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Abstract 
 
We want to build humanoid robots capable of rich social interactions with humans, 
including natural communication, cooperation, and tutelage. Humans display a 
remarkably flexible and rich array of social competencies, demonstrating the ability to 
interpret, predict, and respond appropriately to the behavior of others. People understand 
each other in social terms, allowing us to engage others in a variety of complex social 
interactions including communication, social learning, and cooperation. Developing 
robots with these social abilities is a critical step towards enabling them to be intelligent 
and capable in their interactions with humans, able to cooperate with people as capable 
partners, able to learn quickly and effectively from natural human instruction, are 
intuitive to communicate with, and are engaging for humans to interact with. Such issues 
must be addressed to enable many new and exciting applications for robots that require 
them to play a long-term role in people’s daily lives. This paper presents an overview of 
our work towards building socially intelligent, cooperative humanoid robots that can 
work and learn in partnership with people. 
 
1 Introduction   
 
Many of the earliest motivations for developing humanoids centered on creating robots 
that can play a role in the daily lives of ordinary people. Our living spaces and the 
artifacts we use are engineered to support our human morphology. Accordingly, 
developing robots with a humanoid morphology would not require that we re-engineer 
our environment and artifacts to accommodate them. In addition, humanoid robots 
support human social cues and therefore would not require that people be specially 
trained to communicate with them. These arguments center on the issue of designing 
interfaces for robots that are well matched to the human environment and to people who 
are already experts in social interaction.  
 
Beyond interface issues, however, there are other critical issues that concern how 
humanoid robots interact with us.  For instance, their interactions with us must exhibit 
social appropriateness and adeptness. They must be able to quickly learn new skills and 
learn how to perform new tasks from human instruction and demonstration. Ideally, 



helping a robot acquire new capabilities would be as easy and fast as teaching a person. 
Finally, to cooperate with humans as capable partners, robots need to understand our 
intentions, beliefs, desires, and goals so that they can provide us with well-timed, relevant 
assistance.   
 
Yet robots today interact with us either as other objects in the environment, or at best in a 
manner characteristic of socially impaired people. They generally do not understand or 
interact with people as people. They are not aware of our goals and intentions. As a 
result, they don’t know how to appropriately adjust their behavior to help us as our goals 
and needs change. They do not flexibly draw their attention to what we currently find of 
interest so that their behavior can be coordinated and information can be focused about 
the same thing.  They do not realize that perceiving a given situation from different 
perspectives impacts what we know and believe to be true about it. Consequently, they do 
not bring important information to our attention that is not easily accessible to us when 
we need it.  They are not aware of our emotions, feelings, or attitudes. As a result they 
cannot prioritize what is the most important to do for us according to what pleases us or 
to what we find to be most urgent, relevant, or significant. Because of all these 
shortcomings (to name a few) they cannot cooperate with us as teammates or help us as 
assistants. At best, we can only use them as sophisticated tools rather than work with 
them in partnership. 
 
1.1 Robots in the Daily Lives of People 
 
This is a serious problem given that many of the most exciting and new applications for 
humanoid robots require them to cooperate with people as a capable, cooperative, and 
socially savvy partners. For instance, humanoid robots are being developed to provide the 
elderly with assistance in their home. Such a robot should be persuasive in ways that are 
sensitive to the person, such as helping to remind them when to take medication, without 
being annoying or upsetting.  It must understand what the person’s changing needs are 
and the urgency for satisfying them so that it can set appropriate priorities. It needs to 
understand when the person is distressed or in trouble so that it can get help. Ideally, the 
robot would play a useful and pleasing part in a person’s life. People should enjoy having 
the robot in their life because they are useful and pleasant to have around. 
 
In other applications, humanoid robots are being developed to serve as members of 
human-robot teams. NASA JSC’s Robonaut is an excellent example (Bluethmann et. al. 
2003). This robot is envisioned to serve as an astronaut’s assistant to help its human 
counterparts maintain the space station using the same tools. To provide a human 
teammate with the right kinds of assistance at the right time, a robot partner must not 
only recognize what the person is doing (i.e., his observable actions) but also understand 
the intentions or goals being enacted. This style of human-robot cooperation strongly 
motivates the development of robots that can infer and reason about the mental states of 
others within the context of the interaction they share. 
 
For instance, consider the following collaborative task where a human and a humanoid 
robot work together shoulder-to-shoulder. The shared goal of the human and the robot is 



to assemble a physical structure.  Both have different capabilities---the human being 
more dexterous. The task requires different tools (e.g., screwdrivers, wrenches) and 
different equipment (e.g., beams, nuts, bolts).  The workspace is partially occluded so 
that neither teammate can see the entire workspace. Due to the occluding barrier, each 
can see different parts of the workspace and therefore hold different beliefs regarding the 
placement of tools and equipment.  
 
Given these constraints, the human’s responsibility is to operate the tools necessary to 
assemble the structure. The robot’s responsibility is to be a helpful assistant, providing 
the human with the appropriate tools at the right time, sharing relevant knowledge, and 
helping to maneuver the awkward pieces of the assembly into place so that they may be 
fastened together by the human. To be an effective assistant, the robot must be able to 
take multiple points of view to reconcile what the human sees and believes to be true with 
what it is able to see.  For example, “Please pass me the wrench” may be ambiguous if 
the human can see only one wrench while the robotic assistant can see several. The 
correct response of the robot in this case would be to hand the person the wrench that is 
visible from the human’s point of view. If the robot notices that an occluded part of the 
structure has not been fastened yet, the robot should realize that the human is not aware 
of this problem and consequently alert the person to the uncompleted part of the task.  
 
Both must be in agreement as to the sequence of actions that will be required to assemble 
the structure so that the robot can manage the tools appropriately. If the robot must use 
some of the same tools to assemble parts of the structure in tandem with the human, it 
must carry out its task while being careful not to act in conflict with what the human 
teammate is trying to do (e.g., hoarding tools, assembling parts of the structure in a 
sequence that makes the human’s task more difficult, etc.). 
 
