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Task-Oriented Collaboration with Embodied Agents 
in Virtual Worlds 
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1 Introduction 
We are working toward animated agents that can collaborate with human 
students in virtual worlds. The agent’s objective is to help students learn to 
perform physical, procedural tasks, such as operating and maintaining 
equipment. Like most of the previous research on task-oriented dialogues, 
the agent (computer) serves as an expert that can provide guidance to a 
human novice. Research on such dialogues dates back more than twenty 
years (Deutsch 1974), and the subject remains an active research area 
(Allen et al. 1996; Lochbaum 1994; Walker 1996). However, most of that 
research has focused solely on verbal dialogues, even though the earliest 
studies clearly showed the ubiquity of nonverbal communication in human 
task-oriented dialogues (Deutsch 1974). To allow a wider variety of 
interactions among agents and human students, we use virtual reality 
(Durlach and Mavor 1995); agents and students cohabit a three-
dimensional, interactive, simulated mock-up of the student’s work 
environment. 

Virtual reality offers a rich environment for multimodal interaction 
among agents and humans. Like standard desktop dialogue systems, 
agents can communicate with humans via speech, using speech synthesis 
and recognition software. As in previous simulation-based training 
systems, a simulator controls the behavior of the virtual world. Agents can 
perceive the state of the virtual world via messages from the simulator, 
and they can take action in the world by sending messages to the 
simulator. However, an animated agent that cohabits a virtual world with 
students has a distinct advantage over previous disembodied tutors: the 
agent can also communicate nonverbally using gestures, gaze, facial 
expressions, and locomotion. In addition, students also have more 
freedom; they can move around the virtual world, gaze around (via a 
head-mounted display), and interact with objects (e.g., via a data glove). 
Agents can perceive these human actions; the position and orientation 
data used to track the users of a virtual reality system can provide agents 
with each user’s location, field of view, and object manipulations. Thus, 
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virtual reality is an important application area for research on multimodal 
dialogues because it allows more humanlike interactions among synthetic 
agents and humans than typical desktop interfaces can.  

To explore the use of animated agents for task-oriented 
collaboration in virtual worlds, we have designed such an agent: Steve 
(Soar Training Expert for Virtual Environments). Steve is fully implemented 
and integrated with the other software components on which he relies (i.e., 
visual interface software, a simulator, and commercial speech synthesis 
and recognition products). We have tested Steve on a variety of naval 
operating procedures; he can teach students how to operate and maintain 
the gas turbine engines aboard naval ships, including both individual tasks 
and team tasks. Steve is not limited to this domain; he can provide 
instruction in a new domain when given only the appropriate declarative 
domain knowledge. Despite the growing number of animated agents that 
converse with human users (André 1999; Johnson, Rickel, and Lester 
2000; this book), Steve is unique in having domain-independent 
capabilities to support task-oriented dialogues situated in three-
dimensional virtual worlds. 

This chapter focuses on Steve’s ability to integrate verbal and 
nonverbal communication to collaborate with students. Section 2 
discusses the important roles that nonverbal communication plays in task-
oriented collaboration. Section 3 illustrates Steve’s current capabilities 
through an example interaction with a student. Sections 4 and 5 briefly 
review our architecture for virtual worlds and Steve’s architecture; details 
are available in earlier papers (Johnson et al. 1998; Rickel and Johnson 
1999a). Finally, section 6 describes the methods that govern Steve’s 
communicative behavior, and section 7 provides conclusions and 
directions for future work. 
 

2 Roles for Nonverbal Communication 
While most of the previous research on task-oriented dialogues has 
focused on verbal interactions, an animated agent that cohabits the virtual 
world with students permits other types of interactions that play important 
roles in human task-oriented dialogues. These roles for nonverbal 
communication provide the primary motivation for using animated agents 
for task-oriented collaboration. 
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2.1 Interactive Demonstrations  
An animated agent can demonstrate physical tasks, such as operation 
and repair of equipment. Demonstrating a task may be far more effective 
than trying to describe how to perform it, especially when the task involves 
motor skills and spatial relations, and the experience of seeing a task 
performed is likely to lead to better retention (Najjar 1998). Moreover, an 
interactive demonstration given by an agent offers several advantages 
over showing students a videotape. First, students are free to move 
around in the environment and view the demonstration from different 
perspectives. Second, they can interrupt with questions or even a request 
to finish the task themselves. Third, the agent can adapt the 
demonstration to different situations. For example, Steve is able to 
construct and revise plans for completing a task in response to changes in 
the virtual world, so he can demonstrate tasks under different initial states 
and failure modes, as well as help the student recover from errors. 
 

2.2 Navigational Guidance 
When a student’s work environment is large and complex, such as a ship, 
one of the primary advantages of a virtual mock-up is to teach the student 
where things are and how to get around. In this context, animated agents 
can serve as navigational guides, leading students around and preventing 
them from becoming lost. For example, Steve inhabits a complex 
shipboard environment, including multiple rooms. The engine room alone 
is quite complex, with the large turbine engines that propel the ship, 
several platforms and pathways around and into the engines, a console, 
and a variety of different parts of the engines that must be manipulated, 
such as valves.  

