HUMANOID ROBOTICS

Getting Humanoids fo Move
and Imitate

Maja J. Matari¢, University of Southern California

AS ROBOTS INCREASINGLY BE- THIS BEHAVIOR-BASED APPROACH TO STRUCTURING AND
come part of our everyday lives, they will

is- CONTROLLING COMPLEX ROBOTIC SYSTEMS USES IMITATION
abled, assistants in surgery and rehabiljta- FOR INTERACTION AND LEARNING. THE USE OF BASIS
pen, programming and control must become ~ BEHAVIORS, OR PRIMITIVES, LETS THESE HUMANOID ROBOTS
simpler and human-robot interaction mare DANCE THE MACARENA, DO AEROBICS, AND THROW.

difficult to control yet most natural for inter-

action with people and operation in human

environments.
As this article shows, we have used bjoand classifying visual input for recognizingBehavior-based robotics

logically inspired notions of behavior-basedchuman behavior as well as methods for struc-

control to address these challenges at the Uttisring the motor control system for general Our work over the last 15 years has focuse

versity of Southern California’s Interactionmovement and imitation-learning capabili-on developing distributed, behavior-based

Lab, part of the USC Robotics Research Labsies. Our approach brings these two pursuitsiethods for controlling groups of mobile
By endowing robots with the ability to imi

through human demonstration, a naturalems?We structure the motor system into arol systems consisting of a collection of

human—-humanoid interface. The human apikollection of movement primitives, which behaviors Behaviors are real-time processes
ity to imitate—to observe and repeat behawhen serve both to generate the humanoidthat take inputs from sensors (such as vision

iors performed by a teacher—is a poorlynovement repertoire and to provide predicsonar, or infrared) or other behaviors and ser

understood but powerful form of skill learn-tion and classification capabilities for visualoutput commands to effectors (wheels, motors,
i-perception and interpretation of movementor arms) or other system behaviors. The con-

ing. Two fundamental open problems in i
tation involve interpreting and understandinghis way, what the humanoid can do helps itroller then is a distributed network of such
the observed behavior and integrating thanderstand what it sees and vice versa. Tlwmmunicating, concurrently executed beha
visual perception and movement control sysmore it sees, the more it learns to do, and thusrs, typically with excellent real-time and scal-
tems to reconstruct what was observed. | the better it gets at understanding what it se@sg properties. The interaction of the behav

Our research has a similarly twofold goalfor further learning; this is the imitation iors through the environment produces th
we are developing methods for segmentingrocess. desired overall system performance.

- together much as the evolutionary proces®bots and, most recently, humanoids. Behay-
tate, we can program and interact with therbrought them together in biological sys-or-based control involves the design of con-

]
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The inspiration for behavior-based conttrohumans display complex dynamic behavi
comes from biology, where natural system real time and learn various motor skil
are believed to be similarly organized, franthroughout life, often through imitation.
spinal reflex movements up to more complex Methods for automating robot progran
behaviors such as flocking and foragfi®y] ming are in high demand. Reinforceme
We have focused on applying these principlegarning, which lets a robot improve its beha
to high-dimensional, behavior-based systenisr based on trial-and-error feedback, is ve
such as those involved in controlling individ-popular. However, reinforcement learning
ual and group behavior of mobile and huslow, as the robot must repeatedly try varig
manoids robots. In all problem domains, webehaviors in different situations. It can al
have used basis behaviors poimitives to | jeopardize the robot. In contrast, learning
structure and simplify the control problem,imitation is particularly appealing because
as well as to enable adaptation and learninggts the designer specify entire behaviors
demonstration, instead of using low-level p
Basis behaviors and primitives.Several| gramming or trial and error by the robot.
methods for principled behavior design and In biological systems, imitation appears
coordination are possibfén 1992, we intro-| be a complex learning mechanism that
duced the concept bhsis behaviorsa small | volves an intricate interaction between vis
set of necessary and sufficient behaviors thaerception and motor control, both of whi
could be composed (by sequencing or supesre complex in themselves. Although vario
position) for handling controller complexity animals demonstrate simple mimicry, only
and simplifying robot programming. Basjsvery few species, including humans, chim
behaviors are the primitives that serve as a suand dolphins, are capable of so-catteg imi-
strate for control, representation, and learnintation, which involves the ability to learn arb
in our behavior-based systems. In first demortrary new skills by observatiorT his suggests
strating their effectiveness on groups of mobilea complex mechanism, which has beenim
robots, we used a basis set consisting of avpidated as the basis for gestural communical
ance, following, homing, aggregation, and disand even language evolutidiihe origins of