Hence, for the human-robot team to succeed, both must communicate to establish and 
maintain a set of shared beliefs and to coordinate their actions to execute the shared plan 
(Grosz 1996). In addition, each must demonstrate commitment in doing their own part, 
commitment to the other in doing theirs, and commitment to the success of the overall 
task (Cohen & Levesque, 1991; 1990). 
 
2 Designing Robots for People  
 
Does it make sense for robots to serve as cooperative partners for people, or should we be 
content to use them as tools? We argue that for many humanoid robot applications, 
people will naturally try to interact with robots in anthropomorphic, social terms. This is 
a natural fit for interacting with a robot as a partner.  
 
When humans are faced with non-living things of sufficient complexity (i.e., when the 
observable behavior is not easily understood in terms of physics or its underlying 
mechanisms), we often apply a social model to explain, understand, and predict their 
behavior. We automatically attribute mental states (i.e., intents, beliefs, feelings, desires, 
etc.) to understand and explain its behavior (Reeves & Nass, 1996).  People rely on social 
models (also called “folk psychology” by philosophers or “Theory of Mind” by 



psychologists) to make complex behavior more familiar, understandable, predictable, and 
intuitive (Gordon, 1986; Premack & Woodruff, 1978). We do this because it is enjoyable 
for us, and it is often surprisingly quite useful (Dennett, 1987).  
 
Therefore, from a design perspective, it makes sense to design humanoids to adhere to 
people’s social model for them. By doing so, it will be possible for untrained people to 
naturally and intuitively explain and predict what the robot is about to do, its reasons for 
doing it, and how to elicit a desired behavior from it. As argued eloquently in Reeves & 
Nass (1996), humans are already experts at social interaction and it is a universally 
understood interface.  According to Norman (2001), personality can be used as a 
powerful design tool for helping people form a conceptual model that channels beliefs, 
behavior, and intensions in a cohesive and consistent set of behaviors. Thus, designing 
robots with a life-like personality may help provide people with a good mental model for 
them. The parameters of the personality must fall within recognizable human (or animal) 
norms and be understandable and predictable to people, however, otherwise the robot 
may appear mentally ill or completely alien. Natural behavior is a very useful guide in 
this respect. 
 
This raises an important question: to what extent does a robot’s design support the social 
model?  Simply stated, does applying a social mental model to understand and interact 
with the robot actually work? Furthermore, to what extent must the robot have its own 
social model to understand people? Many early examples of “social robots” (i.e. robot 
toys or entertainment robots) only project the surface appearance of possessing social and 
emotional intelligence. This may be acceptable for a sufficiently structured scenario (such 
as theme park entertainment, etc.) where the environment and the audience's interaction 
with the robot are highly constrained.  
 
However, as the complexity of the environment and the interaction scenario increases, the 
social sophistication of the robot will clearly have to scale accordingly.  Once the robot’s 
behavior fails to support the social model a person has for it, the usefulness of the model 
breaks down. Ideally, the robot's observable behavior will continue to adhere to a person's 
social expectations during natural interactions in the full complexity of the human 
environment. Similarly, as the complexity of the robot’s interactions with people 
increases, the robot will need better ways of understanding human behavior so that it can 
continue to behave appropriately. We argue that it will not be possible to achieve this 
degree of scalability without tackling the (hard) problem of developing “deep” 
architectures for socially and emotionally intelligent robots.  
 
The remainder of this paper presents an overview of our approach for tackling the 
challenging research issues associated with endowing robots with social skills and social 
commonsense. This is a critical competence for robots to cooperatively work with and 
learn from people in partnership. We present specific examples of social skills and social 
understanding that we have developed for our highly expressive humanoid robot, 
Leonardo (shown in Figure 1), in the context of learning a task from natural human 
instruction. 
 



3 Toward Robots as Cooperative Partners 
 
For applications where robots interact with people as partners, it is important to 
distinguish human-robot collaboration from other forms of human-robot interaction. 
Namely, whereas interaction entails action on someone or something else, collaboration 
is inherently working with others (Bratman, 1992; Grosz, 1996). Much of the current 
work in human-robot interaction is thus aptly labeled given that the robot (or teams of 
robots) is often viewed as a tool capable of some autonomy that a remote human operator 
commands to carry out a task (Jones & Rock, 2002; Perzanowski et. al., 2001; Fong et. 
al., 2001). This sort of master-slave arrangement where the robot is operated as a tool 
(albeit, perhaps using speech or gesture as a natural interface) does not capture the sense 
of partnership that we mean when we speak of working “jointly with” others as in the 
case of collaboration. Human-robot collaboration is an extremely important yet relatively 
unexplored scenario of human-robot teamwork. 
 

 
Figure 1: Leonardo is a 65 degree of freedom (DoF) fully embodied humanoid robot that stands 
approximately 2.5 feet tall. It is designed in collaboration with Stan Winston Studio to be able to 
express and gesture to people as well as to physically manipulate objects. The robot is equipped with 
two 6 DoF arms, two 3 DoF hands with tactile sensation, an expressive ( 24 DoF) face capable of near 
human-level expression, an active binocular vision system (4 DoF), two actively steerable 3 DoF ears, 
a 4 DoF neck, with the remainder of the DoFs in the shoulders, waist, and hips. A speech recognition 
and understanding system (developed by and used in collaboration with the Naval Research Lab) 
allows the robot to engage in task-oriented dialogs with a human. The left picture shows the robotic 
structure, the center picture shows the robot when cosmetically finished, the right shows a simulated 
version of the robot. 
 
3.1 Joint Intention Theory 
 
What characteristics must a humanoid robot have to collaborate effectively with its 
human collaborator? To answer this, we look to insights provided by Joint Intention 
Theory (Cohen & Levesque, 1990; 1991). According to this theory, joint action is 
conceptualized as doing something together as a team where the teammates share the 
same goal and the same plan of execution. Sharing information through communication 
acts is critical given that each teammate often has only partial knowledge relevant to 
solving the problem, different capabilities, and possibly diverging beliefs about the state 
of the task.  
 