As Steve demonstrates tasks, he leads students around this 
environment, showing them where relevant objects are and how to get to 
them. Leading someone down a hallway, up a flight of stairs, around a 
corner, and through some pipes to the valve they must turn is likely to be 
more effective than trying to tell them where the valve is located. Our 
experience in training people using immersive virtual reality has shown 
that students can easily become disoriented and lost in complex 
environments, so animated agents that can serve as guides are an 
important instructional aid. 
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2.3 Gaze, Gesture, and Body Orientation as Attentional 
Guides 
To draw a student’s attention to a specific aspect of the virtual world, 
tutoring systems make use of many devices, including arrows, highlighting 
by color, and verbal referring expressions. An animated agent, however, 
can guide a student's attention with the most common and natural 
methods: gaze and deictic (pointing) gestures. Steve uses both methods 
to guide students’ attention to objects in the virtual world, as well as to 
connect his verbal referring expressions to objects so that students learn 
their names. Argyle and Cook (1976) discuss the use of deictic gaze in 
human conversation, and the prevalence of deictic gestures in human 
task-oriented dialogues was noted in the earliest studies (Deutsch 1974). 
 Steve also uses his body orientation as a cue to his attentional 
focus. When he moves to an object to perform an action on it, he ends his 
locomotion with his body facing the object. Steve’s immediate attention 
(indicated by his gaze) subsequently shifts back and forth between the 
student and the object as Steve describes the action, performs it, and 
finally discusses its results. During that time, however, the lower trunk of 
Steve’s body remains oriented toward the object; Steve looks at the 
student when appropriate by turning his upper body, neck, and head. 
Thus, Steve’s lower body orientation indicates to the student his focus on 
the object, and the orientation changes only as the focus of the task shifts 
to a new object, providing a cue to help the student recognize such focus 
shifts. Kendon (1972) observed a similar hierarchy of body movements in 
human speakers; while the head and hands tend to move during each 
sentence, shifts in the trunk and lower limbs occur primarily at topic shifts. 
 

2.4 Nonverbal Tutorial Feedback 
One primary role of a tutor is to provide feedback on a student's actions. In 
addition to providing verbal feedback, an animated agent can also use 
nonverbal communication to influence the student. Nonverbal feedback 
can reinforce a verbal comment. For example, Steve shakes his head 
when telling students that they made an error. However, nonverbal 
feedback can also provide more varied degrees of feedback than verbal 
comments alone. For example, nonverbal feedback may often be 
preferable because it is less obtrusive than a verbal comment. Steve uses 
a simple nod of approval when students perform correct actions to 
reassure them without interrupting. Similarly, human tutors often display a 
look of concern or puzzlement to make a student think twice about their 



Appears in J. Cassell, J. Sullivan, and S. Prevost (eds.), 
Embodied Conversational Agents, MIT Press, 2000. 

  

5

actions, especially in cases where either they are unsure that the student 
has actually made a mistake or they do not want to interrupt with a verbal 
correction yet. Graesser and his colleagues even found that human tutors 
often respond to student errors with a positive, polite verbal comment 
accompanied by a puzzled expression; the tutor, out of politeness, avoids 
directly criticizing the student but still communicates disapproval by 
nonverbal means (Graesser et al. in press). 
 

2.5 Conversational Signals 
When people carry on face-to-face dialogues, they employ a wide variety 
of nonverbal signals to complement their utterances and regulate the 
conversation. While tutorial dialogue in most previous tutoring systems 
resembles Internet chat or a telephone conversation, animated agents 
allow us to more closely model the face-to-face interactions to which 
people are most accustomed. Some nonverbal signals help regulate the 
flow of conversation, and would be most valuable in tutoring systems that 
support speech recognition as well as speech output, such as Steve or the 
Circuit Fix-It Shop (Smith and Hipp 1994). This includes back-channel 
feedback, such as head nods to acknowledge understanding of a spoken 
utterance (Duncan 1974). It also includes the use of eye contact to 
regulate turn taking in mixed-initiative dialogue (Argyle and Cook 1976). 
Steve employs these types of conversational signals.  

Other nonverbal signals are closely tied to spoken utterances and 
could be used by any animated agent that produces speech output. For 
example, intonational pitch accents indicate the degree and type of 
salience of words and phrases in an utterance, including rhematic (i.e., 
new) elements of utterances and contrastive elements (Pierrehumbert and 
Hirschberg 1990); to further highlight such utterance elements, a pitch 
accent is often accompanied by a short movement of the eyebrows or a 
beat gesture (i.e., a short batonlike movement of the hands) (Ekman 
1979). Steve does not currently employ such nonverbal signals. However, 
Cassell and her colleagues have developed agents that do (Cassell et al. 
1999; Cassell et al. 1994), and we are working in that direction. Although 
people can clearly communicate in the absence of nonverbal signals (e.g., 
by telephone), communication and collaboration proceed most 
comfortably and smoothly when they are available.  
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2.6 Activities of Virtual Teammates 
Complex tasks often require the coordinated actions of multiple team 
members. Team tasks are ubiquitous in today’s society; for example, 
teamwork is critical in manufacturing, in an emergency room, and in 
rescue operations. To perform effectively as a team, members must 
master their individual roles and learn to coordinate actions with their 
teammates.  

Distributed virtual reality provides a promising vehicle for training 
teams; students, possibly at different locations, cohabit a virtual mock-up 
of their work environment, where they can practice together in realistic 
situations. In such training, animated agents can play two valuable roles: 
they can serve as instructors for individual students, and they can 
substitute for missing team members, allowing students to practice team 
tasks when some or all human instructors and teammates are unavailable. 
While verbal communication is often required for team coordination, the 
ability to track visually the activities of teammates is often indispensable. 
Although this chapter focuses on one-on-one interaction between Steve 
and a student, we have extended Steve to support team training, as 
described in an earlier paper (Rickel and Johnson 1999b). 
 

