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Abstract 
We want to build robots capable of rich social interactions with humans, including 
natural communication and cooperation. This work explores how imitation as a social 
learning and teaching process may be applied to building socially intelligent robots, and 
summarizes our progress toward building a robot capable of learning how to imitate 
facial expressions from simple imitative games played with a human, using biologically 
inspired mechanisms. Our approach is heavily influenced by the ways human infants 
learn to communicate with their caregivers and understand the actions of others in 
intentional terms. Among the key ideas that we draw from work on the development of 
human social intelligence, the most crucial is the hypothesis that in human infants, 
imitative interactions, starting with facial mimicry, are a significant stepping-stone in 
developing appropriate social behavior, learning to predict other’s actions, and 
ultimately, understanding the intensions of others.  
 
1 Introduction  
 
Humans (and many other animals), display a remarkably flexible and rich array of social 
competencies, demonstrating the ability to interpret, predict and react appropriately to the 
behavior of others, and to engage others in a variety of complex social interactions. 
Developing systems that have these same sorts of social abilities is a critical step in 
designing robots, animated characters, and other computer agents, who appear intelligent 
and capable in their interactions with humans (and each other), who are able to cooperate 
with people as capable partners, and who are intuitive and engaging for humans to 
interact with. 
 
1.1 Socially Intelligent Robots 
 
Some of the most exciting new applications for robots require that the robot cooperate 
with a human as a capable and socially savvy partner. For instance, robots are being 
developed to provide the elderly with assistance in the home. Such a robot should be 
persuasive in ways that are sensitive to the person, such as helping to remind them when 
to take medication, without being annoying or upsetting.  In other applications, robots are 
being developed to serve as members of human-robot teams---such as NASA’s humanoid 
robot, Robonaut (Ambrose et. al. 2003). This robot is envisioned to serve as an 



astronaut’s assistant to help its human counterparts maintain the space station or explore 
distant planets. To provide a human teammate with the right kinds of assistance at the 
right time, a robot partner must not only recognize what the person is doing (i.e., his 
observable actions) but also understand the intentions or goals being enacted. This style 
of human-robot cooperation strongly motivates the development of robots that can infer 
and reason about the mental states of others within the context of the interaction they 
share.  
 
In general, robots that interact with people need to respond with social appropriateness, 
and they must be easy for the average person to use and relate to. They must also be able 
to quickly learn new skills and how to perform new tasks from human instruction and 
demonstration. Ideally, programming such a robot with new capabilities would be as easy 
as showing it what to do. Finally, to cooperate with humans as capable partners robots 
need to understand our intentions and goals so that they can provide us with well-timed, 
relevant assistance.  Yet so many current technologies (animated agents, computers, etc.) 
interact with us in a manner characteristic of socially impaired people. In the best cases 
they know what to do, but often lack the social intelligence to do it in a socially 
appropriate manner. As a result, they frustrate us and we quickly dismiss them even 
though they can be useful.   
 
Ideally, in the future, robots and other interactive technologies will be able to 
communicate with us, learn from us, and cooperate with us in natural human terms. This 
requires that the robot be socially intelligent in a human-like way (Breazeal 2002).  Given 
that many exciting future applications for robots place them in long-term relationships 
with people (see Fong et al., 2002 for a review), we will need to address issues of social 
competence in order for people to accept robots into their daily lives.  
 
1.2 Human-Style Social Interaction 
 
In order for robots to display social competence in their interactions with humans, they 
should have human-like social abilities. Human-style social interaction is characterized 
by certain critical features. First, humans expect to share control of the interactive 
situation with social partners (Bullowa, 1979). People rely on a variety of social 
mechanisms to share control with each other, such as turn taking and shared attention. As 
a consequence, social exchange between people is mutually regulated--- as the 
interaction unfolds, each participant’s behavior responds and adapts to that of the other. 
 
This dynamic is enriched by the manner in which humans can predict and socially 
influence the behavior of others through communicative acts. Much of this predictive 
power relies on each party being cooperative, open to communication, and subject to 
social norms.  
 
Second, in a human-style social exchange, it is crucial for each participant to treat the 
other as a conspecific --- viewing the other as being “like me”. Perceiving similarities 
between self and other is an important part of the ability to take the role or perspective of 
another, allowing people to relate to and to empathize with their social partners. This sort 



of perspective shift may help us to predict and explain other’s emotions, behaviors and 
mental states, and to formulate appropriate responses based on this understanding. It 
enables each participant to infer the intent or goal behind the actions of the other --- an 
important skill for enabling richly cooperative behavior. In short, adult human-style 
communication entails each participant having a mechanism for predicting and 
interpreting other’s actions, emotions and other mental states, frequently referred to as a 
theory of mind (ToM) (Premack and Woodruff, 1978). 
 
1.3 Bootstrapping Social Competence 
 
As robot designers, it is possible to gain valuable insights into how social and 
communicative competencies might be acquired by looking to the field of cognitive 
development. An increasing amount of evidence suggests that the ability to learn by 
watching others, and in particular, the ability to imitate, could be crucial precursors to the 
development of appropriate social behavior, and ultimately the ability to reason about the 
thoughts, intents, beliefs, and desires of others (Meltzoff and Gopnik 1993, Meltzoff 
1996, Meltzoff and Moore 1997). For instance, Meltzoff (1996) hypothesizes that that 
human infant’s ability to translate the perception of another’s action into the production 
of their own action provides a basis for learning about self-other similarities, and for 
learning the connection between behaviors and the mental states producing them. Such 
theories could provide a foothold for ultimately endowing machines with human-style 
social skills and understanding.  
 
1.4  Roadmap 
 
This paper presents our biologically inspired implementation of mimicry of human facial 
expressions as a first step towards adding a variety of imitative and social learning 
abilities to our existing cognitive architecture, and towards creating a socially intelligent 
robot. We begin by providing an overview of the many different roles that imitation plays 
in human social growth. We then briefly discuss prior work done on creating imitative 
robots (and other imitative systems), contrasting our approach, and the problem we are 
trying to address, with the approaches previously taken. Next, we present Meltzoff’s 
model of the mechanisms of infant imitation, from which we have drawn inspiration for 
our robotic implementation. Finally, we will present our computational model of facial 
mimicry for a robot, and discuss some of the extensions and future work we would like to 
develop from this initial step. We conclude with a brief summary of our work, and what 
we feel are the most important lessons designers of socially intelligent systems can draw 
from the cognitive literature on imitation. 
 
2 Imitation and Social Growth  
 
We begin our discussion of imitation with a look at the wide variety of roles imitation is 
thought to play in human social development. While it was once thought that the ability 
to imitate arose relatively late in children’s cognitive development, it is now clear that 
imitative behavior is present in infants from very early on, with some simple imitative 
abilities being available to the infant from birth (Meltzoff and Gopnik, 1993). This has 



caused a somewhat radical reformulation of the role of imitation in the development of a 
variety of human social competencies. Among other roles, early infant imitation is now 
hypothesized to contribute to the discovery of structural and behavioral similarities 
between self and other, and to the development of appropriate turn-taking behavior 
(Meltzoff and Gopnik, 1993; Meltzoff, 1996). Eventually, children’s ability to learn via 
imitation becomes a very powerful and flexible form of social learning. Indeed, through 
imitative exchanges, infants learn a wide variety of skills, customs, and behaviors of their 
culture. Furthermore, beyond learning skills and customs, imitation also plays an 
important role in helping infants explore and learn about themselves and others as social 
beings (Meltzoff and Gopnik, 1993). While it was previously thought that relatively 
advanced social knowledge, or even a well-developed theory of mind, was necessary to 
bootstrap the ability to imitate, evidence of early imitation has led some researchers to 
believe it is exactly the reverse: the ability to imitate may bootstrap the development of 
social competence and ToM. Whereas Piaget posed that infants come to “know” objects 
by acting on them, Meltzoff poses that infants use imitation to “know” people (Meltzoff 
& Moore, 1997).  
 
2.1 Facets of Infant Imitation 
 
Human infants are imitative generalists---they imitate a wide variety of acts in diverse 
scenarios including facial postures, vocalizations, gestures, object related actions, and 
more. Meltzoff has demonstrated that infants as young as 42 minutes old are capable of 
mimicking facial expressions, and their ability to imitate develops quickly--- infants as 
young as 6 weeks can imitate target acts witnessed 24 hours prior to the infant’s attempt 
at reproducing the same act (Meltzoff, 1996). 
 
Infants imitate their caregivers in the form of imitative accommodation, a process that 
becomes increasingly more deliberate after 5 months of age (Trevarthen 1979).  Imitative 
accommodation is not passive incorporation of “new” experiences. Instead, it is a 
remodeling and integration of components already in the infant’s repertoire of 
spontaneous expression. Even by 1 month of age, infants show signs of searching for the 
right effect when imitating tongue protrusions or vocalizations, making repeated 
responses with variation. This self-correcting is not a random process, but appears to be a 
gradual and orderly refinement of the previous act to more closely match the target. This 
sort of accommodation helps the infant pick up new variants of expressions while in 
collaboration with adults. It also suggests that infant imitation is goal-directed (Meltzoff 
and Moore, 1997), where the goal is a particular motor end-state, and provides a criterion 
for successful match and for guiding the sequence of corrections.  
 
