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COLLAGEN:
Applying Collaborative Discourse Theory

to Human-Computer Interaction

Charles Rich, Candace L. Sidner and Neal Lesh

2 We describe an approach to intelligent
user interfaces based on the idea of
making the computer a collaborator, and
an application-independent technology for
implementing such interfaces.

What properties of a user interface would
make you want to call it intelligent? For us,
any interface that is called intelligent should
at least be able to answer the six types of
questions from users shown in Figure 1. Be-
ing able to ask and answer these kinds of
questions implies a flexible and adaptable di-
vision of labor between the human and the
computer in the interaction process. Unlike
most current interfaces, an intelligent user in-
terface should be able to guide and support
you when you make a mistake or if you don’t
know how to use the system well.

What we are suggesting here is a
paradigm shift. As an analogy, consider
the introduction of the undo button. This
one button fundamentally changed the
experience of using interactive systems by
removing the fear of making accidental mis-
takes. Users today expect every interactive
system to have an undo button and are
justifiably annoyed when they can’t find
it. By analogy, to focus on just one of the
question types in Figure 1, what we are
saying is that every user interface should
have a “What should I do next?” button.

Note that we are not saying that each of
the questions in Figure 1 must literally be a
separate button. The mechanisms for ask-
ing and answering these questions could be
spoken or typed natural (or artificial) lan-
guage, adaptive menus, simple buttons, or
some combination of these. We have exper-
imented with all of these mechanisms in the
various prototype systems described later.

Finally, some readers may object that an-
swering the question types in Figure 1 should
be thought of as a function of the “appli-
cation” rather than the “interface.” Rather

Who should/can/will do ?

What should I/we do next ?

Where am/was I ?

When did I/you/we do ?

Why did you/we (not) do

How do/did I/we/you do ?

Figure 1. Six Questions for an Intelligent Interface.

(Adapted from the news reporter’s “five W’s.”) The blanks are filled in
with application-specific terms, ranging from high-level goals, such as “pre-
pare a market survey” or “shut down the power plant,” to primitive actions,
such as “underline this word” or “close valve 17.”

than getting into a unproductive semantic ar-
gument about the boundary between these
two terms, we prefer instead to focus on what
we believe is the real issue, namely, whether
this characterization of intelligent user in-
terfaces can lead to the development of a
reusable middleware layer that makes it easy
to incorporate these capabilities into diverse
systems.

Again, there is a relevant historical anal-
ogy. A key to the success of so-called wimp
(Windows, Icons, Menus and Pointers) in-
terfaces has been the development of widely
used middleware packages, such as Motif TM

and SwingTM. These middleware packages
embody generally useful graphical presenta-
tion and interaction conventions, such as tool
bars, scroll bars, check boxes, and so on. We
believe that the next goal in user interface
middleware should be to codify techniques for
supporting communication about users’ task
structure and process, as suggested by the
question types in Figure 1. This article de-
scribes a system, called CollagenTM, which is
the first step in this direction.
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Collaboration
So what does all of this have to do with the
“collaborative discourse theory” in the title of
this article? The goal of developing generic
support for communicating about the user’s
task structure cannot, we feel, be achieved
by taking an engineering approach focused
directly on the questions in Figure 1. We
therefore started this research by looking for
an appropriate theoretical foundation, which
we found in the concept of collaboration.

Collaboration is a process in which two
or more participants coordinate their actions
toward achieving shared goals. Most col-
laboration between humans involves commu-
nication. Discourse is a technical term for
an extended communication between two or
more participants in a shared context, such
as a collaboration. “Collaborative discourse
theory” (see theory sidebar) thus refers to
a body of empirical and computational re-
search about how people collaborate. Essen-
tially, what we have done in this project is
apply a theory of human-human interaction
to human-computer interaction.

In particular, we have taken the approach
of adding a collaborative interface agent (see
Figure 2) to a conventional direct-manipu-
lation graphical user interface. The name
of our software system, Collagen (for Coll-
aborative agent), derives from this approach.
(Collagen is also a fibrous protein that is the
chief constituent of connective tissue in ver-
tebrates.)

The interface agent approach mimics the
relationships that typically hold when two
humans collaborate on a task involving a
shared artifact, such as two mechanics work-
ing on a car engine together or two computer
users working on a spreadsheet together.