3 Example 
To illustrate Steve’s capabilities, let us suppose that Steve is 
demonstrating how to inspect a high-pressure air compressor aboard a 
ship. The student’s head-mounted display gives her a three-dimensional 
view of her shipboard surroundings, which include the compressor in front 
of her and Steve at her side. As she moves or turns her head, her view 
changes accordingly. Her head-mounted display is equipped with a 
microphone (to allow her to speak to Steve) and earphones (through 
which Steve speaks to her). 

After introducing the task, Steve begins the demonstration. “I will 
now check the oil level,” Steve says, and he leads her over to the dipstick. 
Steve looks down at the dipstick, points at it, looks back at the student, 
and says, “First, pull out the dipstick.” Steve pulls it out (fig. 1). Pointing at 
the level indicator, Steve says, “Now we can check the oil level on the 
dipstick. As you can see, the oil level is normal.” To finish the subtask, 
Steve says, “Next, insert the dipstick,” and he pushes it back in.  
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Figure 1: Steve pulling out a dipstick 

Continuing the demonstration, Steve says, “Make sure all the cutout 
valves are open.” Looking at the cutout valves, Steve sees that all of them 
are already open except one. Pointing to it, he says, “Open cutout valve 
three,” and he opens it. 

Next, Steve says, “I will now perform a functional test of the drain 
alarm light. First, check that the drain monitor is on.” Steve looks at the 
power light and back at the student. “As you can see, the power light is 
illuminated, so the monitor is on” (fig. 2). The student, realizing that she 
has seen this procedure before, says, “Let me finish.” Steve 
acknowledges that she can finish the task, and he shifts to monitoring her 
performance.  
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Figure 2: Steve describing a power light 
 

The student steps forward to the relevant part of the compressor 
but is suddenly unsure of what to do first. “What should I do?” she asks. 
Steve replies, “I suggest that you press the function test button.” The 
student asks, “Why?” Steve replies, “That action is relevant because we 
want the drain monitor in test mode.” The student, wondering why the 
drain monitor should be in test mode, asks, “Why?” again. Steve replies, 
“That goal is relevant because it will allow us to check the alarm light.” 
Finally, the student understands, but she is unsure which button is the 
function test button. “Show me how to do it,” she requests. Steve moves to 
the function test button and pushes it (fig. 3). The alarm light comes on, 
indicating to Steve and the student that it is functioning properly. Now the 
student recalls that she must extinguish the alarm light, but she pushes 
the wrong button, causing a different alarm light to illuminate. “No,” Steve 
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responds as he shakes his head. Flustered, she asks Steve, “What should 
I do next?” Steve replies, “I suggest that you press the reset button on the 
temperature monitor.” She presses the reset button to extinguish the 
second alarm light, causing Steve to nod in approval, and then she 
presses the correct button to extinguish the first alarm light. Steve looks at 
her and says, “That completes the task. Nice job.”  
 

Figure 3: Steve pressing a button 
 

4 Creating Virtual Worlds for People and Agents 
Before we can discuss Steve's architecture, we must introduce a software 
architecture for creating virtual worlds that people and agents can cohabit 
(fig. 4). With our colleagues from Lockheed Martin Corporation and the 
USC Behavioral Technologies Laboratory, we have designed and 
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implemented such an architecture (Johnson et al. 1998). For purposes of 
modularity and efficiency, the architecture consists of separate 
components running in parallel as separate processes, possibly on 
different machines. The components communicate by exchanging 
messages. Our architecture includes the following types of components. 
• Simulator: A simulator controls the behavior of the virtual world. Our 
current implementation uses the VIVIDS simulation engine (Munro et al. 
1997) developed at the USC Behavioral Technologies Laboratory. 
• Visual Interface: Each human participant has a visual interface 
component that allows him or her to view and manipulate the virtual world. 
Several hardware devices connect participants to this component: a head-
mounted display provides their view into the world, position sensors on 
their head and hands track their movements, and they interact with the 
world by “touching” virtual objects using a data glove. The visual interface 
component plays two primary roles. First, it receives messages from the 
other components (primarily the simulator) describing changes in the 
appearance of the world, and it outputs a three-dimensional graphical 
representation through each person's head-mounted display. Second, it 
informs the other components when each person interacts with objects. 
Our current implementation uses Lockheed Martin's Vista Viewer (Stiles, 
McCarthy, and Pontecorvo 1995) as the visual interface component. 
• Audio: Each human participant has an audio component. This 
component receives messages from the simulator describing the location 
and audible radius of various sounds, and it broadcasts appropriate 
sounds to the headphones on the person's head-mounted display. 
• Speech generation: Each human participant has a speech generation 
component that receives text messages from other components (primarily 
agents), converts the text to speech, and broadcasts the speech to the 
person's headphones. Our current implementation uses Entropic's 
TrueTalk text-to-speech product. 
• Speech recognition: Each human participant has a speech recognition 
component that receives speech signals via the person's microphone, 
recognizes the speech as a path through its grammar, and outputs a 
semantic token representing the speech to the other components. (Steve 
agents do not have any natural language understanding capabilities, so 
they have no need for the recognized sentence.) Our current 
implementation uses Entropic's Graphvite product. 
• Agent: Each Steve agent runs as a separate component. The remainder 
of the chapter focuses on the architecture of these agents and their 
capabilities.  
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Figure 4: An architecture for virtual worlds. Although the figure only shows 
components for one agent and one human, other agents and humans can 
be added simply by connecting them to the message dispatcher in the 
same way.  
 