Communication plays an important role in coordinating their roles and actions to 
accomplish the task. It also serves to establish and maintain a set of mutual beliefs (also 



called common ground) among the team members. For instance, all teammates need to 
establish and maintain a set of mutual beliefs regarding the current state of the task, the 
respective roles and capabilities of each member, the responsibilities of each teammate, 
etc.  
 
What happens when things go wrong? Teammates must share a commitment to achieving 
the shared goal. They cannot abandon their efforts, but must instead continue to 
coordinate their efforts to try a different, mutually agreed upon plan. Furthermore, each 
must be committed to hold up their end, as well as be committed to others’ success in 
doing theirs (Grosz, 1996; Levesque et. al., 1994). Specifically, the actions and goals that 
each team member adopts to do their part should not interfere or prevent the others in 
carrying out theirs.  
 
Therefore, for cooperative behavior to take place, a mutual understanding for how those 
internal states that generate observable behavior (e.g., beliefs, intents, commitments, 
desires, etc.) of the human and the robot must be established to relate to one another. 
Furthermore, both human and robot must be able to reason about and communicate these 
states to each other so that they can be shared and brought in to alignment to support joint 
activity. Hence, human-style cooperative behavior is an ongoing process of maintaining 
mutual beliefs, sharing relevant knowledge, coordinating action, and demonstrating 
commitment to doing one’s own part, helping the other to do theirs, and completing the 
shared task.  
 
3.2 Toward Robots that Understand Other Minds 
 
For robots to cooperate with people in a human-like way, they will need to be able to 
infer these kinds of mental states from people’s observable behavior (e.g., gesture and 
social cues, language, actions, and more), the surrounding context, and internal models 
that they use to represent others.  In humans, this competence is frequently referred to as 
a theory of mind (ToM) (Premack and Woodruff, 1978), folk psychology (Gordon, 1986), 
mindreading (Whiten & Byrne, 1997), or social commonsense (Meltzoff & Moore, 
1997). It entails that each participant has a set of mechanisms and representations for 
predicting and interpreting other’s actions, emotions, beliefs, desires, and other mental 
states; it plays a critical role in adult human-style communication and social 
understanding. It gives us the ability to take the perspective of others (Gopnick & Moore, 
1994), share joint attention (Baron-Cohen, 1991), appreciate how perception relates to 
beliefs (Povinelli, 1996), experience empathy (Baldwin & Moses, 1994), engage in social 
referencing (Hornick et. al., 1987), understand that others can have beliefs and desires 
that differ from our own (Wellman, 1991), reason about how these mental states lead to 
observable behavior (Astington & Gopnick, 1991), infer intentions and goals that 
underlie action (Baldwin & Baird, 2001; Woodward et. al, 2001), and more. 
 
In a human-style social exchange, these capabilities are accomplished in part by each 
participant treating the other as a conspecific --- viewing the other as being “like me” 
(Meltzoff, 1996). Perceiving similarities between self and other is an important part of 
the ability to take the role or perspective of another, allowing people to relate to and to 



empathize with their social partners (Heal, 2003). This sort of perspective shift may help 
us to predict and explain other’s emotions, behaviors and mental states, and to formulate 
appropriate responses based on this understanding (Goldman, 2001). It enables each 
participant to infer the intent or goal enacted by the behavior of the other --- an important 
skill for enabling richly cooperative behavior.  
 
The idea of having a robot adopt an experiential or “empathetic” understanding of others 
(rather than using a symbolic reasoning approach, for instance) has been explored in the 
context of having a robot learn a communication protocol from another robot 
(Dautenhahn, 1995; Billard & Dautenhahn, 1998) or a human model (Billard et. al., 
1998). In this style of work, the learner follows or mimics the model, where the model 
already knows the communication protocol and uses it to describe its own interactions as 
they unfold. As the learner follows or mimics the model, it learns to associate the 
communicated symbols with its own perceptual experience. In this way, the learner 
acquires the protocol with respect to its own embodiment through a process of sharing a 
similar experience with the model and assimilating it as its own. 
 
It is very important for human-style cooperative behavior, however, that the robot not 
simply adopt the perspective or mental states of the other as its own. Although the robot 
can use its own cognitive and affective mechanisms as a “simulator” for inferring the 
other’s internal states, it is critical that they be represented as distinct from the robot’s 
own states. The reason being that the robot must be able to determine what is held in 
common, what is not, and therefore what must be communicated and agreed upon so that 
coordinated joint activity can be established and maintained. Hence, capturing this 
representational aspect of Theory of Mind of the robot’s own states and the states of 
others is very important for our purposes. 
 
4 A Collaborative Approach to Robot Learning 
 
The dominant trend in machine learning has been to eschew built-in structure or a priori 
knowledge of the environment or task at hand, and set out to discover the structure that is 
in data or the world through exhaustive search and/or sophisticated statistical learning 
techniques. Two problem domains, pattern recognition and reinforcement learning in 
particular, have attracted attention and met with some success. Pattern recognition 
systems typically learn the mapping through a statistical analysis of hundreds or 
thousands of training examples chosen by a “knowledgable external supervisor” in which 
the example contains both the input features and the desired output label. The main 
approach of reinforcement learning is to probabilistically, and exhaustively, explore 
states, actions and their outcomes to learn how to act in any given situation where the 
only supervisory signal is the reward received when it achieves the desired goal. 
However, as with supervised learning techniques, the actual learning algorithm has no a 
priori knowledge about the structure of the state and action spaces and must discover any 
structure that exists on its own through its exhaustive exploration of these spaces.  As a 
result, reinforcement learning typically requires hundreds or thousands of examples, in 
order to learn successfully. 
 



Thus, the progress to date in machine learning has come with some caveats. First, the 
most powerful techniques rely on the availability of a great deal of data. Thus, they are 
often not appropriate in domains when the number of examples may be very small. 
Second, they are not appropriate when the environment is changing so quickly that earlier 
examples are no longer relevant.  Third, the underlying representations used in machine 
learning typically make it difficult for the systems to generalize from learning one 
particular thing or strategy to another type of thing. Fourth, little attention has been paid 
to the question of how a human can guide the learning process. Fifth, and not 
insignificantly, few would argue that current approaches to machine learning, however 
successful, have much to tell us about how learning occurs in animals and humans. 
 