In a sense, our approach is a very literal-
minded way of applying collaborative dis-
course theory to human-computer interac-
tion. We have simply substituted a soft-
ware agent for one of the two humans that
would appear in Figure 2 if it were a pic-
ture of human-human collaboration. There
may be other ways of applying the same the-
ory without introducing the concept of an
agent as separate from the application (Or-
tiz & Grosz 2000), but we have not pursued
those research directions.

Notice that the software agent in Figure 2
is able both to communicate with and observe
the actions of the user and vice versa. Among
other things, collaboration requires knowing
when a particular action has been done. In
Collagen, this can occur two ways: either by
a reporting communication (“I have done x”)

observe

Agent

communicate

interact interact

observe

Application

User

Figure 2. Collaborative Interface Agent.

or by direct observation. Another symmetri-
cal aspect of the figure is that both the user
and the agent can interact with the applica-
tion program.

There are many complex engineering is-
sues regarding implementing the observation
and interaction arrows in Figure 2, which are
beyond the scope of this article (Lieberman
1998). In all our prototypes, the applica-
tion program has provided a program inter-
face (api) for performing and reporting prim-
itive actions and for querying the application
state. Communication between the user and
the agent has been variously implemented us-
ing speech recognition and generation, text
and menus.

Outline of the Article

The remainder of this article lays out the
work we have done in more detail, starting
with snapshots of four interface agents built
by us and our collaborators in different do-
mains using Collagen. Following these ex-
amples comes a description of the techni-
cal heart of our system, which is the rep-
resentation of discourse state and the al-
gorithm for updating it as an interaction
progresses. Next, we discuss another key
technical contribution, namely how Collagen
uses plan recognition in a collaborative set-
ting. Finally, we present the overall sys-
tem architecture of Collagen, emphasizing
the application-specific versus application-in-
dependent components. We conclude with a
brief discussion of related and future work.

Application Examples

This section briefly describes four interface
agents built by us and our collaborators in

2



Theory

In 1986, Grosz and Sidner proposed
a tripartite framework for modelling
task-oriented discourse structure. The
first (intentional) component records
the beliefs and intentions of the dis-
course participants regarding the tasks
and subtasks (“purposes”) to be per-
formed. The second (attentional) com-
ponent captures the changing focus of
attention in a discourse using a stack
of “focus spaces” organized around the
discourse purposes. As a discourse
progresses, focus spaces are pushed
onto and popped off of this stack. The
third (linguistic) component consists
of the contiguous sequences of utter-

ances, called “segments,” which con-
tribute to a particular purpose.

Grosz and Sidner extended this ba-
sic framework in 1990 with the intro-
duction of SharedPlans, which are a
formalization of the collaborative as-
pects of a conversation. The Shared-
Plan formalism models how intentions
and mutual beliefs about shared goals
accumulate during a collaboration.
Grosz and Kraus provided a com-
prehensive axiomatization of Shared-
Plans in 1996, including extending it
to groups of collaborators.

Most recently, Lochbaum developed
an algorithm for discourse interpreta-
tion using SharedPlans and the tri-
partite model of discourse. This al-

gorithm predicts how conversants fol-
low the flow of a conversation based
on their understanding of each other’s
intentions and beliefs.

References
Grosz, B. J., and Sidner, C. L. 1986.
Attention, intentions, and the structure
of discourse. Computational Linguistics
12(3):175–204.
Grosz, B. J., and Sidner, C. L. 1990.
Plans for discourse. In Cohen, P. R.; Mor-
gan, J. L.; and Pollack, M. E., eds., Inten-
tions and Communication. Cambridge,
MA: MIT Press. 417–444.
Grosz, B. J., and Kraus, S. 1996. Col-
laborative plans for complex group action.
Artificial Intelligence 86(2):269–357.
Lochbaum, K. E. 1998. A collaborative
planning model of intentional structure.
Computational Linguistics 24(4).

four different application domains using Col-
lagen. We have also built agents for air travel
planning (Rich & Sidner 1998) and email
(Gruen et al. 1999). All of these agents are
currently research prototypes.