Finally, infant facial imitation is a cross-modal process. In order to successfully imitate 
an adult’s expression, the infant must be able to convert the expression he perceives 
visually to a body configuration he can perceive only through motor commands and 
proprioceptive feedback. That is, in order for an infant to successfully mimic a facial 
expression, he must be able to in some way compare face-as-seen and face-as-felt. The 
cross-modal nature of infant imitation may be a critical part of its contribution to human 
social development, and it is a point we will return to in later sections. 



 
2.2 Imitative Exchanges  
 
Interpersonal games between infants and their caregivers lay the foundation for learning 
communication and language skills. For the pre-linguistic infant, these imitative 
encounters embody a shared and bi-directional exchange that captures the essence of 
communication at a nonverbal level. They set up a consistent interaction between infant 
and adult with conventionalized variations about a theme that introduce variety and 
variability in a principled way.  
 
For instance, during imitative exchanges, both the caregiver and the infant adjust their 
response to the other by mirroring the other’s behavior. According to Meltzoff (1996), 
“human parents are prolific imitators of their young infants.” Caregivers continually 
shadow and mirror their infant’s animated movements, facial expressions, and 
vocalizations. However, when a caregiver imitates their baby, it is much more than a 
strict mirroring of him. According to Kaye (1979), an important aspect of caregiver 
imitation is that it is rarely a perfect match to what a young infant is doing. The 
caregiver’s behavior always has a direction with respect to the infant’s, often “pulling” 
the infant from his current state in the direction of her own agenda for him. In short, the 
caregiver uses imitative responses to guide and shape what the infant learns. 
 
In turn, infants seem to recognize when their behavior has been matched. Specifically, as 
argued in Melzoff & Moore (1997), they seem to recognize both temporal contingency 
(i.e., when the infant performs action x, the adult performs action y, where x and y differ 
in form), as well as structural congruence (i.e., when x and y have the same form). When 
matched, infants often respond by smiling and visually attending to the caregiver for 
longer periods of time. Having found the adults’ imitative response to be of interest, the 
infant learns how to “make” the adult perform that behavior at will, often by performing a 
similar movement. For instance, during an imitative game, an infant may learn that 
waving his arms evokes flurries of arm movements from his caregiver. This style of 
imitative game allows the infant to share in the anticipation of some simple and 
predictive sequences of events that are under his own voluntary control. This in turn 
gives the infant even finer control over adults’ behavior, so that he can gain further 
information and more models of motor and communication skills. Meltzoff (1996) posits 
that infants are in fact intrinsically motivated to imitate their conspecifics, and that the act 
of successful imitation is its own reward. 
 
2.3 Social Identification 
 
Human infants preferentially attend to adults whose actions are contingent on their own, 
and especially to adults who are imitating them (Meltzoff and Gopnik, 1993; Meltzoff, 
1996). Infants may be able to use imitative interactions to help them selectively attend to 
those adults who are most likely to be helpful and enthusiastic teachers, by choosing 
people who have imitated them in the past (and therefore have a demonstrated history of 
paying attention to the infant). 
 



Another social function of early imitation may be to confirm the identity of social 
partners (Meltzoff & Gopnik, 1993). Here, motor imitation and the behavioral 
reenactment of the actions of adults is a primitive means for infants to query whether the 
person before them is the same person previously encountered. During these social 
encounters, the infant tries to identify the person and resume the sorts of games played 
with that person before. Recreating actions he has imitated previously may also be a 
primitive way in which the infant can communicate to the adult that he has recognized 
them. 
 
2.4 Discovery Procedures for Understanding Persons 
 
Meltzoff and Moore posit that infants’ earliest “like-me” experiences are grounded in the 
movement of their own bodies and how these movements match those of the adult 
(Meltzoff and Moore, 1997). When adults imitate infants, selectively mirroring aspects of 
the infant’s behavior back at him, the infant recognizes the adults’ behavior as matching 
their own. In this simple sense, the infant can begin to perceive the adult as being “like-
me.” Hence, reciprocal imitation games allow the infant to explore, consolidate, and 
elaborate knowledge about the self and other, and the fundamental identity between the 
two. Meltzoff argues that infants may come to see other people as purposive beings 
because they are perceived to be “like-me”, and engage in reciprocal imitation.  
 
In a more general sense, children’s imitation serves as a sort of discovery procedure for 
understanding persons. Meltzoff and Moore (1997) outlines how the imitative abilities of 
infants develop over time, and how this in turn promotes further growth of social 
cognition. Meltzoff posits that newborns come into the world able to imitate organ 
positions and relationships, often referred to as body-mappings (e.g., adult tongue 
protrusion is imitated with infant tongue protrusion). Hence, the neonate interprets adult 
behavior in terms of the body-mapping relations they exhibit. In a few weeks, however, 
infants come to interpret adult behavior in terms of actions instead of just end states. Here 
the infant is able not only to imitate the end configuration, but also imitate the manner in 
which the end state is achieved. For instance, at six weeks infants can imitate the speed 
and amplitude with which an adult model opens and closes her mouth. 
 
Another major developmental step involves the progression from matching acts to 
matching relationships. By the first year, infants not only recognize when an adult is 
imitating them, they also test the degree to which they are being mirrored. They do this 
by abruptly changing their actions while attentively watching to see if the adult continues 
to follow (Meltzoff, 1996). Instead of interpreting these interpersonal interactions in 
terms of individual behaviors, the one year old sees them in terms of overall relations 
between entities --- that the adult is doing “the same behavior I do.” At this point, the 
infant is treating and responding strongly to the adult as a conspecific. 
 
 
 
 
 



3  Towards a Theory of Mind 
 
The previous section provided a review of the variety of roles infant imitation may play 
in the development of human social intelligence, and the ways in which imitative 
interactions unfold between infants and caregivers. However, in order to use imitation to 
bootstrap robots’ social capabilities, we need to know how the capacity to imitate may 
contribute to developing the mechanisms behind specific social competencies. At the 
crux of imitation’s role in social development is the connection it creates between seeing 
and doing. Imitation requires using a perceived action to produce a corresponding action, 
coupling movement perception and production. In the following section we will discuss 
how this and other features of imitation allow it to contribute to the development of social 
intelligence, focusing particularly on how the ability to imitate could help provide 
precursors to theory of mind.  
 
3.1 Simulation Theory 
 
In order to look at the role of imitation in the development of ToM we must first provide 
a brief introduction to Simulation Theory. Simulation Theory (ST) is one of the dominant 
hypotheses about the cognitive mechanisms behind human ToM (Davies and Stone 1995, 
Gordon 1986), and can perhaps best be summarized by the cliché “to know a man is to 
walk a mile in his shoes”. ST posits that by simulating another person’s actions, and the 
stimuli they are experiencing, on our own behavioral and stimulus processing 
mechanisms, humans can make predictions about the behaviors, and even the mental 
states, of those around us, based on the mental states and behaviors we would possess in 
their situation. By thinking “as if” we were the other person, we can use our own systems 
of action and goal selection, as well as emotional response, to try to understand what is 
going on in the heads of others. Simulation Theory is appealing because it suggests that 
instead of requiring a separate mechanism for simulating other persons, we can make 
predictions about others by using our own cognitive mechanisms to recreate how we 
would feel and act in their situation, allowing us some insight into their emotions and 
even behaviors and goals.  
 
Meltzoff proposes that the way in which infants learn to simulate others is through 
imitative interactions. There are a number of ways in which imitation could help 
bootstrap a Simulation Theory-type ToM. To begin with, imitating another’s expression 
or movement is a literal simulation of their behavior. By physically copying what the 
adult is doing, the infant must, in a primitive sense, generate many of the same mental 
phenomena the adult is experiencing, such as the motor plans for the movement. Meltzoff 
notes that to the extent that a motor plan can be considered a low-level intention, 
imitation provides the opportunity to begin learning connections between perceived 
behaviors and the intentions that produce them. Additionally, facial imitation and other 
cross-modal imitation require the infant to compare the seen movements of the adult to 
his own felt movements, and as such provide an opportunity to begin learning the 
relationship between the visual perception of an action, and the sensation of that action.  
 



More generally, in order to successfully imitate and be imitated, the infant must be able 
to recognize structural congruence between himself and the adult model. That is, the 
infant must notice when his body is “like” that of the caregiver, or when the caregiver’s 
body is “like” his own.  Simulation Theory rests on the assumption that the other is 
enough “like me” that he can be simulated using my own machinery. The initial “like 
me” experiences provided by imitative exchanges could lay the foundation for learning 
about additional behavioral and mental similarities between self and other.  
 
Imitative interactions also provide the rudimentary beginnings of a mental representation 
of the adult model. Infants often continue their goal-directed search for a particular 
expression even after the adult has moved on to other behaviors, and, as mentioned 
earlier, infants 6-weeks and older demonstrate deferred imitation of acts they witnessed 
more than 24 hours previously. Both these types of imitation require the infant to have 
some sort of representation of an expression or movement that is no longer directly 
before them, potentially creating a first step towards a more elaborate set long lasting 
knowledge and beliefs about the other’s behavior. 
 
