
In Proc. Sixth International Conference on Intelligent Tutoring Systems,
pp. 542-551, Springer-Verlag, June 2002.

Collaborative Discourse Theory as a
Foundation for Tutorial Dialogue

Jeff Rickel,1 Neal Lesh,2 Charles Rich,2 Candace L. Sidner2 and Abigail Gertner3

1 USC Information Sciences Institute, 4676 Admiralty Way, Marina del Rey, CA, 90292
rickel@isi.edu, http://www.isi.edu/isd/rickel

2 Mitsubishi Electric Research Laboratories, 201 Broadway, Cambridge, MA, 02139
lesh,rich,sidner@merl.com, http://www.merl.com/projects/collagen

3 MITRE Corporation, 202 Burlington Road, Bedford, MA, 01730
gertner@mitre.org,

http://www.mitre.org/resources/centers/it/g068

Abstract. Research on intelligent tutoring systems has not leveraged general
models of collaborative discourse, even though tutoring is inherently collabora-
tive. Similarly, research on collaborative discourse theory has rarely addressed tu-
torial issues, even though teaching and learning are important components of col-
laboration. We help bridge the gap between these two related research threads by
presenting a tutorial agent, called Paco, that we built using a domain-independent
collaboration manager, called Collagen. Our primary contribution is to show how
a variety of tutorial behaviors can be expressed as rules for generating candidate
discourse acts in the framework of collaborative discourse theory.

1 Introduction

Our research objective is to develop computer tutors that collaborate with students on
tasks in simulated environments. Towards this end, we seek to integrate two separate
but related research threads: intelligent tutoring systems (ITS) and collaborative dia-
logue systems (CDS). Research on ITS [20] focuses on computer tutors that adapt to
individual students based on the target knowledge the student is expected to learn and
the presumed state of the student’s current knowledge. Research on CDS (e.g., [8, 11]),
with an equally long history, focuses on computational models of human dialogue for
collaborative tasks.

Effective instructional dialogue is best understood as a mixed-initiative interaction
between tutor and student, in which the student works to solve problems while the tutor
monitors the student’s progress, providing feedback and hints when needed. Good hu-
man tutors aim to maintain progress in problem solving while supporting the student’s
sense of control and self-confidence, a balancing act that requires a high degree of in-
teractivity and collaboration. Thus, it is natural to expect that a model of collaborative
dialogue would provide a solid framework on which to build a conversational ITS. Fur-
thermore, the flexibility of such a framework in supporting a wide range of collaborative
interactions allows for the implementation of a variety of pedagogical strategies.

Unfortunately, there has been a surprising lack of cross-fertilization between these
two research areas. Work on tutorial dialogue for intelligent tutoring systems (e.g., [4,



12, 21]) has not leveraged general models of collaborative dialogue. Similarly, research
on collaborative dialogues has focused on modeling conversations between peers or
between an expert and novice, but has rarely addressed tutorial issues.

To help integrate ITS and CDS, we developed a tutorial agent in Collagen [15, 16],
a middleware system based on a long line of research on collaborative discourse [8,
7, 6, 11]. Collagen maintains a model of the discourse state shared by the user (e.g.,
student) and the computer agent (e.g., tutor). Agents constructed using Collagen use
the discourse state to generate an agenda of candidatediscourse acts, including both
utterances and domain actions, and then choose one to utter or perform. Our domain-
independent tutorial agent, Paco (Pedagogical Agent for Collagen), has already been
used in several independent research projects [1, 3, 19].

Paco teaches students procedural tasks in simulated environments, building on ideas
from earlier tutoring systems. While Paco engages in slightly more sophisticated con-
versations than previous such tutors, our primary contribution is to show how various
tutorial behaviors can be expressed as rules for generating candidate discourse acts in
Collagen. Translating tutorial behaviors into the framework of CDS is a first step to-
wards building tutoring agents that can leverage advances in collaborative discourse
theory. A secondary goal of this work is to assess Collagen’s value for building tutorial
agents, both in terms of the theory it reflects and the software architecture it supports.

2 Pedagogical Approach

Paco supports simulation-based training, in which students learn tasks by performing
them in a simulation of the real work environment. Paco repeatedly chooses a scenario,
i.e., a task to perform starting from a particular simulation state, and then works through
it with the student. Ideally, students should learn to flexibly apply well-defined proce-
dures in a variety of situations.