Figure 3 shows a screen image and sample
interaction for each example agent. Instances
of the questions types in Figure 1 are under-
lined in the sample interactions

Each screen image in Figure 3 consists of a
large application-specific window, which both
the user and agent can use to manipulate
the application state and two smaller win-
dows, labelled “Agent” and “User,” which are
used for communication between the user and
agent. Two of the example agents (3a and 3d)
communicate using speech recognition and
generation technology; the other two allow
the user to construct utterances using hier-
archical menus dynamically generated based
on the current collaboration state.

The agent in Figure 3a helps a user set up
and program a video cassette recorder (vcr).
The image in the figure, which a real user
would see on her television screen, includes
the vcr itself so that the agent can point at
parts of the vcr during explanations (see line
12). In the first part of the vcr agent tran-
script, the agent helps the user eliminate the
annoying blinking “12:00” that is so common
on vcr clocks. Later on, the agent walks the
user through the task of connecting a cam-
corder to the vcr.

The agent in Figure 3b was developed in
collaboration with the Industrial Electronics
and Systems Laboratory of Mitsubishi Elec-
tric in Japan. The application program in
this case is a sophisticated graphical inter-
face development tool, called the Symbol Ed-
itor. Like many such tools, the Symbol Edi-
tor is difficult for novice users because there

are too many possible things to do at any
moment and the system itself gives no guid-
ance regarding what to do next. Our agent
guides a user through the process of achieving
a typical task using the Symbol Editor, au-
tomatically performing many of the tedious
subtasks along the way.

The agent in Figure 3c was developed in
collaboration with the Information Sciences
Institute of the University of Southern Cali-
fornia (Rickel et al. 2001). This agent teaches
a student user how to operate a gas turbine
engine and generator configuration using a
simple software simulation. The first time
the agent teaches a new task or subtask, it
walks the student through all the required
steps. If a task has already been performed
once, however, the agent tells the student to
“take it from here” (line 3). If the student
later asks for help (line 5), the agent will de-
scribe just the next step to be performed.

The gas turbine agent is part of a larger
effort, which also involves the MITRE Cor-
poration (Gertner et al. 2000), to incorpo-
rate application-independent tutorial strate-
gies into Collagen. Teaching and assisting
are best thought of as points on a spectrum
of collaboration (Davies et al. 2001), rather
than as separate capabilities.

Finally, Figure 3d shows an agent being
developed at the Delft University of Tech-
nology to help people program a home ther-
mostat (Keyson et al. 2000). The transcript
here illustrates only a very simple interaction
with the agent. This agent will eventually
be able to help people analyze their behav-
ior patterns and construct complicated heat-
ing and cooling schedules to conserve energy.
This work is part of a larger research project
at Delft to add intelligence to products.
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1 User says "Hello."
2 Agent says "Hello, what’s your name?"
3 User says "Candy."
4 Agent says "Hello, Candy!"

5 User says "Let’s set the clock."
6 Agent says "What is the time?"
7 User says "The time is 11:00 AM."
8 Agent sets the clock to 11:00 AM.

...
9 User says "How do I play back a video from my camcorder?"

10 Agent says "First, plug in the camcorder cables."
11 User says "How do I plug in the camcorder cables?"

12 Agent points to where you plug in the camcorder cables.
13 Agent says "The red cable plugs into the red terminal, the

black cable plugs into the black terminal, and the yellow cable
plugs into the yellow terminal. Make sure the other ends of the

cables plug into the corresponding colors on the camcorder."
14 User says "What next?"
15 Agent says "Now press Play on your camcorder. You should

see a picture on the TV screen."

16 User says "Ok."
17 Agent says "I don’t see a picture. Make sure the camcorder

is plugged in or has fresh batteries, and is turned on."
18 User says "Ok."

19 Agent says "Good. It’s working."

(a) VCR Agent.

1 Agent says "Please list the other (non-boolean) attributes
used in the columns of the logic table."

2 User says "The attributes are: voltage."
3 Agent creates a new user-defined attribute.

4 Agent enters "voltage" as the name of the new attribute.
5 Agent says "Please select the data type of the new attribute."
6 User selects float as the data type of the new attribute.
7 User clicks ok to accept the definition of voltage.

8 Agent says "Please edit the initial setting for the voltage
attribute (if necessary) and then click ok."

9 User clicks ok to accept 0.0 as the initial setting for voltage.
10 Agent shows the expression editor for column 1.

11 Agent enters (voltage > 0.0) as the title for column 1.
12 Agent says "Please define an expression for column 1."

...[user goes to lunch]...
14 User says "Where are we?"