The various components do not communicate with one another directly. 
Instead, all messages are sent to a central message dispatcher. Each 
component tells the dispatcher the types of messages in which it is 
interested. Then, when a message arrives, the dispatcher forwards it to all 
interested components. For example, each visual interface component 
registers interest in messages that specify changes in the appearance of 
the virtual world (e.g., a change in the color or location of an object). When 
the simulator sends such a message, the dispatcher broadcasts it to every 
visual interface component. This approach increases modularity, since 
one component need not know the interface to other components. It also 
increases extensibility, since new components can be added without 
affecting existing ones. It has been especially valuable in supporting team 
training, since it allows any number of students and agents to be 
connected to the virtual world. Our current implementation uses Sun’s 
ToolTalk as the message dispatcher. 
 

5 Steve’s Architecture 
Steve consists of three main modules: perception, cognition, and motor 
control (fig. 5). The perception module monitors messages from the 
message dispatcher and identifies events that are relevant to Steve, such 
as actions taken in the virtual world by people and agents and changes in 
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the state of the virtual world. Its main job is to provide a coherent view of 
the state of the virtual world to the cognition module. The cognition module 
interprets the input it receives from the perception module, chooses 
Steve’s next actions, and sends out high-level motor commands to control 
the agent's voice and body. The motor control module decomposes these 
motor commands into a sequence of lower-level commands that are sent 
to other components via the message dispatcher. In our current 
implementation, cognition runs as one process, and perception and motor 
control run as a separate, parallel process. This chapter will focus 
primarily on Steve’s cognition module; for details on the perception and 
motor control modules, see Rickel and Johnson (1999a). 
 

Figure 5: The three main modules in Steve and the types of information 
they send and receive 
 
 

The cognition module is organized into three main layers. The 
lowest layer is Soar (Laird, Newell, and Rosenbloom 1987; Newell 1990). 
Soar was designed as a general model of human cognition, so it provides 
a number of features that support the construction of intelligent agents. 



Appears in J. Cassell, J. Sullivan, and S. Prevost (eds.), 
Embodied Conversational Agents, MIT Press, 2000. 

  

13

Soar’s decision cycle is the feature most relevant to this chapter; we 
describe it below. 

The next layer provides a set of domain-independent capabilities to 
support task-oriented collaboration. Soar is a general cognitive 
architecture, but it does not provide built-in support for particular cognitive 
skills such as demonstration and conversation. Our main task in building 
Steve was to design a set of domain-independent capabilities such as 
these and layer them on top of the Soar architecture. 

The final layer of the cognition module provides Steve’s domain-
specific knowledge. To teach students how to perform procedural tasks in 
a particular domain, Steve needs a representation of the tasks. A course 
author must provide such knowledge to Steve. Given appropriate task 
knowledge for a particular domain, Steve uses his domain-independent 
capabilities to teach that knowledge to students. Our layered approach to 
Steve's cognition module allows Steve to be used in a variety of domains; 
each new domain requires only new task knowledge, without any 
modification of Steve's abilities as a teacher. 

The cognition module operates by looping continually through a 
decision cycle. During each decision cycle, it receives new input from the 
perception module, it executes the operator that was selected at the end 
of the previous decision cycle, and it selects the operator to apply during 
the next decision cycle. Each operator is represented by a set of 
production rules that implement one of Steve’s capabilities, such as 
answering a question or demonstrating an action. These serve as the 
building blocks for his behavior, and the process of operator selection 
serves as an arbitration mechanism for sequencing them. The timing of 
each decision cycle depends on the hardware on which Steve is running, 
and each decision cycle varies slightly in duration depending on Steve’s 
cognitive activities. Steve typically executes about five to ten decision 
cycles per second on our current hardware (an SGI Onyx). 

Low-level animation of Steve’s body runs as software that is linked 
into the Visual Interface software (Vista Viewer) rather than into Steve. 
Before each graphical frame is rendered (about 15 to 30 times per 
second), Vista calls the animation code to update Steve’s body position. 
The animation code is controlled by messages it receives from Steve’s 
motor control module. Because the animation code controls the dynamics 
of all body motions, the motor control module need only specify the type of 
motion it wants. The animation code currently supports locomotion 
(movement of the entire body from one location to another), facial 
movements (eyes, eyebrows, eyelids, and mouth), gaze (dynamic tracking 
of objects and people), head movements (nodding and shaking the head), 
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and arm and hand movements (including grasping, pressing, and 
pointing), all subject to motion limits. It generates all movements 
dynamically; there are no keyframes or canned animations. Movements 
involving different parts of the body can be performed simultaneously, and 
a new command to a body part interrupts any existing motion for that part. 
Steve’s motor control module isolates the details of how to control the 
animation code, allowing the cognition module to send higher-level motor 
commands that do not depend on those details. 
 

6 Task-oriented Collaboration 
Having discussed Steve’s architecture and its interface to the other 
software components that make up the virtual world, we now focus on the 
domain-independent layer of Steve’s cognition module, which provides his 
capabilities for task-oriented collaboration. First, we describe the actions 
that serve as the building blocks from which his dynamic behavior is 
constructed. Next, we discuss Steve’s representation of the task and 
dialogue context. Finally, we examine how Steve uses the current context 
to choose his next action. 
 