Figure 1 shows an example dialogue from one implemented application of Paco
that illustrates some of the key features we support. Paco is teaching the student how
to operate the gas turbine engines that propel naval ships. Paco has previously taught
the student how to engage an engine. Now, Paco is teaching the same procedure under
slightly more complex conditions: (1) a high vibration alarm has occurred on the gas
turbine generator, shutting down the generator, so the student will have to reset the alarm
before starting the generator; and (2) a second engine is already running, so the student
will have to stop it before starting the desired engine. The remainder of the paper will
use this example dialogue to illustrate aspects of our design.

Our pedagogical approach is based on the apprenticeship model of learning [2]. To
implement this approach, Paco uses a student model to dynamically interleave demon-
stration and coached practice, using the approach introduced by Rickel [17]. As the
student and Paco progress through a task, Collagen repeatedly identifies the set of valid
next steps. Paco consults the student model to see whether the student has sufficient
knowledge to choose one of them. (Any action that appears in the set of valid next steps
is considered correct if performed by the student). If so, it expects the student to take
the next step, and provides assistance only if the student requests it or makes a mistake.
If not, Paco intervenes and teaches the student what to do next (e.g., lines 8-12 and 18-



(1) Paco sets the state of the simulator.
(2) Paco “I’ve reset the simulation so that we

can try engaging an engine under slightly
different conditions.”

(3) Paco “Let’s engage engine one.”
(4) Student “Ok.”
(5) Paco “You take it from here.”
(6) Student “Let’s start the generator.”
(7) Paco “Good.”
(8) Paco (Pointing) “Now, notice that the

alarm light is on.”
(9) Paco “Before starting a generator, always

make sure that the alarm light is off so that
you’ll know when a new alarm appears.”

(10) Paco (Pointing) “Press the alarm reset
button on the generator in order to extin-
guish the alarm.”

(11) Student presses the alarm reset button on
the generator.

(12) Paco “Good.”
(13) Student “Ok.”
(14) Paco “You take it from here.”
(15) Student presses the on button on the gen-

erator.
(16) Paco “Great.”
(17) Paco “We succeeded in starting the gen-

erator.”
(18) Paco (Pointing) “Now, notice that engine

two is running.”
(19) Paco “Before starting an engine, al-

ways make sure that the other engine is
stopped.”

(20) Paco “Let’s stop engine two.”
(21) Paco (Pointing) “First, press the disen-

gage button on engine two in order to dis-
engage the clutch.”

(22) Student presses the disengage button on
engine two.

(23) Paco “Right.”
(24) Paco “The next step of stopping engine

two is to close the fuel valves on engine
two.”

(25) Student “Ok.”
(26) Paco “You take it from here.”
(27) Student closes fuel valve one on engine

two.
(28) Paco “Good.”

(29) Student closes fuel valve two on engine
two.

(30) Paco “Good job.”
(31) Paco (Pointing) “The next step is to press

the off button on engine two.”
(32) Student presses the off button on engine

two.
(33) Paco “Great.”
(34) Paco (Pointing) “The indicator light tells

us that engine two is stopped.”
(35) Paco “So, we succeeded in stopping en-

gine two.”
(36) Student “Ok.”
(37) Paco “You take it from here.”
(38) Student opens fuel valve one on engine

one.
(39) Paco “Good.”
(40) Student opens the bleed valve on engine

one.
(41) Paco “That was a correct action, but I

wasn’t expecting you to do it now.”
(42) Paco “Let’s go back to opening the fuel

valves on engine one.”
(43) Student opens fuel valve two on engine

one.
(44) Paco “Great.”
(45) Student presses the engage button on en-

gine one.
(46) Paco “Whoops, you can’t do that yet.”
(47) Student “What next?”
(48) Paco (Pointing) “Press the on button on

engine one.”
(49) Student presses the on button on engine

one.
(50) Paco “Good.”
(51) Student “I think I should set the throttle

speed.”
(52) Paco “Right.”
(53) Student “What should the speed be?”
(54) Paco “The speed should be stop.”
(55) Student sets the throttle speed to stop.
(56) Paco “Good.”
(57) Student presses the engage button on en-

gine one.
(58) Paco “Good job.”
(59) Paco “We succeeded in engaging engine

one.”