15 Agent says "You are defining an expression for column 1, as
part of making a logic table."

16 User enters (voltage >= 1000.0) as the title for column 1.
17 Agent shows the logical operator window.

18 Agent selects the >= operator.
19 Agent drags and drops >= into expression for column 1.
20 Agent selects the voltage attribute.
21 Agent drags and drops voltage into expression for column 1.

22 Agent types "1000.0" into expression for column 1.

(b) Symbol Editor Agent.

1 Agent says "Let’s start the generator."
2 User says "Ok."
3 Agent says "You take it from here."

4 User presses the alarm reset button.
5 User says "What next?"
6 Agent says "Please press the gas turbine generator on button."
7 Agent points to the gas turbine generator on button.

8 User presses the gas turbine generator button.
9 Agent says "Good. We have successfully started the generator."

(c) Gas Turbine Agent.

1 Agent says "Let’s set the temperature in a room."
2 User selects the bathroom.
3 User says "What next?"

4 Agent says "What should the temperature setting be?"
5 User says "18 degrees Centigrade."
6 Agent sets the temperature in the bedroom to 18 degrees.

(d) Thermostat Agent.

Figure 3. Example Agents Built with Collagen.
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DisplaySchedule

RecordProgram

AddProgram

RecordProgram

ReportConflictDisplaySchedule

Focus Stack Plan Tree
2 3

1

Scheduling a program to be recorded.
1 User says "I want to record a program."

Done successfully displaying the recording schedule.
2 Agent displays recording schedule.
3 Agent says "Here is the recording schedule."

Next expecting to add a program to the recording schedule.
Expecting optionally to say there is a conflict.

Figure 4. Example Discourse State and Segmented Interaction History for VCR Agent.

Discourse State
Participants in a collaboration derive bene-
fit by pooling their talents and resources to
achieve common goals. However, collabora-
tion also has its costs. When people collab-
orate, they must usually communicate and
expend mental effort to ensure that their ac-
tions are coordinated. In particular, each
participant must maintain some sort of men-
tal model of the status of the collaborative
tasks and the conversation about them—we
call this model the discourse state.

Among other things, the discourse state
tracks the beliefs and intentions of all the par-
ticipants in a collaboration and provides a fo-
cus of attention mechanism for tracking shifts
in the task and conversational context. All of
this information is used by an individual to
help understand how the actions and utter-
ances of the other participants contribute to
the common goals.

In order to turn a computer agent into a
collaborator, we needed a formal representa-
tion of discourse state and an algorithm for
updating it. The discourse state representa-
tion currently used in Collagen, illustrated in
Figure 4, is a partial implementation of Grosz
& Sidner’s theory of collaborative discourse
(see theory sidebar); the update algorithm is
described in the next section.

Collagen’s discourse state consists of a
stack of goals, called the focus stack (which
will soon become a stack of focus spaces to
better correspond with the theory), and a
plan tree for each goal on the stack. The top
goal on the focus stack is the “current pur-
pose” of the discourse. A plan tree in Colla-
gen is an (incomplete) encoding of a partial
SharedPlan between the user and the agent.
For example, Figure 4 shows the focus stack
and plan tree immediately following the dis-
course events numbered 1–3 on the right side
of the figure.

Segmented Interaction History

The annotated, indented execution trace on
the right side of Figure 4, called a segmented
interaction history, is a compact, textual rep-

resentation of the past, present and future
states of the discourse. We originally de-
veloped this representation to help us debug
agents and Collagen itself, but we have also
experimented with using it to help users visu-
alize what is going in a collaboration (see dis-
cussion of “history-based transformations” in
(Rich & Sidner 1998))

The numbered lines in a segmented inter-
action history are simply a log of the agent’s
and user’s utterances and primitive actions.
The italic lines and indentation reflect Colla-
gen’s interpretation of these events. Specifi-
cally, each level of indentation defines a seg-
ment (see theory sidebar) whose purpose is
specified by the italicized line that precedes
it. For example, the purpose of the toplevel
segment in Figure 4 is scheduling a program
to be recorded.