persion, which served to demonstrate highesuch a mechanism appear to lie in an evoldate a skill, then perfect it through repetition, s
, tionarily older system that combines percepthat the skill becomes a routine and itself

level group behaviors including flockin
foraging and collection, and herdiPve also | tion and motor control and enables mimicry
demonstrated how, given such a basis behathat is, the mirror systefn.
ior set, a learning algorithm could improve
behavior selection over time.
Collections of behaviors are a natural repNeuroscieme inspiration
resentation for controlling collections of
robots. But how can we use the same idea in Evidence from neuroscience studies
the humanoid control domain, where theanimals points to two neural structures

body’s individual degrees of freedom ardind of key relevance to imitation: spinal at the classification level, for finding a close

more coupled and constrained? For this, wields and mirror neurons. Spinal fields,
have combined the notion of primitives withfound in frogs and rats so far, code for com
another line of evidence from neuroscience—plete primitive movements (or behaviors)
mirror neurons—to structure humanoid such as reaching and wipidddore inter-
motor control into a general and robust sysestingly, they are additive; when multiple
tem capable of a variety of skills and leannfields are stimulated, the resulting movemer
ing by imitation® is a meaningful combination. Because th
spine encodes a finite number of such field
Humanoid control and imitation. Robot | they represent a basis set of primitives an
control is a complex problem, involving sen-were precisely the inspiration for our work
sory and effector limitations and variouson basis behaviors.

forms of uncertainty. The more complex the Investigators recently found neurons with
system to be controlled, the more we musto-called mirror properties in monkeys an
modularize the approach to make contrahumans. They appear to directly connect th
viable and efficient. Humanoid agents andisual and motor control systems by map

robots are highly complex; a human arm haging observed behaviors, such as reachin_

=)

orut the basic idea serves as rich inspiratig
Isfor structuring a robotic imitation system.
We combine these two lines of evidence,
n-spinal basis fields and mirror neurons, into a
nmore sophisticated notion of behaviors, or
vperceptual-motor primitivesThese let a
2rgomplex system, such as a humanoid, rec-
iognize, reproduce, and learn motor skills.
uFhe primitives serve as the basis set for ge
s@rating movements, but also as a vocabulary
byor classifying observed movements into exe
itutable ones. Thus, primitives can classify,
bpredict, and act.
0- In our approach to imitation, the vision sys
tem continually matches any observed human
tanovements onto its own set of motor primi
intives. The primitive, or combination of primi-
\dives, that best approximates the observed input
chalso provides the best predictor of what the
usobot expects to observe next. This expectatic
dacilitates visual segmentation and interpreta
pstion of the observed movement. Imitation, ther
is a process of matching, classification, and pr
- diction. Learning by imitation, in turn, creates
new skills as novel sequences and superpos
pliions of the matched and classified primitives.
tiofhe hierarchical structure of our imitation ap
proach lets the robot initially observe and imi:
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—primitive. The set of primitives can thus adapt
over time, to allow for learning arbitrary new
skills—that is, for “true” imitation.

Figure 1 shows the structure of our imitar
tion architecture, including the visual per-
ception and attention module, the classifica

ition module, and the motor primitivé3he
wéearning component allows adaptation both

Perception
Visual tracking Attention
of movement selection

Matching and

Learnin e O
garning classification
Action
Motor
primitives

seven degrees of freedom (DOF), the hanand grasping, to motor structures that profigure 1. Our imitation architecture, structured around
has 23, and the control of an actuated humatuce thenf.How many such movements theperceptual-motor primifives used for movement
spine is beyond current consideration. Yemirror system directly maps is still unknown,segmentation, classification, and generation.
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match to the observed behavior, and the What constitutes a good set of primitivesed, it must select the visual features that are
movement generation level, for optimizingWe have experimented with two types: innatenost relevant to the given imitation task
and smoothing the performance. and learned. Innate primitives are userbetermining what those features are for
selected and preprogrammed. We havgiven demonstration is a challenging proble
demonstrated the effectiveness of a basis setOur previous work showed that peopl
Choosing the primiiives consisting of three types: watching videos of arm movements displaye
no difference in attention whether they wer
Movement primitives or behaviors are the  discrete straight-line movements of subjust watching or intending to subsequentl
unifying mechanism between visual percep- sets of degrees of freedom, accounting famitate. In both cases, they fixated at the end
tion and motor control in our approach, and reaching-type motions; point—the hand or a held objé€tiowever,
choosing the right ones is a research challenge, continuous oscillatory movements of sub<lassifying all possible end-point trajectorie
driven by several constraints. On the one hand, sets of DOFs, accounting for repetitiveinto a useful set of task-independent categories