Fig. 1. An example dialogue in which Paco teaches steps in the current task (e.g., lines 21, 31),
teaches that subtasks are finished (e.g., lines 17, 35), provides help when requested (e.g., line
48), passes initiative to the student when she should know what to do next (e.g., lines 5, 14, 26),
provides positive feedback (e.g., lines 7, 16, 23), diagnoses and critiques incorrect actions (e.g.,
line 46), explains why steps needs to be done (e.g., line 9), discusses postconditions for actions
(e.g., line 34), and keeps the student focused on the current subtask (e.g., line 42).



35). Thus, as Paco and the student work through tasks, initiative passes back and forth
between them based on the student’s prior experience. Whenever Paco decides that the
initiative should shift, it lets the student know through verbal comments (e.g., “You take
it from here”).

Paco is fundamentally a tutor for supporting coached practice, but there are cer-
tain strategic pedagogical decisions within this approach that are flexible and easily
changed. For example, while it is capable of demonstrating actions on the simulation,
in Figure 1 Paco does not demonstrate any of the steps but rather prompts the student
to perform them. Whether or not to demonstrate is a strategic decision that can be made
based on properties of the domain and the student population. The contribution of this
work is not to argue for or against particular instructional strategies, but rather to show
that such decisions can easily be implemented in a collaborative dialogue system using
straightforward discourse generation rules.

Paco represents the procedures it will teach using Collagen’s declarative language
for domain-specific procedural knowledge. This knowledge serves as a model of how
domain tasks should be performed. Each task is associated with one or morerecipes
(i.e., procedures for performing the task). Each recipe consists of several elements
drawn from a relatively standard plan representation. First, it includes a set of steps,
each of which is either a primitive action (e.g., press a button) or a composite action
(i.e., a subtask). Composite actions give tasks a hierarchical structure. Second, there
may be ordering constraints among the steps that define a partial order over them. Third,
a task and its steps can have parameters, and a recipe can specify constraints (bindings)
among the parameters of a task and its steps. Finally, steps can have preconditions (to
allow Collagen to determine whether a step can be performed in the current state) and
postconditions (to determine whether the effects of a step have been achieved).

3 Collagen as a Foundation for Teaching Procedural Tasks

Collagen’s main value for building tutoring systems is that it provides a general model
of collaborative dialogue based on well-established principles from computational lin-
guistics. The model includes two main parts: (1) a representation of discourse state
and (2) a discourse interpretation algorithm that uses plan recognition to update the
discourse state given the actions and utterances of the user and agent. Previous tutor-
ing systems for procedural tasks do not include dialogue managers with this level of
generality.

Based on the work of Grosz and Sidner [7], Collagen partitions the discourse state
into three interrelated components: the linguistic structure, the attentional state, and the
intentional structure. The linguistic structure groups the dialogue history into a hier-
archy of discoursesegments.Each segment is a contiguous sequence of actions and
utterances that contribute to somepurpose(e.g., performing a subtask). For example,
lines 8 through 14 in Figure 1 represent a segment whose purpose is to reset the alarm,
and this segment is part of a larger segment (lines 6 through 17) whose purpose is to
start the generator. The segmentation scheme does not restrict the nature of the dialogue;
Collagen allows segments with an unknown purpose, it allows dialogue about a single



purpose to be split into multiple segments when it is interrupted by unrelated dialogue,
and a single utterance can even include clauses belonging to different segments.

The attentional state represents what the user and agent are talking about or work-
ing on at a given moment. Tutors must track the attentional state in order to interpret
the student’s actions and utterances (i.e., guide plan recognition [10]), tailor sugges-
tions, choose actions and utterances that serve as natural progressions of the dialogue
(or properly mark unexpected shifts with cue phrases [7]), and recognize unnatural fo-
cus shifts by the student that may suggest misconceptions. Representing and tracking
attentional state is simple for tutors that retain tight control over a fixed topic progres-
sion, but it becomes more complex in mixed-initiative dialogues where the student and
tutor have more freedom to initiate topics for discussion and choose the execution order
for tasks and subtasks.