Unachieved purposes that are currently
on the focus stack are annotated using the
present tense, such as scheduling, whereas
completed purposes use the past tense, such
as done. (Note in Figure 4 that a goal is not
popped off the stack as soon as it is com-
pleted, because it may continue to be the
topic of conversation, for example, to discuss
whether it was successful.)

Finally, the italic lines at the end of each
segment, which include the keyword expect-
ing, indicate the steps in the current plan
for the segment’s purpose which have not
yet been executed. The steps which are
“live” with respect to the plan’s ordering con-
straints and preconditions have the added
keyword next.

Discourse Interpretation

Collagen updates its discourse state after
every utterance or primitive action by the
user or agent using Lochbaum’s discourse
interpretation algorithm (see theory sidebar)
with extensions to include plan recognition
(see next section) and unexpected focus
shifts (Lesh et al. 2001).

According to Lochbaum, each discourse
event is explained as either: (i) starting a
new segment whose purpose contributes to

5



the current purpose (and thus pushing a new
purpose on the focus stack), (ii) continuing
the current segment by contributing to the
current purpose, or (iii) completing the cur-
rent purpose (and thus eventually popping
the focus stack).

An utterance or action contributes to a
purpose if it either: (i) directly achieves the
purpose, (ii) is a step in a recipe for achieving
the purpose, (iii) identifies the recipe to be
used to achieve the purpose, (iv) identifies
who should perform the purpose or a step
in the recipe, or (v) identifies a parameter
of the purpose or a step in the recipe. These
last three conditions are what Lochbaum calls
“knowledge preconditions.”

A recipe is a goal-decomposition method
(part of a task model). Collagen’s recipe def-
inition language (see Figure 5) supports par-
tially ordered steps, parameters, constraints,
pre- and post-conditions, and alternative goal
decompositions.

Our implementation of the discourse in-
terpretation algorithm above requires utter-

public recipe RecordRecipe achieves RecordProgram {
step DisplaySchedule display;
step AddProgram add;
optional step ReportConflict report;
constraints {

display precedes add;
add precedes report;
add.program == achieves.program;
report.program == achieves.program;
report.conflict == add.conflict;

}
}

Figure 5. Example Recipe in VCR Task Model.

Definition of the recipe used in Figure 4 to decompose the non-primitive
RecordProgram goal into primitive and non-primitive steps. Collagen task
models are defined in an extension of the Java language which is automat-
ically processed to create Java class definitions for recipes and act types.

Scheduling a program to be recorded.
1 User says "I want to record a program."

Done successfully displaying the recording schedule.
2 Agent displays recording schedule.
3 Agent says "Here is the recording schedule."
4 User says "Ok."

Done identifying the program to be recorded.
5 Agent says "What is the program to be recorded?"
6 User says "Record ’The X-Files’."

Next expecting to add a program to the recording schedule.
Expecting optionally to say there is a conflict.

Figure 6. Continuing the Interaction in Figure 4.

ances to be represented in Sidner’s (1994) ar-
tificial discourse language. For our speech-
based agents, we have used standard natural
language processing techniques to compute
this representation from the user’s spoken in-
put. Our menu-based systems construct ut-
terances in the artificial discourse language
directly.

Discourse Generation

To illustrate how Collagen’s discourse state is
used to generate as well as interpret discourse
behavior, we briefly describe below how the
vcr agent produces the underlined utterance
on line 5 in Figure 6, which continues the
interaction in Figure 4.

The discourse generation algorithm in
Collagen is essentially the inverse of dis-
course interpretation. Based on the current
discourse state, it produces a prioritized list,
called the agenda, of (partially or totally
specified) utterances and actions which
would contribute to the current discourse
purpose according to cases (i) through (v)
above. For example, for the discourse state
in Figure 4, the first item on the agenda is
an utterance asking for the identity of the
program parameter of the AddProgram step
of the plan for RecordProgram.

In general, an agent may use any appli-
cation-specific logic it wants to decide on its
next action or utterance. In most cases, how-
ever, an agent can simply execute the first
item on the agenda generated by Collagen,
which is what the vcr agent does in this ex-
ample. This utterance starts a new segment,
which is then completed by the user’s answer
on line 6.