Emotional empathy is one of the earliest social competencies imitation could facilitate. 
Experiments have shown that producing a facial expression generally associated with a 
particular emotion is sufficient for eliciting that emotion (Strack, Martin and Stepper 
1988), so simply mimicking other’s facial expressions could cause the infant to feel what 
the other is feeling, allowing them to learn how to interpret emotional states from facial 
expressions and body language. 
 
Finally and critically, if the perception-production coupling of imitation was realized by 
having both tasks carried out by the same mechanism, this could make a whole host of 
simple mind-reading tasks easier to accomplish. We will provide some evidence for just 
this sort of mechanism in the next section, and discuss some of the advantages it could 
provide. 
 
3.2 Neural Underpinnings of Simulation Theory 
 
A relatively recently discovered class of neurons, labeled mirror neurons, has been 
proposed as a possible neurological mechanism underlying both imitative abilities and 
Simulation Theory-type prediction of other’s behaviors and mental states (Williams et al. 
2003, Gallese and Goldman 1998). Within primates and other animals, these neurons 
show similar activity both when a creature observes a goal-directed action of another 
(such as grasping an object), and when the creature carries out that same action. This 
firing pattern has led researchers to hypothesize that these neurons may play an important 
role in the mechanisms used by humans, and other animals, to relate their own actions to 
the actions of others.    
 
The existence of these neurons provides support for the idea that a part of the mechanism 
for the production of movements may be used in the mechanism for perceiving and 
classifying these same movements.  This idea has significant implications for how 
imitation tasks are performed.  If a mirror neuron-like structure exists, imitating a 



movement could be as easy as reactivating the appropriate motor-pattern that was 
triggered by watching it being performed. More importantly, mirror neurons are seen as 
part of a possible neural mechanism for ST because, by activating the same neural areas 
while perceiving an action as while carrying it out, it may not only be possible but 
necessary to recreate additional mental states frequently associated with that action.  
Finally, a mirror neuron-like structure could be an important building block in a 
mechanism for making predictions about someone else’s intentions and beliefs by first 
locating the perceived action within the person (or other creature’s) own action system, 
and then identifying the beliefs or intentions the person typically possessed while 
carrying out that action and attributing them to the other.   
 
In short, there are a variety of ways in which having the ability to imitate others, and the 
mechanisms and structures that ability entails, could help an infant (or a robot) begin to 
interpret and make predictions about other’s behavior. In the following section we will 
review some of the work that has been done on developing imitative robots in the past, 
and introduce our approach to creating socially competent robots in the future, using a 
biologically-inspired imitation architecture as an important tool in this process.  
 
4 Robots that Imitate People 
 
As mentioned in the introduction, many future robotic applications will require robots to 
display a high level of social competence, and to be easy and intuitive for humans to 
communicate and interact with.  In the following sections we review previous research 
that has used the ability to imitate towards creating more “user-friendly” robots. This 
work generally falls into two broad categories: Using imitation to allow the robot to learn 
communicative skills, and using imitation to teach the robot new motor capabilities and 
actions. However, neither of these approaches takes advantage of imitation’s potential 
role in developing a Simulation Theory-type ToM. Based on the research reviewed in 
sections 2 and 3, we present an alternative approach to imitative robots: using imitation 
as a tool for bootstrapping social intelligence and developing precursors to a theory of 
mind. 
 
4.1 Communicative Skills 
 
Imitation-based techniques have previously been applied to teaching robots social or 
communicative skills, such as learning inter-personal communication protocols between 
similar robots, between robots with similar morphology but which differ in scale (Billard 
& Dautenhahn 1998), and with a human instructor (Billard et al. 1998; Roy 1999). This 
work can be largely categorized as learning an association between symbols  (e.g., 
sequences of musical tones, key strokes, or simple gestures) and motor reflexes, in order 
to acquire a proto-language. Other approaches have looked at expressive imitation 
involving head gestures (Demiris & Hayes 1996; Demiris et al. 1997; Scassellati 1998) 
where the robot mirrors the display of the model. Shared attention, the ability to attend to 
the demonstrator’s object of attention, has been explored as a means for a robot to 
determine critical task elements, and also as a foundational skill for ToM in robots 
(Scassellati 1998; Scassellati 2000).  To date, however, the use of imitation-based 



mechanisms to bootstrap the understanding or communication of intentions and mental 
states---a critical step for human communication ---has not been explored. 
 
4.2 Motor Skills 
 
Imitation has traditionally been seen as an easy mechanism for “programming” whole 
actions into a robot through demonstration. Schaal (1999) nicely summarizes the goals of 
much current research on imitative robots when he notes that “from the viewpoint of 
motor learning, a teacher’s demonstration as the starting point of one’s own learning can 
significantly speed up the learning process: imitation drastically reduces the size of the 
state-action space that needs to be explored”. A variety of imitative robots have been 
developed, capable of learning specific tasks such as pole-balancing (Schaal 1997), and 
peg insertion (Hoveland, G.E. 1996) as well as imitating generalized movement types, 
such as dancing or aerobics (Mataric 2002).  Some of this work has looked to the 
literature on infant imitation and mirror neurons for inspiration regarding how to learn the 
mapping from the perceived movement of a human to the robot’s own performance of the 
same action (for example, see Schaal 1999 and Demiris and Hayes 2002).  
 
In general, this work has emphasized the creation of systems able to mimic the particular 
form of individual actions, and a focus on the performance of the robot, rather than on the 
overall imitative interaction.  Further, it has taken relatively little advantage of other 
aspects of infant imitation research, especially with regard to the possible relationship 
between mirror neurons and Simulation Theory (ST), and between infant imitation and 
Theory of Mind (ToM). As a result, the robot must be programmed with a particular goal 
and the robot can only learn skills to achieve that known goal. The ability for a robot to 
appreciate the goal being enacted by another will be a critical step for building robots that 
can learn new goals as well. 
 
4.4 Learning from Others, About Others: Another Approach to Imitation 
 
While we are extremely interested in using social learning mechanisms to help our 
animated and robotic characters learn new skills, in light of the cognitive research 
summarized in sections 2 and 3, perhaps the most important role that imitation will play 
in our robot is in helping it learn about others around it. Approaching imitation as a 
mechanism for developing social intelligence, rather than (or in a addition to) viewing it 
as a way to quickly teach a robot new skills, may help bootstrap our system’s ability to 
gather important social knowledge.  Approaching imitation as a social process also 
allows us to explore the learning possibilities of the imitative interaction, such as 
attending to caretaker cues, and learning both from imitating and from being imitated. 
Finally, we believe that using imitation to develop social understanding will contribute to 
state-action space discovery, by providing our characters with an improved ability to 
identify other’s goals. This will help them to not only communicate more effectively with 
humans, but also to learn from and cooperate with them. 
 
Much as infants’ earliest social interactions involve imitating facial expressions, our first 
step towards creating a socially capable robot is an implementation of facial mimicry. In 



the next section we present Meltzoff and Moore’s Active Intermodal Mapping Hypothesis 
(AIM), a model of infant imitation that we have used as the framework for our imitation 
architecture.  
 
5 The Active Intermodal Mapping Hypothesis 
 
As mentioned in section 3, in order for an infant (or a robot) to imitate it must be able to 
translate between seeing and doing. Specifically, to solve the facial imitation task the 
infant must be able to: 
 

• Locate and recognize the facial features of a demonstrator  
• Find the correspondence between the perceived features and its own 
• Identify a desired expression from this correspondence 
• Move his features into the desired configuration 
• Use the perceived configuration to judge his success  

 
In the case of facial imitation these steps must be accomplished cross-modally, since the 
infant perceives the adult’s face visually, but perceives his own face only through motor 
commands and proprioceptive feedback. Meltzoff and Moore (1997) proposed a 
descriptive model for how an infant might accomplish these tasks, known as the Active 
Intermodal Mapping Hypothesis (AIM), a schematic of which is presented in Figure 1.  
In general, the AIM model suggests that a combination of innate knowledge and 
specialized learning mechanisms underlie infants’ ability to imitate in a cross-modal, 
goal-directed manner. Specifically, AIM presents three key components of the imitative 
process: organ identification, the intermodal space, and motor babbling. We will explain 
these components, and how they relate to the steps of imitation, in the following sections. 
 
5.1 Organ Identification 
 
According to AIM, when an infant is presented with a target act, his first step in trying to 
imitate it is organ identification. Organ identification is the process of locating and 
identifying the organs involved in the motion or expression of the adult. Meltzoff and 
Moore posit that newborn infants not only have the innate ability to locate and recognize 
human faces, but that they can also identify individual facial features, and their own 
corresponding body parts, and are able to selectively attend to those features involved in 
a movement. For instance, upon presentation of a lip protrusion, infants often quiet their 
other body parts and activate their lips.  
 
There is some evidence that organ identification may be accomplished through an in-born 
perceptual template able to recognize the form of the face and its organs. Meltzoff and 
Moore also suggest an alternative mechanism, whereby infants identify organs using their 
unique pattern of movement, matching the observed movement pattern with knowledge 
of how their own organs move. Regardless of the specifics of the mechanism, the infant 
uses organ identification to figure out which facial features to imitate. The remaining 
steps of AIM address figuring out how to imitate them. 
 