By contrast, any survey of animal learning will quickly convince one that learning in 
nature is characterized by fast and robust, albeit, constrained learning. Indeed, an 
important way that internal structures simplify the learning task is by acting so as to bias 
the learner to take maximal advantage of external environmental and social interactions 
that serve to structure and constrain the learning task. Hence, learning is the result of a 
complex interplay of structures and processes, both internal and external to the learner. 
 
For example, our approach recognizes that for people in the world, learning and teaching 
form a coupled system in which the learner and the teacher work together. For instance, 
humans are born with innate cognitive, social, behavioral, and affective machinery into a 
rich and benevolent learning environment, surrounded by adults and older children who 
are motivated and natural teachers. Much of human instruction and scaffolding provides 
information through social cues and communicative acts that can be used by the learner 
to infer these constraints. For instance, the teacher often guides the child’s search process 
by providing timely feedback, luring the child to perform desired behaviors, and 
controlling the environment so the appropriate cues are easy to attend to, thereby 
allowing the child to learn more effectively, appropriately, and flexibly. At its best, the 
teaching and learning process are intimately coupled, well tuned, and transparent. The 
teacher and learner read and respond to each other, tuning their behaviors to more 
effectively guide the learner’s exploration. In this way, the adult becomes a more 
effective teacher and the child a more effective learner---each simplifies the task for the 
other. Ultimately, the teacher helps the learner to not only achieve certain learning 
outcomes, but also to become a better learner. 
 
5 Overview: Architecture for Learning and Working in Partnership 
with People 
 
The remainder of this paper outlines progress in a pedagogical scenario where our robot, 
Leonardo, learns how to perform a task from natural human instruction as part of a 
collaborative process as outlined in the previous section. Here, we present an overview of 
the perceptual, cognitive, social, and behavioral systems of the robot’s computational 
architecture that allows the robot to work and learn in partnership with people. We focus 
on the perceptual and speech understanding system in this section. Sections 6 through 10 
present the remaining systems in detail. 
 



Similar to the cooperative assembly task example presented in section 1.1, Leonardo has 
to cooperate with the human to learn how to perform this task. This requires the robot to 
engage in several ToM competencies, including the ability to establish joint attention 
about external objects, the ability to represent belief states of self and other, the ability to 
take the visual perspective of others, and the ability to align these mental states between 
the human and the robot through communicative acts. Section 6 presents progress 
towards developing the subsystems that implement these ToM competencies in more 
detail.  
 

 
 
Figure 2: Leonardo following the human’s request to activate the middle button (left). Leonardo 
learns the labels for each of his buttons by having a person point to a specific button and name it 
(right). In this picture, Leonardo and the human are both attending to the same button as Leo learns 
what to call it. 
 
In Leonardo’s “Button Task,” there are a number of buttons in front of the robot (see 
Figure 2). The human instructor stands facing Leonardo, across from the buttons, to teach 
the robot to how to perform the button task using natural social cues (speech, gesture, 
head pose, etc). All of the buttons start in the OFF position and the task is to first turn 
them all ON and then turn them all OFF (see section 9). In route to learning a high-level 
representation for the overall task, the human has to teach Leonardo the labels for each of 
the buttons (see section 8), as well as the motor skill for how to press a button (see 
section 7). After the robot has learned the task, it is able to perform it cooperatively with 
a person (see section 10). 
 
5.1 Overview of the Computational Architecture 
 
A schematic of Leonardo’s cognitive architecture is shown in Figure 3. This section 
presents a brief summary of the speech understanding system (section 5.2) and the vision 
system (section 5.3). Section 6 presents those systems (i.e., the attention system, the 
spatial reasoning system, the belief system, and parts of the action system) that implement 
a variety of communication skills (e.g., turn-taking, gestures, deictic reference) and other 
abilities associated with Theory of Mind competencies (e.g., joint attention, modeling 
beliefs, and perspective taking). Section 7 describes the motor system and its role in 
learning motor skills (such as how to press the buttons) from internal demonstration via a 
telemetry suit worn by the demonstrator. Section 8 presents an overview of how these 
systems interact to allow the robot to learn names of objects and follow requests. Section 
9 describes how the learning system interacts with other aspects of the cognitive 



architecture to enable the robot to acquire a high-level task model for the Button Task 
from natural human instruction. Section 9 describes how this task model is used to allow 
the robot to perform the learned task cooperatively with a human. 
 
5.2 The Speech Understanding System 
 
We have been working in collaboration with Alan Schultz and his group at the Navy 
Research Lab to extend their natural language understanding system (Nautilus) to support 
collaborative task-oriented dialogs and accompanying communicative and expressive 
gestures with humanoid robots. The current Nautilus speech understanding system 
supports a basic vocabulary, tracks simple contexts, and performs simple dialogs that 
involve pronoun referents, basic spatial relations (left/right, near/far, front/back, etc.), and 
shifts in point of view (with respect to my reference frame versus your reference frame, 
etc.) --- see (Perzanowski et. al., 2001). The vocabulary has been tailored to support the 
kinds of actions (grasping, pressing, look-at, etc.), entities (buttons, people, etc.), features 
(color, button-ON, button-OFF, shape, size, etc.), and gestures (pointing, head nods, etc.) 
that Leonardo perceives during his interactions with objects and people. As described in 
sections 6 through 10, we have been developing perceptual, cognitive, and learning 
systems to support these dialogs. 
 

 
 
Figure 3: Leonardo’s cognitive architecture for learning and performing tasks and motor skills (see 
text). It is built on top of the c5 codebase; a behavior engine originally designed for computer 
animated interactive characters (Burke et. al., 2001). We use the graphic abilities as a simulator for 
the robot. 
 