Plan Recognition

Plan recognition (Kautz & Allen 1986) is the
process of inferring intentions from actions.
Plan recognition has often been proposed for
improving user interfaces or to facilitate intel-
ligent help features. Typically, the computer
watches “over the shoulder” of the user and
jumps in with advice or assistance when it
thinks it has enough information.

In contrast, our main motivation for
adding plan recognition to Collagen was to
reduce the amount of communication re-
quired to maintain a mutual understanding
between the user and the agent of their
shared plans in a collaborative setting (Lesh
et al. 1999). Without plan recognition,
Collagen’s discourse interpretation algorithm
onerously required the user to announce each
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Events [k, l] -

Plan
A
Qs�+

B C
-

Focus B -

-

A→ B, C
B → G, h
C → k, D
G→ k, l

A→ D, d, f
B → k, J
D → l, n
J → l, m

Recipes

Plan

Recognizer
-

Two extensions of the input plan which
“minimally explain” events k and l
by applying recipes below the focus B.

A
Qs�+

B C
Qs�+

G h
Qs�+

k l

A
Qs�+

B C
Qs�+

k J
Qs�+

l m

Figure 7. Example Plan Recognizer Inputs and Outputs in a Collaborative Setting.

goal before performing a primitive action
which contributed to it.

Although plan recognition is a well-known
feature of human collaboration, it has proven
difficult to incorporate into practical com-
puter systems due to its inherent intractabil-
ity in the general case. We exploit three prop-
erties of the collaborative setting in order to
make our use of plan recognition tractable.
The first property is the focus of attention,
which limits the search required for possible
plans.

The second property of collaboration we
exploit is the interleaving of developing, com-
municating about and executing plans, which
means that our plan recognizer typically op-
erates only on partially elaborated hierarchi-
cal plans. Unlike the “classical” definition
of plan recognition, which requires reasoning
over complete and correct plans, our recog-
nizer is only required to incrementally extend
a given plan.

Third, it is quite natural in the context
of a collaboration to ask for clarification, ei-
ther because of inherent ambiguity, or simply
because the computation required to under-
stand an action is beyond a participant’s abil-
ities. We use clarification to ensure that the
number of actions the plan recognizer must
interpret will always be small.

Figure 7 illustrates roughly how plan
recognition works in Collagen. Suppose the
user performs action k. Given the root plan
(e.g., A) for the current discourse purpose
(e.g., B) and a set of recipes, the plan
recognizer determines the set of minimal
extensions to the plan which are consis-
tent with the recipes and include the user
performing k. If there is exactly one such
extension, the extended plan becomes part

of the new discourse state. If there is more
than one possible extension, action k is held
and reinterpreted along with the next event,
which may disambiguate the interpretation
(which l does not), and so on. The next
event may in fact be a clarification.

Our algorithm also computes essentially
the same recognition if the user does not ac-
tually perform an action, but only proposes
it, as in, “Let’s achieve G.” Another impor-
tant, but subtle, point is that Collagen ap-
plies plan recognition to both user and agent
utterances and actions in order to correctly
maintain a model of what is mutually be-
lieved.

System Architecture

Figure 8 summarizes the technical portion of
this article by showing how all the pieces de-
scribed earlier fit together in the architecture
of collaborative system built with Collagen.
This figure is essentially an expansion of Fig-
ure 2, showing how Collagen mediates the
interaction between the user and the agent.
Collagen is implemented using Java BeansTM,
which makes it easy to modify and extend
this architecture.

The best way to understand the basic ex-
ecution cycle in Figure 8 is to start with the
arrival of an utterance or an observed action
(from either the user or the agent) at the
discourse interpretation module at the top
center of the diagram. The discourse inter-
pretation algorithm (including plan recogni-
tion) updates the discourse state as described
above, which then causes a new agenda to be
computed by the discourse generation mod-
ule. In the simplest case, the agent responds
by selecting and executing an entry in the
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Utterances

Discourse State

Agenda

Actions Actions

Utterances

Observations

Recipe Library

Discourse
Generation

Application

Interpretation
Discourse

COLLAGEN

Observations

Menu

Figure 8. Architecture of a Collaborative System Built with Collagen

new agenda (which may be either an utter-
ance or an action), which provides new input
to discourse interpretation.