 
5.2 The Intermodal Space 
 
The AIM model suggests that infants have an intermodal space into which they are able 
to map all expressions and movements they perceive, regardless of their source. In other 
words, the intermodal space functions as a universal format for representing gestures and 
poses---those the infant feels himself doing, and those he sees the adult carrying out. The 
imitative link between movement perception and production is forged in the intermodal 
space.  
 
AIM posits that for infants the currency of the intermodal space (the intermodal 
representation) is organ relations (OR), which are essentially organ end states or body 
configurations (e.g mouth-wide-open, eyebrows-low-above-eyes etc).  Both the 
expressions the infant himself produces, and those he perceives (using organ 
identification) are represented as OR. A critical feature of the AIM model is that organ 
relations are also the currency of the infant’s motor system---AIM suggests that infants 
represent motor commands in a movement-end state ‘directory’ where end states are 
represented as organ relations. This is a point worth emphasizing: In AIM the perceived 
expression is translated into the same movement representation the infant’s motor 
system uses. This means that if the infant already knows how to carry out the perceived 
act, they can simply ‘look up’ the OR end state in their motor system in order to imitate 
it.  In other words, mapping the caregiver’s expression onto their own body, and figuring 
out how to produce that expression become almost the same step. This mechanism echoes 
mirror neuron function (discussed in section 3):  just as mirror neurons are hypothesized 
to be involved in both recognizing and producing a particular movement, in AIM the 
same organ relation represents the perceived expression and is part of the motor 
production command for that expression. 
 
Universally representing movements as OR also makes comparing poses much simpler, 
eliminating the problems presented by cross-modal perception, since all poses are 
mapped to the intermodal space. AIM suggests that infants are able to compare organ 
relations and detect equivalence between them, allowing them to search their motor space 
in a goal-directed manner by comparing their successive motor attempts with their 
representation of the caregiver’s act. 
 
Together, organ identification and mapping of expressions to and from the intermodal 
space provide a framework for most of infant imitation. They allow the infant to identify 
the adult model’s facial features and his own corresponding features, and to use this 
correspondence to translate the model’s expression into a representation (OR) that 
simplifies both motor production and evaluation. In the next section we will look more 
closely at how infants discover the motor commands necessary to generate a desired 
motion or expression. 
 
 
 
 



5.3 Motor Babbling 
 
Newborn infants do not know how to control the movement of their body parts to achieve 
a desired body configuration. Meltzoff and Moore posit a motor babbling phase (some of 
which may occur in the womb) whereby through experimental and repetitive body play, 
akin to vocal babbling, the infant explores its motor space, and learns how to control the 
movement of its face and limbs to achieve a desired organ relation. Through this process 
the movement-end state motor directory mentioned above is created.  
 
Infants perform a more controlled form of motor babbling when attempting to imitate a 
perceived act or expression. In this case, AIM suggests that the infant first uses the OR 
representation of the perceived act to look-up his best approximation. The infant then 
uses this approximation as a starting point for a local exploration of his motor space to try 
to better match the caregiver’s expression.  
 
Motor babbling is the final step of AIM, allowing the infant to learn the mapping from 
intermodal space to movement production. In the next section we will discuss our 
implementation of the AIM model for an imitative robot. 
 
6  A Robotic Implementation of Facial Imitation 
 
Meltzoff’s AIM model suggests mechanisms for identifying and attending to key 
perceptual features of faces, mapping the model’s face onto the imitator’s, generating 
appropriate movements, and gauging the correspondence between produced and 
perceived expressions. While we do not follow his theoretical implementation exactly, 
we have used it to guide our own (with allowances made for the differing physical 
limitations of babies and robots).  
 
6.1 Leonardo, the Robot 
 
Our experimental platform is a robot called Leonardo (Leo)---a 64 degree of freedom 
(DoF) fully embodied humanoid robot that stands approximately 2.5 feet tall (see Figure 
2). The robot’s feet are permanently affixed to the robot’s base, but the robot is otherwise 
fully articulated. The design is targeted for rich interactions with humans as well as with 
the environment. Hence, it is designed to be able to communicate and gesture to people 
as well as physically manipulate objects. The robot has an expressive face (24 DoF not 
including the ears) capable of near human-level expression, and an active binocular 
vision system (4 DoF), making it an ideal platform for implementing facial mimicry. In 
addition, the robot is equipped with two 6 DoF arms, two 1 DoF grippers (the hands), two 
actively steerable 3 DoF ears, a 5 DoF neck, with the remainder of the DoFs in the 
shoulders, waist, and hips. A speech synthesizer and speech recognition system allow the 
robot to engage in dialogs with a human. 
 
Since the motor control mechanisms for the robot are currently still being developed, the 
results presented in this paper were obtained using a simulated version of Leonardo, 
which shares the same kinematics, sensory input and cognitive architecture as the 



physical robot (see Figure 3). The animated robot is an exact joint for joint model of the 
real-world Leonardo, and both use the same behavioral and motor systems (described in 
the following section). The implementation presented in this paper will also work with 
the physical robot. 
 
In order to give Leonardo the ability to locate and identify the facial features of a human 
partner, we are using visual sensing software from Eyematic Interfaces 
(www.eyematic.com). The Eyematic software is able to locate a face in an attached 
camera's field of view, and can then find and track its features, returning normalized two 
dimensional coordinates for 22 points on the user’s face: 2 points for each eyebrow, 3 for 
each eye, 4 for the nose and 8 for the mouth (see Figure 4). For the results presented here 
we used a statically mounted camera; In the future we will be using one of the cameras in 
Leonardo’s eyes. 
 
 
6.2 Cognitive Architecture Overview 
 
One critical aspect of this work, indeed of all the work done using our character 
architecture, is that, though we are currently focusing on a particular cognitive ability, we 
are implementing it within an existing cognitive framework and must take into account 
the affordances and constraints provided by the entire system. Figure 5 presents an 
overview of our system, and we briefly describe the system components most relevant to 
the task at hand below (for a complete architecture description see Burke et. al. 2001). 
 
6.2.1 Perception System 
 
We use a hierarchical mechanism called a percept tree to extract state information from 
sensory input. Each node in the tree is called a percept, with more specific percepts 
nearer to the leaves. Percepts are atomic perception units, with arbitrarily complex logic, 
whose job it is to recognize and extract features from raw sensory data. For example, one 
percept may fire in the presence of a human face, and another might recognize the 
performance of a particular motor trajectory. Similarly, a face percept might recognize 
the presence of faces in the visual field, and its children might recognize the presence of 
specific features such as the eyes, nose etc. The root of the tree is the most general 
percept, which we call “True” since it is always active. 
 
6.2.2 Leonardo’s Perception System 
 
Our current imitation architecture has a perception system that receives sensory input 
from the Eyematic software, and implements a number of simple percepts. In addition to 
the “True” percept, there is a face percept, which fires whenever it receives Eyematic 
data indicating the presence of a human face. Similarly, this percept has child percepts 
corresponding to facial organs – the eyebrows, eyes, nose and mouth. Each of these 
children not only fires in the presence of these organs, but uses trained neural networks to 
represent the locations of these organs in a more useful format than the two dimensional 
coordinates returned by the Eyematic software (this process is described in later 



sections). Finally, there are a number of movement percepts, which detect when the 
human’s facial features have moved, and contingency percepts, which detect when they 
have moved in response to Leonardo’s own movements, the details of which are again 
described in later sections.  
 
6.2.3 Action System 
 
The robot’s action system is responsible for choosing what the creature does, and when it 
does it. Individual behaviors are represented in our system as action-tuples. For our 
purposes here, the key components of the action-tuple are its action and its trigger 
context. The action is a piece of code primarily responsible for sending high-level 
requests for movements or movement sequences to the motor system. The request can 
range from something relatively simple such as “sit down” to something more complex 
like “pick up the ball”. The trigger context is responsible for deciding when the action 
should be activated. While there are a variety of internal and external states that might 
trigger a particular action, trigger contexts generally become active based on input from 
the perception system, and often they trigger in response to the firing of specific percepts. 
For a more detailed description of the action system, and how it arbitrates between 
behaviors see Blumberg et. al. (2002). 
 
6.2.4 Leonardo’s Action System 
 
Leonardo’s facial imitation architecture requires two key actions: a motor babbling 
action and an imitation action, each of which is wrapped in an action-tuple, as described 
above. The function and details of these two actions are presented in section 6.3. 
 
6.2.5 Motor System 
 
Once the action system has selected an action for the robot to perform, the motor system 
is responsible for executing the movements required to carry out that action.  In our 
system, motor movements are represented as paths through a directed weighted graph, 
known as the creature’s posegraph. (see Figure 6). Each node (or pose), in the graph is an 
annotated configuration of the creature’s joints, and can be thought of as a single frame 
from an animation.  A link between two poses represents an allowed transition between 
joint configurations. These links are designed to only permit biologically plausible and 
safe movements, which will not put an animated character into unnatural body 
configurations, or a robot into potentially dangerous ones. Together, the poses and the 
paths between them define a creature’s space of possible movements (its pose space), 
with entire animations or motor actions existing as routes through this space.  For 
example, a walk cycle might be represented as a path through 15 poses. 
 