 
5.3 The Vision System 
 
Leonardo perceives the surrounding environment with three camera systems. Two of the 
stereo camera systems are presented in Figure 4. The first is a wide-angle stereo head that 



is placed behind the robot to provide peripheral vision information.  This system is used 
to track people and objects in Leonardo’s environment.   
 
The second is a stereo camera (with a narrower field of view) that is mounted in the 
ceiling and faces vertically downward to view Leonardo’s workspace. This stereo camera 
is used to track pointing gestures and objects (e.g., the buttons based on their shape, size, 
color, and position) in the workspace in front of Leonardo. This visual information is 
normalized to real-world coordinates and calibrated to Leonardo’s frame of reference. 
The workspace defines the position and angle of the robot base with respect to the camera 
system. 
 

 
Figure 4: A schematic of Leonardo’s vision system. Two stereo camera systems are shown in this 
diagram with extracted features (calibrated to world coordinates) that allow Leonardo to visually 
characterize people and objects. 

 
Each button is detected and tracked via saturated color matching on the intensity data.  
The RGB video data is first converted to hue, saturation, and value (HSV) space, and the 
saturation values are then thresholded.  Pixels that pass the threshold are windowed by 
hue to isolate red (indicative of buttons) and green (indicative of special calibration 
markers that define the distal corners of the robot's workspace).  The calibration markers 
need only be present upon initiation of the system and can then be removed, as neither 
the camera nor the robot's base are expected to move during an interaction.   
Once the appropriately saturated pixels have been extracted, a pixel-labeling algorithm is 
run over the results.  Connected and near-connected pixels are given the same label, and 
the extents of a particular label are computed and defined as a unique object (a button).  
For button objects, the center pixels of the object are examined to determine whether they 
match the exterior pixels.  There is a colored LED at the center of each button whose 
lighting is toggled when the button is pressed. This enables the robot to have visual 
feedback of when a button has been turned ON.  The locations of calibration objects are 
not required after the initial workspace calibration, but the number, positions and pressed 
status of the buttons are sent out over the robot’s computational network on every frame. 
 



Leonardo also has two narrow field of view cameras, one in each eye, used for post-
attentive processing such as face recognition and tracking of facial features (using the 
Axiom ffT SDK from Nevengineering, Inc.).   
 
6 Social Skills for Collaborative Interaction and Learning 
 
As discussed in section 4, human-style tutelage is fundamentally a social and a 
collaborative process. Breazeal (2003) outlines a number of social cues that people 
employ to naturally structure and facilitate the learning process for others, arguing that 
these could be utilized by a socially savvy robot to learn from natural human instruction 
in a similar manner (see a detailed discussion in section 11). These include the ability to 
direct and share attention, participate in turn-taking, understand expressive feedback, 
engage in guided exploration, and more. These social interactions serve to structure, 
constrain, and guide the learning process of the robot. However, a robot must understand 
and appropriately respond to these social cues in order to effectively utilize them to 
constrain and guide its own learning. 
 
To be a good instructor, the human must maintain an accurate mental model of the 
learner’s state (e.g., what is understood so far, what remains confusing or unknown, etc.). 
This allows him or her to appropriately structure the learning task and to provide timely 
feedback and guidance. In short, the instructor relies upon this mental model to tailor his 
or her instruction to the needs of the learner. The learner (robot or otherwise) can help the 
instructor keep an accurate mental model by communicating its state to the instructor via 
communicative acts (e.g., expressions, gestures, or vocalizations that reveal the learner’s 
understanding, confusion, attention, and so forth).  
 
Hence, through reciprocal interaction, both the learner and instructor cooperate to 1) help 
the instructor maintain a good mental model of the learner, and 2) help the learner 
leverage from instruction and guidance to build the appropriate task models, 
representations, associations, etc. The remainder of this paper describes the social 
capabilities that allow Leonardo to participate in this cooperative and social process to 
learn the Button task from natural human instruction. 
 
6.1 Communication Skills 
 
6.1.1 Conversational Policies 
 
We have implemented a suite of a collaborative task-oriented conversation and gestural 
policies for Leonardo. Dialog is fundamentally a cooperative (Grice, 1975). Cohen et. al. 
(1990) argue that much of task-oriented dialog can be understood in terms of Joint 
Intention Theory (see section 3.1). Accordingly, each conversant is committed to the 
shared goal of establishing and maintaining a state of mutual belief with the other. To 
succeed, the speaker composes a description that is adequate for the purpose of being 
understood by the listener, and the listener shares the goal of understanding the speaker. 
These communication acts serve to achieve robust team behavior despite adverse 



conditions, including breaks in communication and other difficulties in achieving the 
team goals. 
 
Cohen et. al., (1990) has analyzed task dialogs where an expert instructs a novice on how 
to assemble a physical device. We have implemented conversation policies for those key 
discourse functions identified by Cohen and his collaborators. These include discourse 
organizational markers (such as “now,” “next,” etc.) that are used to synchronize the start 
of new joint actions, elaborations when the expert does not believe that the apprentice 
understands what to do next, clarifications when the apprentice does not understand what 
the expert wants next, confirmations so that both share the mutual belief that the previous 
step has been attained, and referential elaborations and confirmations of successful 
identification to communicate the important context features for each step in the task.  
 
It is important to note that expressive cues such as head gestures and facial expressions 
can be used to serve this purpose as well as speech acts. For instance, Leonardo performs 
head nods for confirmations (and shakes is head to not confirm), and it shrugs his 
shoulders with an expression of confusion to request clarification or elaboration from the 
human instructor. The robot looks to the button that is currently being named by the 
instructor to confirm successful identification of the target. Leonardo then looks back to 
the human to confirm that it has finished associating the label with the appropriate button. 
The robot can demonstrate its knowledge of the button names that it has been taught by 
pointing to the correct button in response to the human’s query “Which is button 1?” This 
confirms that both human and robot share the same belief regarding which the button is 
called by what name. 
 