6.1 Behavioral Building Blocks 
The cognition module generates Steve’s communicative behavior by 
dynamically selecting his next action from a repertoire of behavioral 
primitives. To support the needs of task-oriented collaboration and exploit 
the roles for nonverbal communication outlined in Section 2, we currently 
generate Steve’s behavior from the following building blocks.  
• Speak: Steve can produce a verbal utterance directed at the student (or 
a teammate in team training). To make it clear to whom the utterance is 
directed, the motor control module automatically shifts Steve’s gaze to the 
hearer just prior to the utterance. (Task-related events can cause gaze to 
shift to something else before the utterance is complete.) To make it clear 
that Steve is speaking, the motor control module automatically maintains a 
“speaking face” (eyebrows slightly raised and mouth moving) throughout 
the utterance. Steve has a wide range of utterances, all generated from 
text templates, ranging from a simple “OK” or “no” to descriptions of 
domain actions and goals. A message from the speech synthesis 
component indicates to Steve’s perception module when the utterance is 
complete. 
• Move to an object: To guide the student to a new object, Steve can plan 
a shortest path from his current location and move along that path (Rickel 
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and Johnson 1999a). To guide the student’s attention, the motor control 
module automatically shifts Steve’s gaze to his next destination on each 
leg of the path. In contrast, to simply follow the student around (e.g., when 
monitoring the student’s activities), Steve shrinks and attaches himself to 
the corner of the student’s field of view, so that he can provide visual 
feedback on their actions.  
• Manipulate an object: To demonstrate domain task steps, Steve can 
manipulate objects in a variety of ways. Currently, this includes 
manipulations that can be done by grasping the object (e.g., moving, 
pulling, inserting, turning) or using his fingers (e.g., pressing a button, 
flipping a switch). To guide the student’s attention, the motor control 
module automatically shifts Steve’s gaze to the object just prior to the 
manipulation. State change messages from the simulator indicate to 
Steve’s perception module when the manipulation is complete (e.g., a 
button’s state attribute changing to “depressed”). 
• Visually check an object: Steve can also demonstrate domain task steps 
that simply require visually checking an object (e.g., checking the oil level 
on a dipstick or checking whether an indicator light is illuminated). This 
requires Steve to shift gaze to the object and make a mental note of the 
relevant property of that object.  
• Point at an object: To draw a student’s attention to an object, or connect 
a verbal referring expression to the object it denotes, Steve can point at 
the object. To further guide the student’s attention, the motor control 
module automatically shifts Steve’s gaze to the object just prior to pointing 
at it. 
• Give tutorial feedback: To provide tutorial feedback on a student’s action, 
Steve indicates a student error by shaking his head as he says “no,” and 
he indicates a correct action by simply looking at the student and nodding. 
As discussed earlier, the motivation for shaking the head is to complement 
and reinforce the verbal evaluation, and the motivation for the head nod is 
to provide the least obtrusive possible feedback to the student. 
• Offer turn: Since our goal is to make Steve’s demonstrations interactive, 
we allow students to interrupt with questions (currently just “What next?” 
and “Why?”) or to request to abort the task or finish it themselves. 
Although they can talk during Steve’s utterances or demonstrations, Steve 
explicitly offers the conversational turn to them after each speech act 
(which could be several sentences) or performance of a domain action. He 
does this by shifting his gaze to them and pausing one second. Not only 
does this give students convenient openings for interruptions, but it also 
helps to structure Steve’s presentations. (Prior to adding this feature, 
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users complained that Steve’s presentations were hard to follow because 
he never paused to take a breath.) 
• Listen to student: When the student is speaking, Steve can choose to 
quietly listen. This simply involves shifting gaze to the student to indicate 
attention. 
• Wait for someone: When Steve is waiting for someone to take an action 
(either the student or a teammate in a team training scenario), he can shift 
gaze to that person (or agent) to indicate his expectation. 
• Acknowledge an utterance: When a student or teammate says 
something to Steve, he can choose to explicitly acknowledge his 
understanding of their utterance by looking at them and nodding. The 
speech recognizer does not provide recognition of intermediate clauses, 
so Steve is currently limited to acknowledging understanding of entire 
utterances. 
• Drop hands: When Steve is not using his arms and hands, he can drop 
them back down to hang loosely at his sides. Although there is evidence 
that such a move can convey a conversational signal (i.e., end of turn) 
(Duncan 1974), Steve does not currently use this behavior for that 
purpose; it simply means he has nothing else to do with his hands (such 
as pointing or manipulating). 
• Attend to action: When someone other than Steve manipulates an object 
in his environment, Steve automatically shifts his gaze to the object to 
indicate his awareness. Unlike all the above behaviors, which are chosen 
deliberately by the cognition module, this behavior is a sort of knee-jerk 
reaction invoked directly by the perception module. Because an object 
manipulation is a very transient event, our design rationale was to react as 
quickly as possible. 
 

6.2 Representation of Context 
If Steve’s environment were predictable, his behavior could be carefully 
scripted to ensure coherence. However, our goal is to support dynamic 
environments where Steve is not in complete control. To make the training 
experience as interactive as possible, the student has the freedom to 
speak or act on the environment at any time. To expose the student to a 
wide range of situations he or she might face, the simulator will create 
unexpected circumstances such as equipment failures. Rather than script 
Steve for each possible training scenario, our approach has been to give 
him a more general model of tasks that allows him to adapt dynamically to 
many variations in the task context. Team training adds additional 
dynamics to Steve’s environment; the presence of other students and 
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autonomous agents makes the possibility of scripting his behavior 
impractical. 

The key to maintaining coherent behavior in a dynamic 
environment is to maintain a rich representation of context. The ability to 
react to unexpected events and handle interruptions is crucial for task-
oriented collaboration in virtual worlds, yet it threatens the coherence of 
the agent’s behavior. A good representation of context allows the agent to 
be responsive while maintaining its overall focus. For task-oriented 
collaboration, an agent must maintain two separate but complementary 
types of context: the task context and the dialogue context. 
 