In addition to the posegraph, the motor system contains motor programs that are capable 
of generating paths through pose space in response to requests from actions. These 
programs may be quite simple (essentially no more than playing out a particular 
animation) or more complex (for example, trying to touch or pick up an object). For 
details regarding the generation and execution of motor programs, as well as the creation 



of the posegraph see Downie (2001).
 
The motor system as described so far allows for a wide range of safe, realistic-looking 
motor actions, which can be easily created, stored and recreated. However, it is often 
impractical to represent all of a creature’s desired poses explicitly. The motor system 
therefore also allows for the creation of blended poses: poses which are a weighted 
average of other poses (the weights used for blending are known as blend weights). Using 
blended poses creates an exponential increase in the size of the creature’s pose space, 
allowing whole ranges of positions and actions to be generated from only a few explicit 
examples (for instance, all of a creature’s walking behavior can be generated by blending 
the poses in three example routes: walk-left, walk-right and walk-straight).  
 
Finally, the robot can be given even greater movement flexibility by using a number of 
motor subsystems, each of which is responsible for controlling a closely associated set of 
joints (e.g torso joints, left arm joints, right leg joints). Each motor subsystem is able to 
search the posegraph and execute movements independently, allowing each subset of 
joints or body organ to be in a different part of the posegraph simultaneously. Once 
again, this allows the robot a greater range of motions from fewer poses.  
 
6.2.6 Leonardo’s Motor System 
 
For the purposes of implementing facial mimicry, Leonardo was provided with a 
posegraph containing a small set of basis facial poses (presented in Figure 7), which can 
be seen as analogous to the initial movement-end state pairs AIM suggests infants 
discover in utero, and are born knowing. Together these basis poses form the convex hull 
of a facial pose space, and Leonardo can achieve all the poses within that space by 
blending the basis poses with different weights. Our implementation also uses three 
motor subsystems within Leo’s face, corresponding to his mouth region, left eye region 
and right eye region, allowing Leo to move each of these regions independently of each 
other. Within this paper, when we refer to the motor system searching for a pose in the 
posegraph or executing a pose, this is shorthand for the motor system delegating these 
tasks to the three subsystems. 
 
Additionally, it is worth noting that our pre-existing motor system design turns out to be 
strikingly similar to that hypothesized by AIM. Poses can be seen as a variation on organ 
relations, with the posegraph being a specific implementation of the movement-end state 
directory structure AIM proposes. This similarity significantly increased the ease with 
which an imitative architecture within the AIM framework could be implemented in our 
system.  
 
6.3 Mechanisms of Robotic Imitation 
 
In the following sections, we discuss the mechanisms we implemented to allow Leonardo 
to solve the problem of imitating human facial expressions. For each of the tasks 
necessary for successful facial imitation, we consider the similarities and differences 
between our approach and that of AIM. While we have used imitation of facial 



expressions as a starting point, every effort has been made to keep our mechanism 
general enough to be easily extendable to full-body imitation. Additionally, the 
implementation has been designed for use in creating a number of social competencies, 
the details of which are presented in section 7.  
 
The overall structure of an imitative interaction consists of two parts: a first stage, where 
the human participant imitates Leonardo’s facial expressions, and a second stage, where 
Leonardo mimics the human’s expression. The interaction is summarized in Figure 8. 
Leonardo takes advantage of the bi-directional structure of the imitative exchange by 
accomplishing different tasks during each part. During the first stage of the interaction 
Leo solidifies his representation of the correspondence between the human’s facial 
features and his own, while during the second stage he uses this correspondence to model 
and imitate the human’s expression. Data flow diagrams for each stage are presented in 
Figures 9 and 10 respectively. 
 
6.3.1 Human Participant Imitates Leonardo 
 
The imitative interaction begins with the human participant approaching Leonardo. 
Leonardo relies on the Eyematic software (described in section 6.1) to detect when a 
human face is present in his field of view. When data from the Eyematic indicates that 
Leo is seeing a human face a face percept in Leo’s perception system becomes active, 
triggering his motor babbling action.  
 
Similarly to the motor babbling exhibited by infants in the AIM model, in which they 
physically explore their motor space, Leonardo’s motor babbling action causes him to 
physically explore his pose space. While Leo’s motor babbling action is active, it 
randomly selects a pose from the basis set used to create his posegraph, requests that the 
motor system go to that pose and hold it for a moment (approximately four seconds), and 
then selects a new pose. While Leonardo is motor babbling, the human participant tries to 
imitate Leo’s facial expressions (a process described in more detail later in this section). 
 
Motor babbling serves a number of purposes in the imitative interaction. First, by 
becoming more active when the user approaches, Leo can communicate in a simple way 
his awareness of the human participant. Leonardo beginning to motor babble when he 
sees the person can be seen as analogous to an infant becoming more active in the 
presence of an interested caregiver. Second, our primary reason for having Leonardo 
perform motor babbling is to help him learn to map perceived human expressions onto an 
intermodal space, like the one used by infants in the AIM model. By detecting when the 
human participant is likely to be imitating him, Leonardo can use his own pose 
(generated through motor babbling) and the human’s imitation of this pose, to improve 
his ability to map the human’s facial expression to his own intermodal space. We will 
discuss this intermodal space, and how Leo learns to map the human expressions he 
perceives onto it, below. 
 
According to Meltzoff’s model, infants use the same internal representation for their own 
expressions and those they see an adult perform. Furthermore, this representation (organ 



relations) is the same one used within the infant’s motor system to describe how the 
infant must move in order to achieve a given expression. The intermodal representation 
allows the infant to discover correspondences between his own expressions and those of 
the human model, by providing a format in which they can be directly compared. In our 
motor system, Leonardo’s expressions are represented as poses (collections of joint 
configurations, as described in section 6.2.3), and the motions to achieve these poses are 
represented as routes through Leonardo’s posegraph. Consequently, we chose to use 
poses in Leonardo’s own joint space (explained below) as his intermodal representation. 
Like the infants in the AIM model, using poses in his own joint space as the currency of 
the intermodal space allows Leonardo to use the same representation for poses he 
produces, expressions he perceives, and the poses in his motor space (pose space). 
 
In order to represent a pose in Leonardo’s joint space, it must be expressed using only 
joints Leonardo possesses, with their position and rotation specified relative to his body.  
However, the human expressions Leonardo perceives must be mapped from the sets of 
two-dimensional absolute coordinates provided by the Eyematic software onto his joint 
space. This process is complicated by the fact that there is not a one to one 
correspondence between the Eyematic features and Leo’s joints. Since AIM does not 
provide the details of the organ identification process, it is unspecified how infants in the 
model transform the movements and expressions they perceive into an organ relations 
representation. In our implementation, Leonardo learns how to transform the expressions 
he perceives into poses in his own joint space by training a collection of neural networks 
while the human participant is imitating him. Once the neural nets are trained, they are 
able to take in as input the data from the Eyematic software corresponding to a human 
expression, and output the intermodal representation of that expression. We will refer to 
the intermodal representation (IR) of the human’s expression as the IR human pose from 
now on.  
 
In order for Leo to successfully train the neural nets, he must be able to provide them 
with example input-output pairs. Within the framework of the imitative interaction, one 
way for Leonardo to acquire this data is for him to identify when the human participant is 
imitating him, and to then store a snapshot of the current Eyematic data and his own 
current joint configuration. This is effective training data because when the human is 
imitating Leonardo their poses correspond to each other. The human and Leo are doing 
the same thing (to the limits of their physical capabilities) and Leo’s own expression is 
already represented in intermodal space. Therefore, when the human participant imitates 
Leo, Leo’s own pose is also the IR human pose for the human’s expression. Thus, in 
order to learn the mapping from eyematic data to intermodal space, the first thing Leo 
must be able to do is determine when the human is imitating him, so he can take these 
snapshots.  Unfortunately, before the neural networks are trained, Leo can’t detect a 
correspondence between the Eyematic data and his own pose, and so identifying when he 
is being imitated is tricky at this stage. 
 
Initially, we solved this problem by assuming that during this first phase of the imitative 
interaction the human was always imitating Leo.  This simplified the problem; Leo could 
take a snapshot after every motion he made, and assume that the Eyematic data 



represented a similar expression to his own.  This technique, while somewhat effective, 
had a number of problems. First, it produced very noisy data. Second, it turned out to be 
difficult for human participants to imitate Leo all of the time, so incorrect snapshots 
would be included in the training set.  Finally, it was also difficult for people to imitate 
Leo's entire face at once, rather than focusing on one particularly salient feature (e.g., 
wide open mouth verses raised eyebrows) at a time. 
 
The literature on infant imitation indicates that infants are especially responsive to adult 
movements that appear to be contingent on their own. Inspired by this data, we decided to 
use the contingency of the human’s motion on Leonardo’s to determine more precisely 
when Leonardo is being imitated. Therefore, we put in place a contingency metric, based 
on the elapsed time between Leo's motion and the human's, to detect when the human is 
imitating Leo.  The metric requires that less than a couple of seconds pass between the 
starts of the movements, and that the movement of the human be surrounded by a few 
seconds of stillness, so as not to classify constant motion as contingent. While some error 
is still possible with this metric --for instance, if the human moves contingently but is not 
imitating Leo, we found that overall using contingent motion to detect imitation produced 
more accurately trained neural nets. 
 