6.1.2 Turn Taking Skills 
 
We have supplemented our models of collaborative dialog and gesture with flexible turn-
taking skills modeled after those used by humans (Sacks et. al., 1974). The exchange of 
speaking turns in human conversation is robust despite interruptions, incomplete 
utterances, and the like. Well studied by discourse theorists, humans employ a variety of 
para-linguistic social cues, called envelope displays, to manage who is to talk at which 
times in an intricate system of turn taking (Sacks et. al., 1974). These paralinguistic 
social cues (such as raising one's brows and establishing eye contact to relinquish one's 
speaking turn, or looking aside and positioning one’s hands in preparation to gesture in 
order to hold one's speaking turn when speech is paused) have been implemented with 
success in embodied conversational agents (Cassell et. al,. 2000;  Rickel & Johnson, 
2000) as well as expressive robots (Breazeal, 2000; 2002).  
 
A number of envelope displays have been implemented on Leonardo to facilitate the 
exchange of turns between human and robot. To relinquish its turn, Leonardo makes eye 
contact with the person, raises its brows, and relaxes its arms to a lower position. As the 
person speaks, the robot continues to look attentively at the speaker and perks his ears so 
that she knows that the robot is listening to her. When she has finished her utterance, 
Leonardo lifts its arms to show initiative in taking its turn and breaks eye contact ---often 



looking to the object that the person referred to in her last utterance (e.g, to one of the 
buttons). 
 
In addition, back-channel signals are given by the listener to let the speaker know that she 
is being understood. These are important skills for robots that must engage humans in 
collaborative dialog where communication signals (both verbal and non-verbal) are 
frequently exchanged to let the conversants know that each is being properly understood 
by the other---and equally important, when communication breaks down and needs to be 
repaired. If Leonardo cannot parse the person’s utterance, for instance, the robot displays 
a look of confusion to indicate that it is having problems understanding the speaker. A 
small, confirming nod is given to indicate when the robot has understood the utterance. 
 

 
 
Figure 5: The vision system can detect head pose and pointing gestures. In this figure, two people are 
looking at the button to the left of Leonardo (blue vectors). The leftmost person is also pointing to 
that button (green vector). The robot happens to be looking at the center button. 
 
6.2 Deictic Reference  
 
We have implemented a suite of deictic gestures used by humans to refer to objects and 
to direct the attention of others to important aspects of the shared context. For instance, 
pointing gestures and following a person’s direction of gaze (which we estimate using 
head pose) allow people to establish joint attention with others (see Figure 5). We have 
implemented visual routines for recognizing pointing gestures (see Figure 6). In addition, 
we have developed a suite spatial reasoning routines that allow the robot to geometrically 
follow a human’s head pose (section 6.2.1) or pointing gesture (section 6.2.2) to the 
indicated object referent (section 6.2.3).  
 
6.2.1 Following Head Pose 
 
To track a person’s head pose we are using the head tracking system developed by the 
CSAIL Vision Interface Group (Morency et. al., 2002). This software system uses the 
wall mounted stereo camera to provide 3D head pose estimation (pan, tilt, and rotation) in 



real-time. This provides the attention system with a vector that characterizes the direction 
of the person’s gaze. 
 
To calculate which object a person is focusing on, each of the observed objects in the 
visual scene (from the 3D spatial map) is projected onto this vector. If the object with the 
least error from the gaze line is within a cone angle of 16 degrees (the cone defines the 
visual field of focus of the person) then that object is taken to be the focus of attention for 
the human provided that the person maintains fixation on that object for a minimum 
length of time (a couple of seconds).   
 
The focus of attention cone is defined by: 
 
If  (C*(E/D) <= 1.0) then Within focus 
If  (C*(E/D)  > 1.0) then Outside visual focus 
 
Where: 
C  is the angle constant for 16 degree wide cone of focus. 
E  is the error in the projection of the object location onto the gaze vector. 
D  is the distance along the vector of the projected object. 
 
6.2.2 Detecting Pointing Gestures 
 
We use the overhead stereo camera to detect when the person is performing a pointing 
gesture. Detection of the arm is accomplished by background subtraction in two visual 
domains: intensity and a stereo range map.  
 
Intensity background subtraction is a common technique for distinguishing the salient 
features of an environment based on the fact that items move, but may not be 
continuously in motion.  Our technique uses a fairly standard unimodal Gaussian model 
where the mean value and standard deviation of the intensity of each pixel is computed 
over a number of video frames.  Once this training has completed, every pixel on each 
frame is compared with its mean value, and the difference is thresholded to produce a 
foreground image. The threshold value of 3σ is typical.  More sophisticated statistical 
models, such as bimodal distributions (Haritaoglu et. al., 2000), can be used (for 
example, to account for image variation of a periodic nature) but we have not found this 
necessary, as a result of our use of stereo processing (Eveland et. al., 1998; Ivanov et. al., 
2000) to account for illumination effects such as shadows and false positives present in 
the intensity map.  Our background models are continuously updated with a two-element 
IIR lowpass filter. 
 
To compute the foreground depth map, first a real-time depth map is produced using off-
the-shelf hardware and correlation software for fixed-baseline parallel cameras 
(Konolige, 1997; Faugeras et. al., 1993).  The stereo depth map is then filtered to account 
for correlation noise, depth discontinuities, and insufficient texture (Darrell et. al., 2001). 
To compute the foreground depth map, background subtraction is performed on this 
depth image using the same algorithm as in the intensity domain. 



 
The master detection image is computed by performing a logical AND operation on the 
intensity foreground and depth foreground maps.  The foreground depth image is more 
robust to illumination effects, but whereas the intensity foreground tends to suffer from 
false positives, the stereo foreground more commonly suffers from undefined areas due 
to correlation noise at depth discontinuities and patches of insufficient texture for stereo 
matching.  We therefore perform complementary morphological cleaning operations on 
each before combining them. Multiple pre-detection techniques of this type are 
increasingly popular in human segmentation for gesture extraction as processing power 
becomes available (e.g. motion and skin color (Habili et. al, 2001)). 
 