6.2.1 Task Context 
The task context represents the state of the task on which the student and 
Steve are collaborating. It must specify which task goals are already 
satisfied and how the remaining task goals can be achieved.  

Steve is given knowledge of domain tasks represented as 
hierarchical plans. Each task consists of a set of steps, ordering 
constraints, and causal links. Each step is either a primitive action (e.g., 
press a button) or a composite action (i.e., itself a task). Composite 
actions give tasks a hierarchical structure. Each ordering constraint 
specifies that one step must be performed before another. These 
constraints define a partial order over the steps. Finally, the causal links 
specify the role of each step in the task. Each causal link specifies that 
one step achieves a goal that is a precondition for another step (or for 
completion of the task). This basic task representation has proven 
effective in a wide variety of research on task-oriented collaboration and 
generation of procedural instructions (Delin et al. 1994; Mellish and Evans 
1989; Young 1997). 

Steve represents the task context as an annotated task model for 
the current task on which he and the student are collaborating. When he 
and the student begin collaborating on a task, he creates the task model 
through simple top-down decomposition (Sacerdoti 1977). That is, starting 
with his representation for that task, he recursively expands each 
composite action with its task definition until he has a complete 
hierarchical model of the task. Then, on each subsequent decision cycle, 
he uses input from his perception module that specifies the current state 
of the virtual world to annotate the task model. 

While the task model provides general information about how to 
perform the task, the annotations specify how to complete it from the 
current state of the virtual world. Using the input from the perception 
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module, Steve marks each goal in the task model as currently satisfied or 
not. This includes the end goals of the task as well as all intermediate 
goals. 

Using this information about the state of the task goals, Steve uses 
a partial-order planning algorithm (Weld 1994) to determine which steps 
are relevant to completing the task (i.e., which subset of the task model 
constitutes his current plan), as described in Rickel and Johnson (1999a). 
This allows him to revise his plan dynamically when the state of the virtual 
world changes, perhaps unexpectedly. The planner runs as a set of 
background production rules (i.e., not requiring deliberate operator 
selection). Because the planning algorithm is linear in the size of the task 
model, it is predictably fast, preventing the planner from slowing down 
Steve’s decision cycle and threatening his responsiveness. 
 

6.2.2 Dialogue Context 
The dialogue context represents the state of the interaction between the 
student and Steve. It includes the following information: 
• Each decision cycle, the perception module tells the cognition module 
whether the student is currently speaking, based on messages from the 
speech recognition component.  
• Steve keeps track of whether he is currently speaking. When he outputs 
a speak command, he records his current speech act. When his utterance 
is complete, the speech synthesis component sends a message to Steve’s 
perception module, which informs his cognition module. 
• Steve keeps track of which objects are currently in the student’s field of 
view, using messages from the visual interface software. 
• He records who currently has the task initiative. When he has the task 
initiative, he teaches the student how to complete the task. When the 
student has the task initiative, Steve watches as the student performs the 
task, evaluating the student’s actions and answering her questions when 
she needs help. Students currently control the task initiative by asking 
Steve to demonstrate a task or asking to finish the task themselves. In the 
future, we plan to use the approach used in TOTS (Rickel 1988) to allow 
Steve to initiate shifts in task initiative based on a model of the student’s 
knowledge. 
• Steve keeps track of the steps he and the student have executed. For his 
own steps, he maintains an episodic memory that records the state of the 
world when each step was executed, so that he can explain later why he 
performed the step (Rickel and Johnson 1999a). Keeping track of prior 
steps also allows Steve to recognize when a step is being repeated, and it 
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lets him use cue phrases (Grosz and Sidner 1986) to indicate the relation 
between the previous step and the current one (Rickel and Johnson 
1999a). 
• When he answers a student question (currently just “What next?” or 
“Why?”), he records his answer in case the student asks a follow-up 
question (e.g., “Why?”). 
• To represent the attentional state of the collaboration, Steve uses a 
discourse focus stack (Grosz and Sidner 1986). Each element of the stack 
is a task step, either a primitive or composite action. Initially, the stack 
contains one element, the task on which Steve and the student are 
collaborating. When they begin collaborating on a new step, whether it is a 
step in the task definition of the current focus or an interruption (e.g., a 
step being executed out of its normal order), the step is pushed onto the 
focus stack. When the step currently in focus is completed, it is popped off 
the stack. This helps ensure a systematic, coherent execution of the task, 
and it allows Steve to recognize digressions and resume the prior 
demonstration when unexpected events require a temporary deviation 
from the usual order of task steps. 
• For the step currently in focus, Steve records the status of his 
collaboration with the student on that step (e.g., whether he proposed the 
step, whether he explained it, whether he or the student performed it, 
whether they discussed the results). 
• When the student makes a request, Steve records it until he responds. 
This is needed when Steve chooses to finish his current activity (e.g., 
utterance or demonstration) before responding. 
 

6.3 Controlling Steve’s Behavior 
Given Steve’s repertoire of behaviors and his representation of the current 
context, the cognition module must repeatedly choose his next action. His 
behavioral building blocks are implemented as Soar operators. Each 
decision cycle, the cognition module must choose to continue the current 
operator in the next decision cycle or select a new one. The 
representation of the current context gives it the information to make this 
decision. 