the motor control system imposes physical motions? and or primitives is impossible. Fortunately, thi
bottom-up limitations, based on its kinematic  postures, accounting for large subsets a§ not necessary, because the imitation system
and dynamic properties. It also provides top- the body’s DOFSE. is targeted for mapping observed movement
down constraints from the type of movements of bodies similar to the observer’s own moto

the system is expected to perform, because theOur approach computes the learned primiepertoire. Accordingly, the mirror system i
primitives must be sufficient for the robo 3 sensitive to the biological motion of similar
i ire. h bodies (f le, k d
hand, the visualsystem's srueure and i 1 MMM e, anc human movements). Frter.
infl he choice of primitives f i ,although h id) bodi -
ihevarous observed movemenisonto & wn WV CAN EFFECTIVELY BIAS Gl capable o vast movement repertore
executable repertoire. the typical, everyday movement spectrum i

To serve as a general and parsimoni us THE VISUAL PERCEPTION not nearly as large.
basis set, the primitives encode group: or MECHANISM TOWARD Consequently, we can effectively bias th
classes of stereotypical movements, inv ri- visual perception mechanism toward recog-
ant to exact position, rate of motion, size, i 1d RECOGNIZING MOVEMENTS nizing movements that it can execute, espe-
perspective. Thus, they represent the ger ric THAT IT CAN EXECUTE, cially those movements it performs mos
building blocks of motion that can be imp - frequently. The motor control system’s struc
mented as parametric motor controllers. C in- ESPECIALLY THOSE ture, and its underlying set of movemen
sider a primitive for reaching. Its mostimp - MOVEMENTS IT PERFORMS primitives, provides key constraints for visua
tant parameter is the goal position of the nd movement recognition and classification
point—that is, the hand or held object It MOST FREQUENTLY. Our primitive classifier uses the primitives’
might be further parametrized by a defe |t descriptions to segment a given motion based
posture for the entire arm. Such a primit re on the movement data. In the experiments

lets a robot reach toward various goals withitives directly from human movement data. Welescribed below, we used end-point data for
a multitude of tasks, from grasping objectgather different types of such data, using theoth arms as input for the vector quantiza-
and tools, to dancing, to writing and draw-following methods: vision-based motiontion-based classifiét Again, a key issue in
ing. We used just such a reaching primitive iracking of the human upper body (using ouclassification is representing the primitive
our experiments to reconstruct the popularacking system), magnetic markers on theuch that they account for significant invari
dance, the Macarerfa. arm (using the FastTrak system), and fullances, such as position, rotation, and scaling.
This approach to motor control stands|irbody joint angle data (using the Sarcos Sen- Our classification approach forms the orig
sharp contrast to the explicit planning apsuit). We first reduce the dimensionality of thénal motion into a vector of relative end-poin
proach to controlling robot manipulators,movement data by employing principal commovements between successive frames, then
which computes trajectories at runtimeponents analysis, wavelet compression, aremoothes and normalizes it. At the classifi-
whenever they are needed. While fully geneorrelation across multiple DOF. Next, we useation level, we ignore all other information,
eral, on-demand trajectory generation|iglustering techniques to extract patterns about the movement, such as global positian
computationally expensive and potentiallysimilar movements in the data. These clusteend arm configuration, enabling a small set
slow. In our approach, instead of computingr patterns form the basis for the primitivespf high-level primitive representations instead
trajectories over again, stereotypical trajecthe movements in the clusters are generalized a potentially prohibitively large set of
tories are built in as well as learned, themand parameterized, to result in primitives fodetailed ones. Other information necessary
looked up and parameterized for the specifiproducing a variety of similar movements.| for correct imitation serves for parameteriz:
task at hand. The notion of primitives capi- ing the selected primitives at the level of
talizes on the fact that it is simpler to learrVvisual classification into primitives. Visual | movement reconstruction and execution.
and reuse an approximation of the inversperception is also an important constraintjon To simplify matching, our approach de-
kinematics for specific areas in the work-the primitives and a key component of the imiscribes primitives themselves in the same
space or a specific trajectory than it is to contation process. Because the human (anmtbrmalized form. For each time step of th
pute them anew each time. humanoid) visual attention is resource-lim-observed motion, we compare a fixedr
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horizon window to every primitive an Finally, we used full-body joint angle datatrol. We have added joint limits and self
select the one that best matches the inpwgathered with the Sarcos Sensuit, a wearabtellision detection. Adonis consists of eigh
Adjacent windows with identical classifi- exoskeleton that simultaneously records thegid links connected with revolute joints of
cations connect to form continuous segjoint positions of 35 DOF: the shoulders,one DOF and three DOF, totaling 20 DOF,
ments. For any segments that fail to matcklbows, wrists, hips, knees, ankles, and waist.
the given primitives, our approach uses théThese data are obtained through a collabo-
reaching primitive to move the end pointration with the ATR Dynamic Brain Project
frame by frame. Because the horizon winat the Human Information Processing Labs i
dow is of fixed size, the perception of a disKyoto, Japan.) We are currently focusing o
tinct match of a primitive applies only far reproducing the upper-body movements fro
the given timescale. We are currently workthose data on our testbeds, described next.
ing on addressing classification at multiple
timescales.
To validate our approach, we implementeEvaluation testheds
various examples of imitation, includin
reaching, ball throwing, aerobics moves, and To properly validate our approach to
dance, all on humanoid testbeds, takingpumanoid motor control and imitation, we
human demonstrations as inpat3 use different experimental testbeds. Most g
our work so far has been done on Adoni
Using human movement dataWe used sev+ (developed at the Georgia Institute of Tec
eral types of human movement data as inpulogy Animation Lab), a 3D rigid-body
to test our approach to imitation, includingsimulation of a human with full dynamics
visual motion tracking, Cartesian magnetiqFigure 3). Mass and moment-of-inerti
markers, and joint angle data. For vision-baseidformation comes from the graphical bod
motion tracking, we developed a motion-and human density estimates, and the motiq
tracking system that extracts features from equations are calculated using a commerci
video stream. The system is simple, since golver, SD/Fast. The simulation acts undg
can easily be replaced by a more sophisticatgglavity and accepts external forces from th
commercial version. Itrelies on a constrainednvironment. The static ground contacFigure 2. A snapshot of the output of our vision-based
(unoccluded and unambiguous) initial posiremoves the need for explicit balance cormotion-tracking system.
tion and kinematic model of the object or body
being imitated. This approach greatly simpli
fies finding the initial match between the fea
tures in the visual image and the observe
body. The match enables tracking of the bod
over time, allowing for fast computation and
updating of current limb position, as well as
simple prediction of future position, used in Y
turn to speed up recognition. Our ongoin
work will address how the primitives them-
selves also provide further predictive capabil ¥
ity for the visual tracking. Figure 2 shows g
shapshot of the output of the vision-base