Following Grosz and Sidner [7], Collagen represents the attentional state as a stack
of discourse purposes called the focus stack. When a new discourse segment is begun,
its purpose is pushed onto the stack. When a discourse segment is completed or dis-
continued, its purpose is popped off the stack. The stack mechanism allows Collagen
to handle interruptions and digressions. Additionally, the attentional state maintained
by Collagen includes an extension to the original model of Grosz and Sidner to capture
which participant holds the conversational initiative. This allows Paco to decide when
to explicitly pass the initiative to the student (e.g., “You take it from here.”).

While the linguistic structure and attentional state closely reflect the actual temporal
order of actions and utterances in the dialogue, the intentional structure represents the
decisions that have been made as a result of those actions and utterances, independent
of their order. As with attentional state, such information is most needed in mixed-
initiative tutoring systems that do not impose a strict ordering on decisions. Collagen
represents the intentional structure asplan trees, which are a partial implementation of
SharedPlans [6]. Nodes in the tree represent mutually agreed upon intentions (e.g., to
perform a task), and the tree structure represents the subgoal relationships among these
intentions. Plan trees also record other types of decisions, such as whether a recipe has
been chosen for a task, whether any of its parameters have been determined, and who
is responsible for performing the task (e.g., student, agent, or both).

The heart of Collagen is the discourse interpretation algorithm, which specifies how
to update the discourse state given a new action or utterance by either the user or agent.
Its objective is to determine how the current act contributes to the collaboration. For
example, the act could contribute to the current discourse segment’s purpose (DSP)
by directly achieving it (e.g., pressing a button when that action is the current DSP),
proposing how it can be achieved (i.e., suggesting a recipe), proposing or performing a
step in its recipe, or proposing a value for one of its unspecified parameters. If it does not
contribute to the current DSP, Collagen must determine whether it is a shift in focus or
an interruption. Collagen extends Lochbaum’s discourse interpretation algorithm [11]
with plan recognition, which can recognize when an act contributes to a DSP through
one or more implicit acts [10, 9].

Collagen performs “near-miss” plan recognition if it cannot find a correct interpre-
tation of an act. It systematically searches for extensions to the plan tree that would
explain the current act if some constraint were relaxed. For example, it can recognize



acts that would violate an ordering constraint, unnecessarily repeat a step that was al-
ready performed, or perform a step that should be skipped because its effects are already
satisfied. Thus, near-miss plan recognition attempts to find plausible interpretations of
student errors, providing a domain-independent capability for student diagnosis. Addi-
tionally, a domain author can define new types of errors or add explicit buggy recipes.

Figure 2 shows how Paco fits into the general Collagen architecture. The three soft-
ware components in this architecture are the simulator, Collagen, and the agent (e.g.,
Paco). Paco and Collagen can be used in a new domain given only the appropriate
domain task knowledge and an interface to the simulator. Collagen makes very few as-
sumptions about the simulator. Primarily, it assumes that the user and agent can both
perform domain actions (e.g., open a fuel valve) and can observe the actions taken by
each other. Collagen makes no assumptions about the simulator’s user interface. The
simulator can, however, optionally specify a screen location for domain actions, which
allows the agent to use a pointing hand to draw the user’s attention to an object or
indicate that the agent is performing an action.

Collagen represents utterances using an artificial discourse language derived from
earlier work by Sidner [18]. The language is intended to include the types of utterances
that people use when collaborating on tasks. Currently, Collagen’s language includes
utterance types for agreeing (“yes” and “OK”) and disagreeing (“no”), proposing a task
or action (e.g., “Let’s start the generator”), indicating when a task has been accom-
plished (e.g., “We succeeded in stopping engine two”), abandoning a task, asking about
or proposing the value of a parameter to a task or action (e.g., “What should the speed
be?”), asking or proposing how a task should be accomplished, and asking what should
be done next (“What next?”). Current work is extending Collagen’s language to include
additional elements from Sidner’s language, especially to support negotiation about task
decisions.

Domain Task
Knowledge

Student
Model

Student 
utterances

PACO 
utterances

PACO domain 
actions

Student
domain
actions

All domain
actions and

events
Discourse

state
PACO 

utterances

Student

Simulator PACO

COLLAGEN

Fig. 2. Paco’s Architecture

Since Collagen operates on statements in the artificial discourse language, it does
not rely on any particular method of gathering input utterances or generating output
utterances. Collagen provides a menu-driven user window that allows the user to con-
struct utterances in English. We also use commercial speech recognition software and
grammar rules as a shortcut to the menu-driven interface. To generate output utterances,
Collagen uses a combination of domain-independent and (optional) domain-specific
text templates. It displays the output strings in a window and speaks them using com-
mercial speech synthesis software.