Soar provides architectural support for action selection. To program 
an agent in Soar, one writes three types of production rules: operator 
proposal rules suggest an operator for selection in the next decision cycle, 
operator comparison rules assert preferences among the proposed 
operators, and operator application rules execute an operator after it has 
been selected. At the end of each decision cycle, Soar considers the 
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proposed operators and the preferences among them, and it chooses one 
operator for application during the next decision cycle. 

Thus, the behavioral building blocks for Steve are implemented as 
operator application rules, and their sequencing comes from operator 
proposal and comparison rules. Since Steve typically executes five to ten 
decision cycles per second, he can be very responsive to the 
environment. 

Steve can choose his next action to fill one of three roles. First, he 
can respond to the student. This includes responding to a student’s 
request, giving them tutorial feedback on their action, or simply listening 
when they are talking. Second, Steve can choose for himself how to 
advance the collaborative dialogue. This includes things like suggesting 
the next task step, describing it, or demonstrating it in cases where the 
student did not explicitly request such help. Third, Steve can choose a 
turn-taking or grounding act (Traum and Hinkelman 1992) that helps 
regulate the dialogue between the student and himself without advancing 
the task. This includes offering the student the conversational turn or 
acknowledging understanding of an utterance with a head nod.  

While operator proposal rules may propose several such actions, 
operator comparison rules give these three types of actions different 
priorities. The highest priority is to respond to the student. If no such 
operators are proposed, the next priority is to perform any relevant 
conversational regulation action. However, if an opportunity for a 
conversational regulation action is missed due to a higher priority operator 
for responding to the student, it will not be deferred and displayed later. 
Only when neither of these types of operators is proposed will Steve take 
the initiative to advance the task collaboration, and he only does that when 
he has the task initiative. Traum proposed a similar priority scheme in his 
model of spoken task-oriented dialogue (Traum 1994). 

Because of their importance in conversation, grounding acts 
deserve special mention. Research has shown that listeners frequently 
provide some combination of verbal and nonverbal cues to indicate 
understanding or lack thereof (Clark and Schaefer 1989). The cue can be 
explicit, as with back-channel feedback (e.g., a brief “Mmm hmm” or head 
nod), or it can be implicit if the listener simply follows the speaker’s 
utterance with an appropriate response (e.g., an answer to a question). 
Steve uses the implicit approach (i.e., no separate grounding act) when 
responding to student requests and task actions. When possible, his 
response is chosen to indicate what he understood, in case of faulty 
speech recognition. For example, when he thinks the student just asked to 
finish the task, he responds with “OK, you finish”; if he misunderstood the 
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student’s utterance and simply responded with “OK,” the student could be 
confused when he subsequently watches the student and waits for the 
student’s next action.  

Steve uses an explicit grounding act in only two cases. First, he 
uses a head nod to acknowledge his understanding of an utterance when 
someone informs him of some condition, which only occurs during team 
tasks. In this case, the teammate may not watch his subsequent activity, 
so a clear acknowledgment of understanding is helpful. Since speech 
recognizers cannot indicate to whom an utterance is directed, the 
acknowledgment also indicates that the agent has determined from the 
current context that the speech was directed to him. Second, Steve asks 
the student to repeat an utterance when the speech recognizer cannot 
understand it. 

Some operator proposal productions trigger other operator 
proposals. When Steve proposes an operator whose execution would 
require a particular location for Steve (e.g., demonstrating a task step), 
that precondition appears on the structure for the proposed operator. If 
Steve is not currently at the location, another production rule will propose 
a higher priority operator for moving Steve to it. Similarly, an operator for 
an utterance whose focus is a particular object may, depending on 
context, be annotated with a deictic precondition. The deictic precondition 
will trigger a proposal rule for Steve to point at the object first. Our criteria 
for choosing when to accompany a verbal referring expression with 
locomotion or a deictic gesture are currently simple; before demonstrating 
an action on an object, Steve first moves to it, and then he points at it 
while describing what he is about to do. Work by Lester and his 
colleagues (Lester et al. 1999) offers more sophisticated criteria that could 
be incorporated easily into Steve. Finally, some operators (e.g., an action 
demonstration) have a precondition that requires the student to be looking 
at a particular object (e.g., to see the action). If the operator is proposed 
and the object is not in the student’s field of view, Steve will propose an 
operator to get their attention (e.g., by saying “Look over here!”).  

Since task steps may be only partially ordered, there may be 
multiple steps that could be performed next. From the standpoint of 
completing the task, any of them could be chosen. However, research has 
shown that collaborators shift focus from one task step or subtask to 
another only with good reason (Grosz and Sidner 1986). To maximize the 
coherence of his actions, Steve uses the discourse focus stack. As long 
as the current task step or subtask in focus is still appropriate, all his 
proposed operators will relate to it. When Steve has the task initiative, and 
several task steps could be performed next, he chooses one and pushes it 
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onto the focus stack before performing any operators for one of the steps 
(e.g., move, point, explain, demonstrate). This does not prevent Steve 
from pushing a new step or subtask onto the stack to interrupt the current 
one (e.g., to handle an unexpected emergency) or from popping the 
current focus if it suddenly becomes irrelevant; he handles such cases by 
explaining the unexpected (but required) focus shift to the student. 
However, the focus stack prevents Steve from shifting focus in cases 
where it is not required. 