3 DOF neck

3 DOF shoulder

3 DOF shoulder
1 DOF elbow y

motion-tracking system. 3 DOF elbow y /
We also used 3D magnetic marker dat \
from the human arm, gathered from subject 3 DOF waist Y.

imitating videos of arm movements while
wearing FastTrak markers for position
recording. (These data were gathered atth 3 poF wrist ./

National Institutes of Health Resource fo .‘*/,'

the Study of Neural Models of Behavior ai 4 /
the University of Rochester.) We used fou
markers: near the shoulder, the elbow, th
wrist, and the start of the middle finger. The
movement data resulting from this experi
ment serve as input into our imitation sys
tem, as well as for automatically learning th¢ 4
primitives. Figure 3. The Adonis 20-degree-of-freedom full-body dynamic simulation.
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but most of our experiments use the 13 DORad limitations for particular types of movf-

of Adonis’ upper body and currently do notments. This led us to propose and explo
address locomotion. combination approach, where multiple typ
We also use a pair of Cosimir 3D humanoiaf primitives can be sequenced and co

es ance control); and

avatars (developed at the University of Dortbined. For example, we constructed a basis trol the joints.

mund), which provide graphical simulationsbehavior set consisting of three types
with 65 DOF each (Figure 4). Unlike Adonis,primitives:

these avatars have actuated fingers, allowing

experiments with fine motion control. Ho discrete straight-line movements usi
ever, the avatars are not directly equipped with impedance control;

dynamics, so we can experiment with differ= continuous oscillatory movements usir
ent models of mechanics, muscle models, and

of

avoidance, implemented as a repulsive ve
ngor field. The continuously active fourth prim-
itive combined with whatever other primitive

so forth. As with Adonis, we do not addresg
balance with these avatars, but anchor the
at the hips. The avatars serve to imitate ea
other or an external demonstrator.

As the project progresses, we plan to ug
physical humanoid robots as the ultimat
testbeds for evaluating our imitation arch
itecture. The NASA Robonaut is one candi
date, through collaboration with the John
son Space Center. The Sarcos full-bod
humanoid robot is another, through collab
oration with the ATR Dynamic Brain Pro-
ject. Both robots are highly complex, built to
approximate human body structure as faith
fully as practically possible, and feature
binocular cameras for embodied visual pef
ception critical for imitation.