To extract the extended arm from the master image, separate regions in the master 
detection image are extracted via a multi-pass labeling and extents collection algorithm.  
Only the first pass operates at the pixel level, so on a computational cost basis it is 
comparable to a single-pass approach.  The result regions are then sorted in decreasing 
size order, and compared against a region history for one final accumulation stage, to 
combat any breakup of the segmented body part. The largest candidate regions are then 
fit with a bounding ellipse from image moments within each region, and evaluated for 
likelihood of correspondence to an arm based on orientation and aspect ratio. The best 
candidate passing these tests is designated to be the pointing arm and used to compute the 
gross arm orientation. 
 
  

 
 
Figure 6: Computing the deictic reference to an object in the visual scene. Left, an overhead stereo 
camera identifies the locations of the buttons in the scene and recognizes when a pointing gesture 
occurs, estimating the location of tip of the finger and the angle of the forearm. This is passed to the 
spatial reasoning system (right). This overhead viewpoint shows the buttons (red), the location of the 
tip of the finger and base of the forarm (blue), and the identified object referent (white). 
 
Once the arm has been extracted, we recognize whether the hand is configured in a 
pointing gesture or not (see Figure 6).  We accomplish this by estimating the kurtosis, or 
“pointiness”, of the hand.  The distance from each arm result pixel to the arm centroid is 
computed, and the most distal point identified in the direction of the gross orientation.  
This point is assumed to be the hand tip.  The outline of the hand is then traced by 
performing a morphological erosion on the detection image and then reapplying this 



result to the master detection image with a logical XOR operation. 
The hand outline is treated as a 1D bidirectional array of 2D features to be traversed in 
both directions, with the deviation between each pair of points summed. This result is 
compared against empirical results for various hand configurations, and the 2D general 
traverse direction is compared with the gross arm orientation.  Since the video frame rate 
is fast enough that a small amount of additional latency is acceptable, and it is not 
necessary to be able to reliably detect unusual pointing gestures that last less than a 
fraction of a second, several adjacent video frames vote on whether or not a pointing 
gesture has been detected.   
 
6.2.3 Determining the Object Referent from Pointing 
 
Humans are able to fluidly switch between multiple points of view to perform spatial 
reasoning from different perspectives (Franklin et. al., 1992). We have developed a basic 
3D spatial reasoning system to handle issues regarding spatial relations and reasoning 
about objects from a different person’s point of view (i.e., from the robot’s visual 
perspective or from an adjacent person’s viewing position).  To take the visual 
perspective from a different point of view, the system can perform rotations of the robot’s 
3D spatial model of its environment and the people within it. This allows the system to 
compute spatial relationships from different vantage points. In addition, the spatial 
reasoning system supports the spatial relations capabilities of the Nautilus speech 
understanding system. Hence, it can compute basic spatial relations such as front/back, 
right/left, and above/below with reference to a particular location from a specific visual 
vantage point.  
 
Given this ability to compute perspective shifts and spatial relations, the spatial 
reasoning system is responsible for computing the correct object referent in visual the 
scene from the button locations, gross arm orientation, and hand configuration (with a 
confidence measure). To determine what object the human is pointing to, the spatial 
reasoning system first performs a perspective shift to place the point of view on the tip of 
the person’s finger. It then computes the FRONT-OF spatial relationship between the 
fingertip and objects that are in front of it within a bounded range (see the rightmost 
image of Figure 6).  
 
Ultimately, the ability to take the visual perspective of another person is an important 
capability when a workspace is partially occluded so that the robot human each see 
different partial views of the scene (as discussed in section 1.1). To be able to 
communicate relevant information to each other, each must appreciate what the other can 
see and therefore what each knows and believes about the situation (e.g., I know that 
there are three objects in the scene because I can see them. However, my teammate must 
believe that there are only two since that’s all they can see from their vantage point). This 
competence requires integrating the spatial reasoning system with the systems that handle 
joint attention (section 6.3) and mutual beliefs (section 6.4).   
 
 
 



6.3 Joint Attention 
 
Leonardo’s Button Task requires that the robot understand and participate in shared 
attention with a human in order to learn the names of objects and actions, follow requests, 
learn tasks from instruction, and perform tasks cooperatively with people. Therefore, the 
robot must be able to interpret and respond appropriately to human attentional cues (such 
as pointing and referential looking). Leonardo must also be able to use pointing gestures 
and other deictic cues to direct the attention of its human partner.  
 
In humans, understanding attention and being able to share attention with others is a 
critical skill in performing cooperative tasks, communicating with others, and learning 
from tutelage (Baron-Cohen, 1991). Therefore it is a critical capability for Leonardo. 
According to Baron-Cohen, understanding seeing verses understanding attending hinges 
on the latter requiring that the representation of the object encode something perceived as 
being “interesting” to the viewer. Normal human children first begin to understand 
attention (i.e., that vision can be directed selectively to objects or events of interest) 
between 7 to 9 months of age (Baron-Cohen, 1991). In addition, there are a number of 
skills that allow children to participate in sharing attention with others. For instance, 
referential looking (i.e., the ability to look to where another is looking) develops from 6 
to18 months of age (Butterworth, 1991). Another skill is proto-declarative pointing --- 
the ability to point in order to comment or remark on the world to another person. This 
ability requires the child to explicitly represent the mental state of attention of another 
person. Infants are first able to direct their gaze to where another person points at around 
9 to 12 months of age, and they begin to point in order to direct the gaze of others at 
approximately 14 months of age.  
 
In human-human communication, it is important to note that the act of “referring to” is 
fundamentally a collaborative process (Clark & Wilkes-Gibbs, 1986). The goal is to 
establish a state of mutual belief (recall section 3 and see section 6.4 for our 
implementation) among those sharing joint attention. Having both human and robot look 
at the same thing is important part of this process, but is not sufficient alone to share joint 
attention (as defined above). To date, robots that do respond to deictic gestures and other 
attention direction cues can look at the same object as a person, and therefore engage in 
referential looking (e.g., Scassellati 1998; 2000; Breazeal et. al., 2001). However, they do 
not explicitly represent the attentional state and resulting beliefs of the human 
collaborator. In this sense, such robots are more like primates than humans---primates can 
follow gaze but do not seem to relate this to the viewer’s state of attention or consequent 
beliefs (Povinelli, 1996; Baron-Cohen, 1991; Baldwin & Moses, 1994). In making a 
reference, however, the speaker intends that the reference become part of both speaker’s 
and listener’s mutual knowledge. Thus, the speaker must adapt his behavior, elaborating 
or clarifying, whenever he thinks that the listener does not properly understand him. 
Similarly, the listener must indicate to the speaker that he is being understood (or not). 
These are important skills for collaborative referential behavior.  
 



