted interests and drives, the effective
dimensionality and subtleties of connotative meaning become correspondingly
more intricate.

4.4 Conclusion

To summarize, I believe the model presented here provides a new way of look-
ing at how each facet of meaning emerges from common causes. Rather than
propose three models of meaning, a single model gives rise to all three. The
partial implementation of the model in the form of an embodied, interactive,
autonomous robot provides a tangible example of a machine that “grasps” lin-
guistic meanings in a way that goes beyond any symbol manipulation model of
meaning.

Discussion

Reviewers of an earlier draft of this paper raised numerous questions and con-
cerns, some of which I have tried to address in revisions to the paper. However,
I felt that a subset of the questions were better answered in a question and
answer format as follows in this section.

“Create” is a process of object schema token instantiation. If I understood,
this means that the corresponding type schema must be stored in memory. My
question: Is it the case that only objects whose type schema was precompiled
by the programmers can be perceived, manipulated, and understood? In other
words, if you provide Ripley with a banana and it does not have any previous
banana type schema, could Ripley respond to descriptions and commands about
it? My question is also related to Ripley’s learning capabilities (or limitations).

Only pre-compiled schemas may be instantiated in the current model. Schemas
have parameters such as shape and color which can accommodate new forms
of objects. But the topological structure of schemas as defined by the network
of possible actions is assumed to be fixed and preprogrammed. An important
topic for future work is to explore how a machine could learn new schemas
(i.e., concept learning), perhaps through a process of discovering new clusters
of interaction patterns.

“Destroy” seems psychologically a radical procedure, because object permanence
takes place even if an object is hidden. The robot should distinguish between a
hidden object that could reappear later on and a really destroyed object that will
never come back. Of course you know that, but then what is the motivation for
including destroy? Maybe Destroy is convenient to clean up the working memory
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in a purely on-line processor such as Ripley, but what about long term memory?
For instance, lets suppose that you want to implement an improved version
of Ripley with episodic long term memory. We should ask Ripley displaced
reference questions like: where was object X before (now)? To answer this, the
destroy routine would be quite inconvenient, because the system should be able
to track of past events and organize them into episodic memory traces.

In psychological terms, Ripley has working memory (the situation model, plan of
action system, target situation memory, drive encodings) and long term seman-
tic memory (for storing conceptual schemas) but no long term episodic memory.
A promising future direction is to extend the model to include episodic memory
by selectively encoding chains of activity of the various working memory sys-
tems. Furthermore, we might explore learning processes that compress multiple
similar episodic traces to form new conceptual schemas.

Section 3.1 begins with the statement “to account for any of the three facets
of meaning, the language interpreter must have its own autonomous inter-
est/goals/purposes.” This is a really interesting claim, but it is given little
justification in section 3.1, and it is not until section 4.3 that it is cashed out.
I would really like to see Roy justify the claim more completely in 3.1, or even
in 4.3.

Schemas are structured bundles of possible actions. In other words, schemas are
collections of potential plan fragments. As such, all instantiations of schemas
(beliefs) and their meanings are inextricably imbued with the interests / goals
/ purposes of the beholder.

The question of whether a system is embodied is another layer beyond the matter
of a model being grounded. Systems can be grounded in perception and action,
but not be embodied, whereas it would not make sense for an embodied model to
be ungrounded. In my view, what makes a model embodied is that its represen-
tations and processes are constrained by the properties of the body. So I wonder
where Ripley stands on the question of whether it is embodied.

The terms “grounded” and “embodied” have unfortunately been used in many
overlapping ways by authors and are thus bound to be confusing, and any spe-
cific definition contentious. That being said, I find it difficult to make sense of
the assertion that “Systems can be grounded in perception and action, but not
be embodied” if we are talking about perception of, and action in the physical
world since that would be impossible without a physical body, and I think most
definitions of embodiment involve bodies in one way or another. Ripley is a
physically instantiated machine that senses and acts upon its physical environ-
ment so I would call it embodied, but I don’t think there is much significance to
being classified as such. The point of the model I have presented is not merely
that it was implemented in an embodied system (robots have been around for
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a long time). Rather, the important idea here is to develop a continuous path
from sensory-motor interations to symbolic communication.

In Ripley, schemas are organized around objects (e.g., the lift schema is em-
bedded within the cup schema). These are essentially affordances. I worry that
such a position is too bottom up. A more goal-driven system would presumably
be needed also.

I agree that schemas are closely related to the idea of affordances. Affordances
as originally concieved by Gibson (1979) refer to the confluence of top-down
and bottom-up factors, so there is no reason to “worry that such a position
is too bottom up” anymore than one should worry that such a position is too
top-down. Ripley’s architecture is designed to blend top-down and bottom-
up influences. On one hand the drive memory, target selection, and planning
mechanisms drive top-down activity whereas interpretation of bodily interac-
tions with the environment via belief revision adapt to bottom-up influences of
the environment.

Ripley’s continuous scanning of the environment may be a bit different than
humans. Human attention is primarily drawn by changes in the environment.

Ripley’s architecture is trivial in richness and capability when compared to hu-
mans and thus there are vast differences between its scanning processes and
analogous functions in humans. That said, it would be inaccurate to say that
human attention is “primarily drawn by changes in the environment”. Atten-
tion depends critially on active goals and interests, not just changes in the
environment (as shown, for example, by experiments in change blindness).

Ripley lives in a simplified toy world, much like Winograd’s Blocksworld in the
early 1970s. There is a small finite number of goals, a limited number of agents
and objects, a small spatial layout, assumed common ground in person-system
interaction, and so on. One reason that it is necessary to work with toy worlds
is because of combinatorial explosion problems and modules that otherwise would
be impossible to implement (such as goal recognition in the wild, and assumed-
rather-than-computed common ground). It would be good to justify Ripley’s being
in the toy world for these and any other reasons.

As anyone who has tried to build an autonomous robot knows, operating on ev-
eryday objects in the physical world – even in the safe haven of Ripley’s tabletop
world – is radically different from operating on symbolically described blocks in
a virtual world of the kind that was popular in early AI systems. This ques-
tion appears to be based on a failure to grasp this difference. Since error and
ambiguity do not arise in symbolic descriptions, there is no reason to make the
fundamental distinction between belief and knowledge when dealing with sym-
bolic microworlds. In contrast, all that Ripley can ever strive for are beliefs that
translate into expectations with respect to self-action. The world may of course
not satisfy those expectations, leading to belief revision. The model of language
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interpretation and meaning I have presented are grounded in this conception
of belief. Issues of error, ambiguity, and categorization are at the core of the
model. None of these issues even arise in classic AI microworlds such as that of
Winograd’s SHRDLU (Winograd, 1973). A better way to think of Ripley’s sim-
plified environment is that Ripley exists in a carefully controlled subworld in the
sense defined by Dreyfus and Dreyfus (1988). Like the controlled subworld of an
infant, Ripley’s world opens up into our world as opposed to microworlds that
are physically disconnected from the rest of reality. Justifications for keeping
Ripley’s subworld simple can be found in Sections 1.1 and 1.3.
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