Figure 4. The Cosimir 65-degree-of-freedom full-body avata

Is.

OUR APPROACH TO HUMANOID
motor control and imitation relies on the use
of a set of movement primitives. We have
experimented with different types of such
primitives on different humanoid simulation
testbeds. Specifically, we have implemente
two versions of the spinal fields found in
animals. One closely modeled the frog data,
and used a joint-space representation—i
controlled individual joints of Adonis’s
arms? The other used another biologically]
inspired approach, impedance contibl,
which operates in the external coordinat
frame—in our case, each of Adonis’s hands.
Our impedance motor controller applied
forces at the hands and dragged the rest
the arm along. We also used a default po
ture for the arm, which provided natural-
appearing, whole-arm movements tha
reached the desired hand destination.

We tested both types of primitives on a
sequential motor task, dancing th

11

Macarena. Both proved effective, but eaclFigure 5. Snapshots of Adonis dancing the Macarena.

coupled oscillators (or a collection of
e a piece-wise linear segments using imped

m= postures, using PD-servos to directly con

We also added a forth type of primitive, for

ngvas executing to prevent any collisions

22
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between body parts. In the Macarena, forechniques, it is not what happens in imitatiorsubgoals, we aim for a more biologically moti-
example, this is necessary for arm movemenis nature and it is neither necessary nor helwated model of imitation: a system capable of
around and behind the head (Figure 5). | ful for our main goals: natural interaction andmitating the observed behavior—that is, the
These results validated the notion of primprogramming of robots. For those purposgegqrocess that brings the subgoals about, with suf-
itives and served as a basis for our imitatiowe aim for an approximation of the observedicient, but not perfect, accura&s.
architecture. Primitives provide higher-levelbehavior, one that allows any necessary free- Because our current movement primitives
movement descriptions; metric informationdom of interpretation by the humanoid robotrepresent whole-arm movements, our visual
serves to parameterize those descriptions fbut achieves the task and effectively commusystem either can use only the end-point
generating executable movement. This |akicates and interacts with the human. (hand) location for imitation or can gathe
lows a small number of general primitivesito  Our goal is also distinct frotask-level imi-| higher-fidelity data that include the position
represent a large class of different moyetation, which only achieves the demonstration'sf the elbow and other markers. In the exper-
ments, such as reaches to various destinatiogeal, but does not imitate the behavigréments described here, the position of the
on and around the body. involved. This problem has been studied itnand over time sufficed for effective imita-
Our goal is not to achieve perfect, com-assembly robotics, where investigators usedtan. The system segments hand trajectory
pletely precise, high-fidelity imitation. While robotic arm to record, segment, interpret, andver time using the classifier, which, at each
that might be possible, through the use| ahen repeat a series of visual images of a humanint in time, matches the expected output of
exact quantitative measurements of the plperforming an object-stacking taSkWhile | each of the primitives with the observed input
served movement using signal-processinthat work focused on visual segmentation intand selects the best match. Consecutive
matches of the same primitive indicate a
higher confidence in the match. The classifi-
cation output is a sequence of primitives and
220 i 16 their associated parameters. These then ga to
"""" . CZ‘;L"S?E% the motor control system and activate the
180 A AN primitives in turn (and avoidance in parallel
N rc(9:10) to reconstruct the observed behavfo®
Y 140 R Arc(7,8) 8 In validating the imitation architecture, we
L!ne(5,6) selected tasks from athletics, dancing, and
100 "3 L!"e(3’4) 4 aerobics; six tasks were performed by a
| Line(1.2) human demonstrator in front of the vision
60 system and presented to our imitation system.
140 160 180 200 220 240 260 280 300 0 40 .80 120 160 200 Figure 6 shows an example of the system per-
(a) X T 1065 formance on three human-demonstrated
200 16 movements: a throw, a twist, and a raising af
180 Circle(1,2) the armg213We are currently pursuing meth-
Arc(5,6) 12 ods for evaluating the quality of the resulting
0 Arc(3,4) imitation, both in terms of the produced end-
y 140 Arc(1,2) 8 point trajectories and the overall qualitative
120 Line(5,6) appearance. Additional information about this
Line(3,4) 4 research program and videos demonstrating
100 Line(1,2) the performance of the imitation system arg
80 found at robotics.usc.edu/~agents/imitation.
210 220 230 240 250 260 270 280 0 40 80 120 160 200 html. =
(b) X Time (frames)
180 16
160 Circle(1,2)
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