4 Tutorial Behaviors as Collaborative Discourse Acts

Table 1 summarizes our progress in mapping tutorial behaviors into a CDS framework.
Due to space restrictions, it only describes a representative subset of Paco’s current
behaviors. The first column is a ranked list of tutorial act types. The second column
describes procedures that generate zero or more instances of each act type from the
current discourse state and student model. When it is Paco’s turn, it constructs a priori-
tized agenda by evaluating the procedures for each act type, and then selects the highest
ranked act in this agenda. The third column shows the semantics of each act type in
Sidner’s [18] artificial discourse language, which determines how the act will be inter-
preted by Collagen’s discourse interpretation algorithm. Several of the act types have
subcases, shown in the fourth column, which share the same basic semantics, but differ
in how they are rendered into English (fifth column).

Paco uses several elements of the discourse state to generate its discourse acts, in-
cluding the focus stack, the initiative, and plan trees. The focus stack is used, for ex-
ample, to avoid teaching a step before its purpose is in focus. The focus stack also
indicates when the student has interrupted the current task prematurely, which causes
Paco to generate a candidate discourse act which would end the current interruption. In
addition to the shared focus maintained by Collagen, Paco also maintains aprivate fo-
cusbecause it prefers to finish teaching an action before moving on. If the student starts
working on another part of the task (thus popping the current focus from the shared
focus stack) while there are still valid steps within Paco’s private focus (e.g., line 40 in
Figure 1), Paco will add a Correct Focus action (e.g., line 42) to the agenda, although
Paco might choose to execute a higher-ranked element on the agenda first (e.g., line 41).

The conditions for generating discourse acts are easy to compute given the data
structures maintained by Collagen. For example, several acts operate on thevalid next
actions, which refers to steps that can be executed next based on precondition and or-
dering constraints.Collagen computes this information during discourse interpretation.
Additionally, Collagen’s near-miss recognition computes the conditions needed to gen-
erate the various subcases of Negative Feedback (e.g., line 46). Finally, when the student
asks for help (e.g., line 47) this pushes a discourse purpose of helping the student onto
the stack which remains there until the agent provides the help (e.g., line 48).

Using the generic capabilities of Collagen to record information about a user, Paco
maintains a simple overlay model [5] that records, for each step in a recipe, whether
the student has been exposed to it. In Table 1, the condition “the student knows step!”
means that the student has been taught this step before. The condition “student knows
step! needs to be done” means the student has been taught all the steps that connect!

to the root of the current plan. Finally, Paco’s student model also records which actions
the student has been told that she has completed (e.g., line 17). The condition “the
student knows when! is complete” means that the tutor has told the student when!

was complete at least once before.
Paco’s domain knowledge can include recipes that achieve the subgoal of explaining

why a task step should be performed. Typically, these recipes are composed of one or
more utterances of text written by a domain expert, but, in principle, explanation recipes
can contain any type of primitive or abstract actions. Collagen’s facilities for executing
recipes in a collaborative setting are used to complete the explanation started by an



Act type Add instance to agenda for... Semantics Subcases (if any) Example gloss

Positive
feedback
(rank 1)

the user’s most recent action�
if it was, or it proposed, a valid
next action and has not yet
received feedback

accept(should(�)) � finished subtask Great job.
� wasn’t proposed by tu-
tor

Nice.

� caused unnecessary fo-
cus shift

That was a correct ac-
tion, but I wasn’t expect-
ing you to do it now.

� finished top-level goal We’re done with this sce-
nario.

none of above Good.

Negative
feedback
(rank 1)

the user’s most recent action�
if it was, or it proposed, an
invalid next action and has not
yet received feedback

reject(should(�)) � was already done Whoops, you already did
that.

�’s purpose was already
achieved

Whoops, you didn’t need
to do that.

� has an unsatisfied pre-
condition

Whoops, you can’t do that
yet.

executing� violates an
ordering constraint

Whoops, it’s too soon to
do that.