 Leonardo can readily detect his own motion by tracking his joint positions and motor 
commands. In order to detect the human’s motion, the standard deviation is calculated for 
the position of each degree of freedom on the human’s face that is tracked by the 
Eyematic, and then a movement threshold is set as a multiple of that value. This allows us 
to eliminate movement caused by noise in the Eyematic data and isolate movements that 
represented actual motion of the human participant. 
 
In organ identification, infants focus on the salient organs of the adult model, quieting 
other areas of their face. Our initial tests suggest that adults behave similarly, and have a 
difficult time imitating changes in multiple facial features at once. Therefore, in order to 
further refine the training process, we wanted the human to be able imitate a particular 
organ rather than having to concentrate on Leo’s entire face.  While the 2 dimensional 
coordinates of various facial features provided by the Eyematic system do not correspond 
exactly with the available degrees of freedom in Leo's face, the incoming data and Leo's 
degrees of freedom can readily be broken into three independent groups of features, 
which can be handled separately: the left eye/eyebrow area, the right eye/eyebrow area, 
and the mouth.  Inside these areas, the exact relationship between the coordinate data 
from the Eyematic and the joints in Leo's face is not yet known, but these groupings 
allows Leo to start with a rough idea of which of his organs correspond to those of the 
human participant, an advantage the AIM model proposes infants share.   
 
Separating into three organ groupings means that three separate neural networks are 
trained, based on data collected from three separate contingency detectors.  If the human 
only imitates Leo’s mouth, Leo will learn the correspondence between his mouth and the 
human's and the other parts of his face will not be fed irrelevant data.  This separation has 
another advantage: once the neural networks are trained, Leo can create an intermodal 
representation of the human pose (IR human pose) separately for each group of features, 



creating overall expressions that may never have been in the babbling set.  For example, 
if none of his babbled poses have asymmetric eyebrows, a neural network for the entire 
face would never allow him to create an IR human pose with one cocked eyebrow, but 
this method does since the eyebrows each respond separately.   
 
Once the required number of snapshots has been acquired (we found that two snapshots 
per babbled pose produced good results), Leo trains the appropriate neural networks.  We 
used a two-layer network, with 7 hidden nodes (7 was established to be a good number 
after we varied it for several tests).  The inputs to the networks are the relevant degrees of 
freedom from the Eyematic data: the x and y positions of facial features, normalized to be 
invariant to the scale of the face, facial translation, and rotation. The outputs are the 
angles for relevant joints in Leo's face. Each joint in the virtual robot is restricted to one 
degree of freedom for rotation, just as the motors in the actual robot are. Once the neural 
networks are trained Leonardo is able to map human expressions (perceived through the 
camera and Eyematic software) onto his intermodal space. In the following sections we 
will describe how Leonardo uses this mapping to imitate the human participant.  
 
6.3.2 Leonardo imitates the Human Participant 
 
In a similar fashion to the turn-taking present in infant-caregiver imitative interactions, 
once Leo is capable of representing perceived facial expressions in intermodal space, he 
stops trying to engage his human partner in imitating him, and instead begins trying to 
imitate the human. Leonardo physically manifests his switch in focus by ceasing to motor 
babble. Instead, Leo becomes still, and begins trying to detect an appropriate expression 
of the human participant to imitate.  
 
Meltzoff notes that young infants don’t imitate facial expressions that are presented 
statically. Rather, in order to imitate, infants must see the adult assume the facial 
expression, perhaps because the preceding movement is a clue that the expression that 
follows is worth imitating. Correspondingly, we decided to have Leonardo use motion 
cues to determine when to begin imitating. 
 
 Like an infant, Leo attempts to reproduce the human model’s facial expression when it is 
a stable expression that directly follows a movement. Using our previously described 
methods for detecting stability and motion in the human facial feature data, we created a 
collection of percepts, each of which fire when the human significantly moves an organ, 
and a corresponding trigger context, which activates Leonardo’s imitation action. Leo’s 
imitation action mediates his imitative behavior, by working closely with his motor 
system to generate and evaluate successive approximation of the perceived pose.  
 
As long as Leonardo is watching the human participant, the neural nets in his perception 
system (as described in the previous section) will automatically map the facial feature 
coordinates they receive from the Eyematic software onto the intermodal space. When 
the human participant decides to make an interesting face, for instance by raising their 
eyebrows or opening their mouth wide, the movement activates Leo’s imitation action, 
which then retrieves the IR human pose from the perception output, and stores it. Leo 



now focuses on trying to imitate this pose, temporarily ignoring further changes in the 
human participant’s expression. 
 
Next, the imitation action asks Leonardo’s motor system to locate the posegraph pose that 
is closest to the IR human pose. This step is essentially an implementation of the 
mechanism AIM posits for looking up organ relations (poses) from the intermodal space 
in the movement-end state directory (posegraph). Finding this pose is a critical step in the 
imitation process, for a number of reasons. First, this step finally completes the discovery 
of structural correspondence between the human and Leonardo. That is, the resulting pose 
represents both what Leonardo is capable of doing, and what the human model has done.  
 
Second, just as in AIM, this pose represents the input to the motor action generation and 
goal-directed search steps in Leonardo’s imitation process (described in the following 
section). Working from one of Leonardo’s existing poses to try and produce an 
expression matching that of the human adds a critical layer of realism and protection to 
the robot’s actions. Vision data is noisy and the neural nets may be imperfectly trained, 
so the direct mapping from perceived expression to joint space may not correspond 
exactly to what the person is doing; certain errors, though very small in magnitude, could 
cause very artificial looking behavior, or possibly even impossible and damaging 
movements. By classifying the raw joint angles as a known pose and generating output 
from that pose instead, the robot can always appear natural and life-like even with 
significant noise in the joint positions it perceives. Outputting poses generated within the 
robot’s pose space also eliminates the danger of damaging the robot through impossible 
movements.  
 
Finally and most importantly, by using the poses within Leonardo’s posegraph to 
complete the identification of the human participant’s facial expression, we have 
implemented a mirror neuron-like system of coupled movement perception and 
production. As research on mirror neurons and Simulation Theory suggests, using the 
method of production for identifying and perceiving actions, which in the robot’s case 
means classifying the pose of the participant in the robot's own pose space, might allow 
the robot to infer the human’s emotional state or desired action, based on the robot's own 
relationship with that pose (a possibility we examine in our section on future work).  
 
 
6.3.3 Action Generation 
 
 At this stage in the imitative interaction Leonardo has found the basis pose in his 
posegraph that most closely matches the intermodal representation of the human’s 
expression. Next, Leo’s motor system executes this pose, producing his first imitative 
attempt. This is equivalent to the infant in the AIM model looking up the caregiver’s 
organ relations in his movement-end state directory, and using this information to act out 
the closest approximation he can of the adult’s expression. However, infants do not end 
their attempt at imitating with this first approximation. Rather, infants use their initial 
solution as the starting point for a goal-directed search of their motor space, more 
accurately imitating the adult’s expression, and refining their motor knowledge. In a 



similar manner, Leonardo searches for a more accurate imitative pose by blending the 
initially closest pose with others in his posegraph, incrementally adjusting the blend 
weights until he has found the best local match. 
 
Like an infant in Meltzoff’s model, when Leonardo imitates the human participant, he 
produces a series of successively more accurate approximations of the IR human pose, 
through a goal-directed search of his blend space. Currently, Leonardo’s imitation action 
executes this search using a simple hill-climbing algorithm. Using the initial basis pose as 
a starting point, the hill-climbing algorithm iteratively searches for a set of weights 
defining the blended pose that is the local best match to Leo’s representation of the 
human’s expression. Specifically, each iteration of the hill-climbing algorithm attempts to 
find a pose that is a better match than the one found on the previous iteration. The hill-
climbing algorithm continues iterating until it can no longer find a combination of blend 
weights that produces a better matching pose than the result of the last iteration. 
 
The distance metric the hill climber uses can be seen as a very simple implementation of 
the equivalence detector described in the AIM model. To find the distance between the 
IR human pose and Leo’s pose, we sum the average angular and translational distance 
across all joints. While we were initially uncertain this would be a sufficient measure of 
equivalence between poses, our results so far have found that this distance metric 
functions adequately, and seems to accurately reflect the visual match judgments made 
by human observers (see section 6.4).  
 
According to AIM, infants must physically explore their motor space in order to carry out 
a goal-directed search for the best way to imitate the adult’s pose. That is, in order to 
discover the motor commands that lead to desired organ relations, the infant must 
actually move his face through a series of expressions. In contrast to this, Leonardo could 
theoretically search his blend space for the best match to the human participant’s 
expression without physically executing any intermediate poses. This is because 
Leonardo can create and evaluate a blended pose without needing to actually act the pose 
out on his body. Similarly, Leonardo’s motor system can “discover” the route through the 
posegraph that brings his body to a particular pose without physically executing that 
route. However, in order to explicitly demonstrate Leo’s goal-directed searching, and to 
make Leo’s imitative process more infant-like, in our implementation Leo acts out the 
results of each iteration of the hill-climbing algorithm, physically executing the 
successively more accurate matches to the IR human pose. 
 