In a system without natural language un-
derstanding, a subset of the agenda is also
presented to the user in the form of a menu
of customizable utterances. In effect, this
is a way of using expectations generated by
the collaborative context to replace natural
language understanding. Because this is a
mixed-initiative architecture, the user can, at
any time, produce an utterance (e.g., by se-
lecting from this menu) or perform an appli-
cation action (e.g., by clicking on an icon),
which provides new input to discourse inter-
pretation.

In the simple story above, the only
application-specific components an agent
developer needs to provide are the recipe
library and an API through which applica-
tion actions can be performed and observed
(for an application-independent approach to
this API, see (Cheikes et al. 1999)). Given
these components, Collagen is a turnkey
technology—default implementations are
provided for all the other needed components
and graphical interfaces, including a default
agent which always selects the first item on
the agenda.

In each of the four example applications in
Figure 3, however, a small amount (e.g., sev-

eral pages) of additional application-specific
code was required in order to achieve the
desired agent behavior. As the arrows in-
coming to the agent in Figure 8 indicate,
this application-specific agent code typically
queries the application and discourse states
and (less often) the recipe library. An agent
developer is free, of course, to employ arbitar-
ily complex application-specific and generic
techniques, such as a theorem proving, first-
principles planning, etc., to determine the
agent’s response to a given situation.

Related Work
This work lies at the intersection of many
threads of related research in artificial intelli-
gence, computational linguistics, and user in-
terface. We believe it is unique, however, in
its combination of theoretical elements and
implemented technology. Other theoretical
models of collaboration (Levesque et al. 1990)
do not integrate the intentional, attentional
and linguistic aspects of collaborative dis-
course, as SharedPlan theory does. On the
other hand, our incomplete implementation
of SharedPlan theory in Collagen does not
deal with the many significant issues in a col-
laborative system with more than two partic-
ipants (Tambe 1997).

There has been much related work on
implementing collaborative dialogues in
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the context of specific applications, based
either on discourse planning techniques
(Chu-Carroll & Carberry 1995; Ahn et
al. 1995; Allen et al. 1996; Stein et al.
1999)) or rational agency with principles of
cooperation (Sadek & De Mori 1997). None
of these research efforts, however, have pro-
duced software that is reusable to the same
degree as Collagen. In terms of reuseability
across domains, a notable exception is the
Verbmobil project (Verbmobil 2000), which
concentrates on linguistic issues in discourse
processing, without an explicit model of
collaboration.

Finally, a wide range of interface agents
(Maes 1994) continue to be developed, which
have some linguistic and collaborative capa-
bilities, without any general underlying the-
oretical foundation.

Future Work
We are currently extending our plan recog-
nition algorithm to automatically detect cer-
tain classes of so-called “near miss” errors,
such as performing an action out of order, or
performing the right action with the wrong
parameter. The basic idea is that, if there
is no explanation for an action given the
“correct” recipe library, the plan recognizer
should incrementally relax the constraints on
recipes before giving up and declaring the ac-
tion to be unrelated to the current activity.
This functionality is particularly useful in tu-
toring applications of Collagen.

We have, in fact, recently become in-
creasingly interested in tutoring and train-
ing applications (Gertner et al. 2000; Rickel
et al. 2001), which has revealed some im-
plicit biases in how Collagen currently oper-
ates. For example, Collagen’s default agent
will always, if possible, itself perform the next
action that contributes to the current goal.
This is not, however, always appropriate in
a tutoring situation, where the real goal is
not to get the task done, but for the student
to learn how to do the task. We are there-
fore exploring various generalizations and ex-
tensions to Collagen to better support the
full spectrum of collaboration (Davies et al.
2001), such as creating explicit tutorial goals
and recipes, and recipes that encode “worked
examples.”

We are also working on two substantial
extensions to the theory underlying Collagen.
First, we are adding an element to the at-
tentional component (see theory sidebar) to
track which participant is currently in con-
trol of the conversation. The basic idea is
that, when a segment is completed, the de-

fault control (initiative) goes to the partici-
pant who initiated the enclosing segment.

Second, we are beginning to codify the ne-
gotiation strategies used in collaborative dis-
course. These strategies are different from
the negotiation strategies used in disputa-
tions (Kraus et al. 1998). For example, when
the user rejects an agent’s proposal (or vice
versa), the agent and user should be able to
enter into a sub-dialogue in which their re-
spective reasons for and against the proposal
are discussed.
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