End
interrup-
tion
(rank 2)

each step! that is an
interruption on the focus stack

propose(:should(!) ! has known purpose Let’s stop closing the fuel
valves.

! has unknown purposeThat is not relevant to our
current task.

Teach
com-
plete
(rank 3)

each non-primitive! in the
current plan such that! is
complete and the student does
not know when! is complete

propose(achieved(!)) We succeeded in closing
the fuel valves.

Correct
Focus
(rank 4)

step! if it is the tutor’s private
focus but not the action on top
of the focus stack

propose(should(!)) Let’s return to opening
the fuel valves.

Give
initiative
(rank 5)

any valid next plan step! that
the student knows needs to be
done, if the tutor has initiative
and the student has not
requested help

propose(initiative =
user)

tutor has just proposed! Go ahead.

tutor has not just pro-
posed!

You take it from here.

Explain
Why
(rank 6)

every plan step! that is teach-
able (see Teach Step) and is
currently unexplained and has
an explanation recipe

first step of explanation
recipe

Before starting an engine,
always make sure that the
other engine is stopped.

Teach
step
(rank 7)

every valid next plan step!
that the student does not know
and whose parent is in focus

propose(should(!)) ! is primitive Now, you should press the
on button.

! is non-primitive The next step of engaging
the engine is to open the
fuel valves.

Remind
step
(rank 8)

every valid next plan step!
that the student knows and
whose parent is in focus

propose(should(!)) You need to press the on
button.

Propose
new
scenario
(rank 8)

purpose!, if the current plan is
complete, where! is the next
task to work on

propose(should(!)) Let’s try another scenario.
Let’s engage engine one.

Shift
Focus
(rank 8)

every plan step! that is not
currently on top of the focus
stack and the student knows
has to be done and has a child
c that is a valid next plan step
andc is not known by the stu-
dent

propose(should(!)) Let’s open the fuel valves.

Table 1.Tutorial discourse acts



Explain Why action. This general approach could be used to support other types of
multi-turn tutorial strategies as well [1].

The conditions for generating discourse acts represent necessary, but not sufficient,
conditions for Paco to perform the act. An advantage of making explicit all necessary
conditions for a discourse act is to make it easier to extend Paco with new discourse
acts or extend other agents with the ability to perform Paco’s tutorial actions [14]. Paco
chooses which act to perform based on the rankings of the discourse acts, given in the
first column of Table 1. For example, Paco prefers to give initiative when the student
knows what to do next rather than teach or remind her what to do next. We hypothe-
size that different rankings or other methods for choosing an act from the agenda will
produce different tutoring styles.

5 Evaluation

We assessed our progress on Paco through a formative evaluation with seven users.
They had no prior experience with Paco or research in user interfaces, AI, or dialogue
systems. Users received a single page of instructions, and then Paco instructed them on
a sequence of seven tasks in the Gas Turbine Engine simulator, with a variety of initial
conditions. The target task was to start engine one from an initial condition in which
engine two is running. Paco first taught four subtasks of this target task, then taught
the target task, and then had the users repeat this task twice more. Users completed the
tasks in 20 to 30 minutes. Next, they filled out a survey and discussed their opinions
with an interviewer.1 To test Paco’s effectiveness, five of the users were asked to teach
the target task back to the interviewer.

The results suggest that Paco is a reasonable tutor. Most users commented positively
on Paco’s overall teaching skills, explanations, feedback, clarity of communication, and
ability to understand what the user was doing. One user wanted the ability to ask “why”
questions, three users wanted more rationales for actions (although two users praised
Paco for providing rationales), and two users commented that Paco should not praise
actions that the user should know well. After their session with Paco, users felt some-
what or very confident in their ability to perform the task. Of the users who taught the
task back to the interviewer, three made no errors, one made a few minor errors but
completed the task, and one forgot to turn off engine two so failed to complete the task.

6 Conclusion

By mapping tutorial acts into the framework of collaborative discourse theory, Paco
provides a foundation for cross-fertilization between these two research areas. As our
next step, we plan to broaden the types of tutorial acts we consider to include those used
in recent analyses of human tutorial dialogues [13]. We are especially interested in the
relationship of hinting and prompting to collaborative discourse theory.