Once Leonardo has carried out the final blended pose discovered by the hill-climbing 
algorithm he has imitated the human’s pose as best he can, and the imitation cycle is 
complete. His imitation action deactivates, and Leonardo begins attending to the motions 
and expressions of the human participant again, trying to detect another appropriate pose 
to imitate. 
 
6.4 Results 
 



Our implementation has so far been tested on the simulated version of Leonardo (Virtual 
Leonardo). While we have not yet done user studies to determine whether human 
participants unfamiliar with the robot find the facial expressions that Virtual Leonardo 
produces to be convincing imitations of their own facial expressions, we have generally 
been satisfied with the match between the human input and Virtual Leonardo’s 
successive approximations, and with the realism of his produced expressions, especially 
when his output is contrasted with the raw pose data.  
 
The entire interaction with Virtual Leonardo occurs in real time, with the human 
participant imitating Leonardo for approximately 5 minutes, followed by Leonardo 
imitating the human until the human terminates the interaction. The intermodal 
representation learned in the first phase can be acquired by interacting with a different 
person than the one that Leo imitates in the second phase of the game. Hence a new 
intermodal representation does not have to be learned for each person Leonardo interacts 
with (however this mapping seems to be more robust for the mouth region and more 
person-specific in the eye region). 
 
Figure 11 presents three imitative interactions, including the human facial expression, the 
representation of the human’s pose in Leo’s joint space (the IR human pose), and Virtual 
Leo’s final approximation of the human’s pose. They show Leo imitating a number of 
facial expressions presented by a human participant involving the mouth and eyebrows. 
The learned intermodal representation of the human pose is shown as well as Leo’s best 
approximation of it via goal-directed search of his blend space.  
 
Figure 12 highlights the improvements made by Leonardo’s motor system on the raw 
neural net output. While Figure 11 clearly demonstrates that the neural nets are able to 
learn a very accurate intermodal mapping from the human participant’s expression to 
Leonardo’s joint space, this raw mapping still occasionally produces impossible joint 
configurations. However, by using Leo’s closest basis pose as the starting point for the 
search for the best matching pose to the human’s expression, Leonardo does not attempt 
to execute impossible joint configurations.  
 
Figure 13 shows some of Leo’s intermediate approximations of the model’s expression, 
generated while searching his blend space. As can be seen in this figure, Virtual 
Leonardo is able to produce visually successful matches to a wide variety of human facial 
expressions.  Finally, Figure 14 shows that Leonardo is able to utilize his motor 
subsystems corresponding to different facial regions to represent and generate novel 
facial poses, such as a “cocked” eyebrow. 
 
7 Discussion and Future Work  
 
Virtual Leonardo’s ability to imitate human facial expressions in a goal-directed manner 
represents an encouraging first step towards developing robots capable of human-style 
social interaction. The implementation of facial mimicry described in this paper helped us 
develop and test our ideas about creating an imitative robot inspired by the mechanisms 
of AIM. Being able to imitate human facial expressions and to detect contingency 



relationships between other’s movements and his own provides Leonardo with the ability 
to engage in some of the bi-directional imitative interactions that characterize and shape 
infant social development.   
 
However, just as infants quickly progress from simple mimicry to more sophisticated 
imitative behavior, we are interested in extending and modifying the mechanisms 
described previously to allow Leonardo to display more complex and varied forms of 
social learning, and to begin developing mechanisms for predicting human actions and 
emotions. In the following sections we present some of the ways in which we can utilize 
the imitation architecture presented in the previous section towards creating socially 
competent robots who are able to intelligently engage with and learn from the humans in 
their environment. 
 
 
 7.1 Imitative Exchanges 
 
There are a number of ways in which the current imitative interaction could be improved 
so that Leonardo is able to take greater advantage of its bi-directional nature. The key to 
many of the possible improvements is to allow Leonardo to detect when he is being 
imitated, rather than just detecting contingency. A primitive implementation of this 
ability would simply have Leonardo check whether the facial expression (or other 
gesture) of the human roughly matches his own whenever a contingency between his 
actions and the person’s actions is detected. 
 
Once Leonardo can identify situations in which he is being imitated, he could explore the 
imitative relationship further, much as an infant does, by making different kinds of 
movements, and changing movements abruptly.  
 
Detecting when he is being imitated could also help Leonardo take advantage of 
additional cues from the person he is imitating. As mentioned in an earlier section, a 
caregiver’s behavior when imitating generally has a direction with respect to what the 
infant is doing, allowing them to shape the infant’s behavior. If Leonardo could detect 
both when he was being globally imitated as well as subtler differences between his pose 
and that of the human, imitative games could provide a mechanism through which people 
could give Leonardo feedback on his actions. By first imitating the robot, and then 
demonstrating slight adjustments to a pose or movement, which the robot would then in 
turn imitate, people could provide Leonardo with a series of examples of a desired 
expression or behavior. 
 
7.2 Directing Attention 
 
Noticing which parts of the environment others are paying attention to, may play an 
important role in helping an intelligent, social character learn which stimuli to focus its 
own attention on. Many of the skills necessary for inferring what is the object of someone 
else’s attention, such as gaze-following or shared attention, can potentially be learned or 
improved through imitative interactions. For instance, by mimicking not only the 



person’s expression, but the direction their head is turned, Leonardo could discover new 
salient aspects of the environment. 
 
7.3 Social Identification 
 
Imitative exchanges provide Leonardo with an opportunity to learn about and individuate 
the people in his environment, and to guide future behavior based on what he discovers.  
As discussed earlier, infants pay the most attention to people who respond 
enthusiastically to them, and whose actions appear to be contingent to their own. 
Similarly, Leonardo could use certain characteristics of imitative interactions, such as the 
length of the interaction, how contingent the other person’s actions were on his own, and 
the amount of turn-taking that occurred, as measures of the success of that interaction. 
This could allow Leonardo to selectively attend to the people in his environment who are 
most likely to be engaged and supportive teachers, rather than indifferent models, by 
assuming that those are the people with whom he has previously had long imitative 
interactions, characterized by turn-taking and contingent behavior. Therefore, by storing 
information about previous imitative interactions, the robot can become better equipped 
to regulate future interactions.  
 
Leonardo could also use imitation as a primitive means of confirming the identity of, and 
relating to, individuals, by storing information about the movements he generated in 
previous encounters with that person, and recreating them the next time he sees (or thinks 
he sees) them. This is one potential mechanism by which Leonardo could communicate 
his recognition of a person to that person.   
 
7.4 Discovery Procedures for Understanding Persons 
 
Much of the excitement over mirror neurons stems from their potential as a mechanism 
for the simulation of other’s behavior, and even mental states, using an individual’s 
already existing machinery for generating those states within themselves. Similarly, we 
are very excited about the possibility of using the perception-production coupling we 
have implemented to allow Leonardo to begin making simple inferences about the 
emotions and motivations of others.  
 
To this end, the step that follows most intuitively from our work is inference of emotional 
state. Leonardo could infer the emotional state of a person he is imitating by invoking the 
emotional state he usually experiences while enacting the imitated expression. Some 
cognitive theorists believe that this is how emotional empathy develops in humans, and 
experiments have shown that producing a facial expression generally associated with a 
particular emotion is sufficient for eliciting that emotion (Strack, Martin and Stepper 
1988).  
 
More generally, the ability to identify the pose or action corresponding to what someone 
else is doing, the core of our imitation implementation, has many useful applications for 
learning about others. For instance, once Leonardo has identified the action he believes 
someone else is carrying out, by finding the closest matching action in his own motor 



representation, he can look at what drives he is usually trying to fulfill while performing 
this action, and as a first pass at making a simple prediction of goal-state, ascribe one of 
these drives to the model. A longer-term objective is for the robot to try and predict how 
the person will behave next, again basing this prediction on what it would do given the 
current environmental stimuli and the inferred goal state. The success of these predictions 
could be used to improve future predictions, by changing the likelihood with which 
certain goal-states and behaviors are predicted for different individuals, allowing the 
robot or animated character to add to and improve its beliefs about the other social agents 
in its world. 
 
7.5  Imitating Gestures and Full Body Imitation 
 
Our current implementation of facial mimicry only attempts to replicate the end-pose of 
the model. While recreation of end-state can in and of itself lead to sophisticated learning 
(as in goal-emulation, most recently described in Whiten 2003), it will nevertheless often 
be desirable for the robot to reproduce certain features of the motion itself. Future work 
will incorporate the ability to search for a best-matching path through the robot’s 
posegraph, rather than just a best matching pose. In the simplest case, Leonardo could 
identify a series of key frames in the observed movement, using features such as changes 
in the human’s end-effector velocities. The best matching pose for each key frame could 
be found using the existing search mechanism, and then a motor program that identified 
the shortest route between these poses could be generated and executed. This would 
allow Leonardo to imitate behaviors such as a series of eyebrow raises and lowerings. 
 