The sequence of operators that Steve applies when teaching the 
student a new task step (e.g., describe step, perform step, explain result) 
depends on the type of action the step requires. Steve has a class 
hierarchy of action types (e.g., manipulate an object, move an object, 
check a condition), and each type of action is associated with a suite of 
communicative acts. Each suite is essentially a finite-state machine 
represented as Soar productions. Each node represents an operator, such 
as describing the step or performing it, and arcs represent the conditions 
for terminating one operator and beginning another. Each action type in 
the class hierarchy inherits from the action types above it, so the 
communicative suite for an action type can be represented compactly as 
the deviations from its parent’s suite. Currently, all action types inherit their 
communicative suite from one of a few general action types. However, our 
approach allows us to extend Steve’s behavior if these suites prove 
inadequate for new types of actions encountered in new domains. The 
communicative suites need only specify the next contribution to the 
dialogue needed to advance the task collaboration; operators for 
responding to the student, moving and pointing, and regulating the 
conversation (i.e., turn-taking and grounding acts) are proposed 
independently as described above. 

Steve’s communicative suites are similar to the schemata approach 
to explanation generation pioneered by McKeown (1985). In contrast, 
André and her colleagues employ a top-down discourse planning 
approach to generating the communicative behavior of their animated 
agent, and they compile the resulting plans into finite-state machines for 
efficient execution (André, Rist, and Müller 1999). The trade-offs between 
these two approaches are well known (Moore 1995). 

Many of Steve’s behavioral building blocks take several decision 
cycles to execute, and some (speech and locomotion) can take many 
decision cycles. During this period, Steve’s perception and cognition 
modules remain active, monitoring the state of the virtual world and 
deciding whether to react. In principle, any of the building blocks could be 
aborted at any time. In practice, Steve does not abort most actions. A 
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notable exception is that Steve halts his demonstration of a task 
immediately, even in midsentence, when students interrupt and ask to 
abort the task or to finish it themselves. Steve’s reluctance to abort his 
actions rarely seems unusual, since, for example, people often finish what 
they are saying before acknowledging an interruption. Nonetheless, our 
current work is focusing on cases where Steve should be more responsive 
to interruptions. 
 

7 Conclusions and Future Work 
We have tested Steve on a variety of naval operating procedures. He can 
perform tasks on several of the consoles that are used to control the gas 
turbine engines that propel naval ships, he can check and manipulate 
some of the valves that surround these engines, and he can perform a 
handful of procedures on the high-pressure air compressors that are part 
of these engines. A student in the USC School of Education recently 
completed an evaluation of users interacting with Steve in a variety of 
circumstances. The student is currently analyzing the data and formulating 
conclusions, which will appear in his dissertation (Kroetz forthcoming). 

Our work has focused more on multimodal behavior generation 
than multimodal input. To model face-to-face communication, we must 
extend the range of nonverbal communicative acts that students can use. 
To handle multimodal input in virtual reality, the techniques of Billinghurst 
and Savage (1996) neatly complement Steve's current capabilities. Their 
agent, which is designed to train medical students to perform sinus 
surgery, combines natural language understanding and simple gesture 
recognition. The work of Thórisson and Cassell on the Gandalf agent 
(Cassell and Thórisson 1999; Thórisson 1996) is even more ambitious; 
people talking with Gandalf wear a suit that tracks their upper body 
movement, an eye tracker that tracks their gaze, and a microphone that 
allows Gandalf to hear their words and intonation. More recent work by 
Cassell and her colleagues on their Rea agent is exploring the use of a 
vision system for tracking the user’s nonverbal communication (Cassell et 
al. 1999). Although Gandalf and Rea were not developed for conversation 
in virtual reality, many of the techniques used for multimodal input apply.  

Our work on Steve complements the long line of research on verbal 
task-oriented dialogues in the computational linguistics community. Steve 
currently has no natural language understanding capabilities; he can only 
understand phrases that we add to the grammar for the speech 
recognition program. Steve's natural language generation capabilities are 
also simple; all of Steve's utterances are generated from text templates, 
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although more sophisticated methods could be added without affecting 
other aspects of Steve’s behavior. We are particularly interested in 
integrating Steve with recent work on spoken dialogue systems. For 
example, the TRAINS system (Allen et al. 1996; Ferguson, Allen, and 
Miller 1996) supports a robust spoken dialogue between a computer agent 
and a person working together on a task. However, their agent has no 
animated form and does not cohabit a virtual world with users. Because 
TRAINS and Steve carry on similar types of dialogues with users, yet 
focus on different aspects of such conversations, a combination of the two 
systems seems promising. 

Our work also complements research on sophisticated control of 
human figures (Badler, Phillips, and Webber 1993). That research targets 
more generality in human figure motion. Our human figure control is 
efficient and predictable, and it results in smooth animation. However, it 
does not provide sophisticated object manipulation (Douville, Levison, and 
Badler 1996), and it would not suffice for movements such as reaching 
around objects or through tight spaces. Our architecture is carefully 
designed so that a new body, along with its associated control code, can 
be integrated easily into Steve; a well-defined API separates Steve’s 
control over his body from the detailed motion control code. 

Steve illustrates the enormous potential for face-to-face, task-
oriented collaboration between students and synthetic agents in virtual 
environments. Although verbal exchanges may be sufficient for some 
tasks, we expect that many domains will benefit from an agent that can 
additionally use gestures, gaze, facial expressions, and locomotion. 
Although Steve has only been tested on a virtual shipboard environment 
for naval training, he can be used for other domains when given only a 
description of the domain tasks and minimal knowledge of the spatial 
environment; none of the capabilities described in this chapter are specific 
to our naval domain. Moreover, Steve’s architecture is designed to 
accommodate advances in related research areas, such as natural 
language processing and human figure control. This makes Steve an 
extensible foundation for further research on task-oriented collaboration in 
virtual worlds. 
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