1 We thank Clifton Forlines for running and helping to design the evaluation.



References

1. B. Cheikes and A. Gertner. Teaching to plan and planning to teach in an embedded training
system. InProceedings of the Tenth International Conference on Artificial Intelligence in
Education, pages 398–409. IOS Press, 2001.

2. A. Collins, J. S. Brown, and S. E. Newman. Cognitive apprenticeship: Teaching the crafts of
reading, writing, and mathematics. In L. Resnick, editor,Knowing, Learning, and Instruc-
tion: Essays in Honor of Robert Glaser. Lawrence Erlbaum Associates, 1989.

3. J. Eisenstein and C. Rich. Agents and GUIs from task models. InProceedings of the Sixth
International Conference on Intelligent User Interfaces, pages 47–54, 2002. ACM Press.

4. R. K. Freedman.Interaction of Discourse Planning, Instructional Planning and Dialogue
Management in an Interactive Tutoring System. PhD thesis, Northwestern University, 1996.

5. I. P. Goldstein. Overlays: A theory of modelling for computer-aided instruction. Artificial
Intelligence Laboratory Memo 495, MIT, Cambridge, MA, 1977.

6. B. J. Grosz and S. Kraus. Collaborative plans for complex group action.Artificial Intelli-
gence, 86(2):269–357, 1996.

7. B. J. Grosz and C. L. Sidner. Attention, intentions, and the structure of discourse.Computa-
tional Linguistics, 12(3):175–204, 1986.

8. B. J. Grosz [Deutsch]. The structure of task oriented dialogs. InProceedings of the IEEE
Symposium on Speech Recognition, Pittsburgh, PA, April 1974. Carnegie-Mellon University.
Also available as Stanford Research Institute Technical Note 90, Menlo Park, CA.

9. N. Lesh, C. Rich, and C. Sidner. Collaborating with focused and unfocused users under
imperfect communication. InProc. 9th Int. Conf. on User Modelling, pages 64–73, 2001.

10. N. Lesh, C. Rich, and C. L. Sidner. Using plan recognition in human-computer collaboration.
In Proc. 7th Int. Conf. on User Modeling, pages 23–32, 1999.

11. K. E. Lochbaum. A collaborative planning model of intentional structure.Computational
Linguistics, 24(4):525–572, 1998.

12. N. K. Person, A. C. Graesser, R. J. Kreuz, V. Pomeroy, and the Tutoring Research Group.
Simulating human tutor dialog moves in autotutor.International Journal of Artificial Intelli-
gence in Education, 12:23–39, 2001.

13. R. Pilkington, editor.Special Issue on Analysing Educational Dialogue Interaction, vol-
ume 11 ofInternational Journal of Artificial Intelligence in Education, 2000.

14. C. Rich, N. Lesh, and J. Rickel. A plug-in architecture for generating collaborative agent
responses. InProceedings of the First International Joint Conference on Autonomous Agents
and Multi-Agent Systems, New York, 2002. ACM Press. Forthcoming.

15. C. Rich and C. L. Sidner. COLLAGEN: A collaboration manager for software interface
agents.User Modeling and User-Adapted Interaction, 8(3-4):315–350, 1998.

16. C. Rich, C. L. Sidner, and N. Lesh. Collagen: Applying collaborative discourse theory to
human-computer collaboration.AI Magazine, 22(4):15–25, 2001.

17. J. Rickel. An intelligent tutoring framework for task-oriented domains. InProceedings
of the International Conference on Intelligent Tutoring Systems, pages 109–115, Montr´eal,
Canada, June 1988. Universit´e de Montréal.

18. C. L. Sidner. An artificial discourse language for collaborative negotiation. InProceedings of
the Twelfth National Conference on Artificial Intelligence (AAAI-94), pages 814–819, Menlo
Park, CA, 1994. AAAI Press.

19. C. L. Sidner and M. Dzikovska. Hosting activities: Experience with and future directions for
a robot agent host. InProceedings of the Sixth International Conference on Intelligent User
Interfaces, pages 143–150, New York, 2002. ACM Press.

20. E. Wenger.Artificial Intelligence and Tutoring Systems. Morgan Kaufmann, 1987.
21. B. P. Woolf. Context-Dependent Planning in a Machine Tutor. PhD thesis, Department of

Computer and Information Science, University of Massachusetts at Amherst, 1984.