Additionally, we would like Leonardo to be able to imitate gestures and poses using the 
rest of his body along with his face. We have attempted to implement our imitation 
system such that it is general enough to apply to the whole body, however we are 
currently limited by a lack of full-body perceptual data. We are in the process of 
acquiring software to allow Leonardo to visually track human hand and arm movement, 
as well as a mechanical motion capture suit that will provide full-body position and 
motion information. Once the perceptual input from other body areas is available, our 
currently implemented mechanisms for identifying and producing movement should be 
easily extended to allow Leonardo to imitate a whole range of body poses and motions. 
 
8  Summary and Conclusion 
 
Inspired by the many important roles that imitation plays in the social development of 
human infants, we argue that imitation could play a similar role in bootstrapping the 
social competence of robots, especially with respect to understanding the intensions of 
others. This ability would allow robots to cooperate with, communicate with, and learn 
from people in unprecedented ways.  
 
Towards this grand vision, we have implemented a computational model of facial 
imitation for our robotic platform, using Meltzoff’s AIM model as a framework for our 
imitation architecture. Like an infant in Meltzoff’s model, Leonardo maps human 
expressions he perceives into an intermodal representation, which he then uses to imitate 



the perceived expression. Leonardo uses the intermodal representation of the human’s 
expression to execute a goal-directed search of his motor space, executing successively 
more accurate approximations of the human’s pose. We believe that this framework can 
be extended to full body imitation, and could serve as the computational basis of mapping 
Leonardo’s body onto the body configuration of an adjacent human. 
 
This body-mapping ability, combined with our immediate next step of developing a 
computational model of Simulation Theory (as described in section 3.1) for Leonardo’s 
motor, perceptual/attentional, motivational/affective, and goal-directed behavior systems, 
will play an important role in helping Leonardo to understand the actions, and eventually 
the intentions of others. 
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Figure 1: Schematic of the Active Intermodal Mapping Hypothesis (After Meltzoff and Moore 1997). 
AIM models the mechanisms necessary for infant facial imitation. This figure depicts the flow of data 
between the external world, the infant’s internal representation of perceived expressions (the adult’s 
expressions and his own), and the infant’s motor system.  Representations of the adult expression and the 
infant’s own expression are compared in terms of organ relations (see section 5).  If the infant’s current 
expression is not a good match for the adult’s, the movement-end state directory (previously generated by 
the infant through motor babbling) is searched for a better match, which is then executed by the motor 
system.  If subsequent comparisons still find the match between perceived and produced expressions to be 
inadequate, the motor system may execute a localized search of the motor space (see section 5). 



 
 
Task AIM  Our Implementtion 
Locate and recognize 
model’s facial features and 
movements 
 

Organ Identification Eyematic Software, 
Movement and Contingency 
Detection 

Find correspondence 
between perceived features 
and own features 
 

Organ Identification Trained Neural Nets 

Use correspondence 
between model’s face and 
own to identify an 
expression to be produced 

Map perceived expression 
into intermodal space, using 
organ relations as the 
universal representation. 
Search the movement-end 
state directory for the 
closest end state. 
 

Map perceived expression 
into intermodal space, using 
Leo’s joint space as the 
universal representation. 
Search the posegraph for 
the closest matching basis 
pose. 

Discover motor 
commands/movements 
necessary to generate 
desired expression 

Motor babbling builds up 
knowledge of how to 
achieve various organ 
relations. Adds this 
knowledge to the 
movement-end state 
directory. 
 

Posegraph contains routes 
between poses. Motor 
programs know how to 
move the body along these 
routes. 

Judge success of imitation, 
and improve 

Use proprioceptive 
feedback to compare 
achieved organ relations to 
perceived organ relations. 
Locally explore motor 
space to find a better match. 
Repeat until satisfied. 
 

Compare closest basis pose 
to intermodal representation 
of perceived pose. Locally 
explore blend space to find 
a better match. Repeat until 
no better match can be 
found. 

 
Table 1: An overall comparison of Meltzoff’s AIM model of infant imitation and our 
robotic imitation architecture. This table summarizes how our approach and AIM’s 
address a variety of tasks necessary for imitating facial expressions.  The tasks are listed 
in the rightmost column. For a more detailed explanation of the steps of AIM see section 
5. For a full explanation of our imitation architecture see section 6.  
 
 
 



 
Figure 2: Leonardo, the robot. Cosmetically finished (left). Mechanics exposed (right). Character 
design copyright Stan Winston Studio. Photographs copyright Sam Ogden. 

 
 
 
 

 
Figure 3: The Virtual Leonardo Model. 

 



 
Figure 4: The Eyematic Software. The picture on the left shows the camera input to the 
Eyematic software, with a human participant’s face in the field of view. The yellow 
points on the person’s face are the 22 points being tracked by the Eyematic software (see 
section 6.1). The picture on the right shows the Eyematic’s representation of the person’s 
face, with coordinates for each of the 22 points being tracked. 



 

 
Figure 5: System Architecture Diagram. This is the overall cognitive architecture used for 
Leonardo. It is arranged into a “perception and memory” section, an “action selection” 
section and a “motor and navigation” section. The systems are processed serially, in 
roughly top-to-bottom (or light-to-dark) order, relative to this figure. Our implementation 
of facial expression mimicry makes particular use of the perception, action and motor 
systems (see section 6.2). 
 
 



 
Figure 6: The Posegraph 
A schematic of a generic posegraph, implemented in our system. Boxes represent labeled 
body poses (key frames) or collections of poses (animations). Stacks of boxes represent 
blendable poses or animations. Arrows represent permitted transitions between poses. 
 
 



 
Figure 7: Leonardo’s Basis Facial Poses.  These are the facial poses that make up 
Leonardo’s posegraph (see section  6.2.6). They represent the convex hull of all the facial 
poses currently in Leonardo’s pose space, and can be blended together using different 
blend weights to create his other facial expressions. 
 



 
Figure  8: Typical Imitative Interaction. 
Schematic of the ordering of events in a typical imitative exchange with Leonardo. In 
general, the interaction consists of two stages: the first stage where the human participant 
imitates Leonardo, and the second stage, where Leonardo imitates the human participant. 
Figures 9 and 10 present the processing that occurs in each of those stages in more detail. 
The dotted arrow represents the transition that occurs until Leonardo has learned how to 
represent the human’s expression in his own joint space. 



 
Figure 9: Human Imitating Leonardo, Data Flow 
Leonardo learns how to map perceived facial expressions into his intermodal space (his 
own joint space), by having the human participant imitate him. Leonardo generates a 
variety of poses by motor babbling. When the human’s movements are contingent on his 
own, Leo decides he is being imitated, and uses the human’s current expression, and his 
own current expression, to train a set of neural nets he uses for mapping the human’s 
expression into intermodal space. This diagram shows an overview of how these steps are 
accomplished within our system. White boxes represent code modules while arrows 
represent data flow (captions next to each arrow note the data content). 
 



 
Figure 10: Leonardo Imitating Human, Data Flow 
In order to imitate facial expressions, Leonardo must be able to 1) Recognize and locate 
the human model’s facial features 2) Create the mapping between the perceived features 
and his own motor representations and 3) Generate the desired expression.  These steps 
are represented as separate boxes in the diagram, and correspond roughly to the organ 
identification, mapping to intermodal space, and motor execution steps of the AIM 
model. This diagram shows an overview of how these steps are accomplished within our 
system. White boxes represent code modules while arrows represent data flow (captions 
next to each arrow note the data content).  



 
Figure 11: Leonardo Imitating Three Human Participants.  
This figure shows Leo imitating a number of facial expressions presented by different 
human participants. The first row shows the camera’s view of the human expression. The 
second row shows the intermodal representation of the human expression – in other 
words, it shows the human’s expression mapped onto Leo’s own joint space. The third 
row shows Leonardo’s best approximation of the intermodal representation of the human 
pose. As can be seen from the similarities between the pictures in rows two and three, 
Leonardo was able to use a goal-directed search of his blend space to find very close 
approximations of the human’s pose (as represented in his own joint space). The 
intermodal representation was all trained by the same person, although tested by different 
people. 



 
Figure 12: Noise In the Neural Network Output and Correction By Leo’s Motor 
System. The above figure shows the human’s expression, the neural network’s direct 
mapping of this expression onto Leo’s joint space, and the initial closest pose to this 
mapping in Leonardo’s posegraph. The areas circled in red in the above figure indicate 
joint positions in the direct mapping that are not possible for the physical robot to 
achieve. By using his closest basis pose as the starting point for the search-to-match 
process, Leonardo does not attempt to execute impossible joint configurations.  
 
 
 
 
 

 
Figure 13: Goal-Directed Search Towards Target Pose.  Once Leonardo has mapped 
the human’s pose onto his own joint space, creating a target pose, he executes a goal-
directed search of his possible facial expressions to find the best match to this target. In 
this figure, the intermediate stages of Leonardo’s goal-directed search for two target 
poses (shown on the right) are presented. 
 
 



 
Figure 14: This figure shows the training set that Virtual Leonardo uses to train its 
intermodal representation (Human Imitates Leo). As can be seen (Leo Imitates Human), 
Leonardo can then imitate facial configurations that involve combining intermodal 
representations for different regions of the face. By searching each of its motor systems 
(left eye region, right eye region, and mouth) for the closest match in the overall pose, 
Leo can successfully imitate a “cocked” eyebrow configuration where one brow is 
elevated and the other is lowered. 
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