 
 
Figure 7: Schematic of the robot’s visual attention system for external factors. It enables the robot to 
share joint attention with people. The saliency based system deals with environmental aspects of 
saliency (color, movement, etc.). The socially based system deals with social cues that direct attention 
(speech, head pose, pointing, etc.). Internal factors come from the robot’s cognitive system (not 
shown). 
 
One critical aspect of mutual belief is to establish a common referential focus. The 
distinction between attentional focus (what one is currently attending to) verses the 
referential intent (or referent focus) the object or event the communication is about) 
matters a great deal (Baron-Cohen, 1991; Baldwin & Moses, 1994). For instance, a 
human might direct the robot’s attention so that they both look at a particular object to 
share attention and establish the referential focus. As the human continues to discuss the 
object with the robot, the robot’s attentional focus (and therefore what it looks at) will 
shift. For instance, the robot may attend to the person’s face to assess his or her emotional 
reaction to the object, look back to the object for more detailed visual processing, and so 
forth. However, despite these shifts in the robot’s attentional focus, it must understand 
that the information being conveyed is attributed to the object that is the referential focus-
--not to whatever the robot might happen to look at. 
 
To address this issue, joint attention for Leonardo is modeled as a collaborative process. 
Accordingly, we have developed an attentional system for Leonardo that determines the 
robot’s focus of attention, monitors the attentional focus of the human, and uses both to 
keep track of the mutual beliefs and referential focus held by both. Therefore, the robot 
not only has a model for its own attentional state, but models that of the human as well. 
 
6.3.1 Model of Robot’s Attention 
 
Leonardo’s attentional system computes the level of saliency (a measure of “interest”) for 
objects and events in the robot’s perceivable space. This 3D space around the robot, and 
the objects and events within this space, are represented by the vision system. The 
attention system operates on this 3D spatial representation to assign saliency values to the 



items therein (see Figure 7). There are three kinds of factors that contribute to the overall 
saliency of something. These include its perceptual properties (its proximity to the robot, 
its color, whether it is moving, etc.), the internal state of the robot (i.e., what the robot is 
searching for and other goals, etc.), and socially directed reference (pointing to, looking 
at, or talking about something to bring something selectively to the robot’s attention). For 
several of these factors, the saliency measure is a time-varying quantity. For instance, 
socially directed reference assigns a very high saliency upon appearance of the gesture 
and then gradually decays over time. This strongly biases the robot to participate in 
referential looking with a human before attention shifts elsewhere 

 

 
Figure 8: The weighted factors that are considered when determining the overall saliency of 
environmental (left) and social cues (right) that direct the robot’s attention. 
 
For each item in the 3D spatial representation, the overall saliency at each time step is the 
result of the weighted sum for each of these factors. This is done using a similar approach 
as described in Breazeal & Scassellati (1999). The left diagram of Figure 8 shows those 
factors considered for computing environmental saliency. The right diagram shows those 
for social cues. The item with the highest saliency becomes the current attentional focus 
of the robot, AttnFocus_R. This is where the robot’s gaze is directed (Breazeal et. al., 
2001). The referential focus, RefFocus_R is determined as the last object that was the 
subject of shared attention between robot and human. 
 
6.3.2 Model of Human Attention 

 
Using the same 3D spatial map, the robot also monitors what objects the human looks at, 
points to, and talks about over time. These items are assigned a tag with value, 
Saliency_H, that indicates which objects have been the human’s focus of attention and 
therefore have been salient (of interest) to him or her.  This allows the robot to keep track 
of items that both human and robot are mutually aware (i.e., the common ground). The 
human’s current attentional focus, AttnFocus_H is defined as at what he or she is 
currently looking. The human’s referential focus, RefFocus_H is determined by the last 
object that was the object of shared attention with the robot. See Figure 9 where robot 
and human are sharing joint visual attention via head pose and pointing gesture. 
 



 
 
Figure 9: Visualizer showing the robot and a human sharing joint visual attention on the same 
object. The right image shows the visual input of a person looking at and pointing to the center 
button.  The left image shows the visualization of the robot’s internal model. The human’s gaze is 
shown as the blue vector and his pointing gesture is shown by the brown-green vector. The robot 
looks at the same button (robot’s blue vector) to establish joint attention. 
 
These attention following and directing skills can be accompanied by conversational 
policies along with gestures and shifts of gaze for repair, elaboration, and confirmation to 
confirm a shared referential focus and to maintain mutual beliefs between human and 
robot (as discussed in section 6.1). For instance, these skills are of particular importance 
for situations where an occluding barrier forces a robot and its human teammate to see 
different aspects of the workspace as discussed in section 1.1. In short, human and robot 
will have to share information, and direct the attention of the other, to establish and 
maintain a set of mutual beliefs and the same referential focus. 
 
6.4 Mutual Beliefs 
 
This leads us to the issue of modeling and reasoning about beliefs (it is possible that the 
human and robot may hold different beliefs due to different visual perspectives). Young 
children around 3 years of age appreciate the relationship between perception and belief. 
Whereas seeing reflects the state of the world as it is directly perceived, beliefs are 
representational and are held to be true even if they do not happen to agree with 
immediate perceptual experience (Wellman, 1991). For instance, a child may believe that 
a hidden object continues to be present even though it cannot be seen at that moment. For 
collaboration, it is important that Leonardo be able to establish mutual beliefs between 
itself and its human partner. This entails that the robot be able to represent beliefs for 
itself as well as model the beliefs of others. 
 
6.4.1 Perceptions and Beliefs 
 
Leonardo’s belief system can best be described as a mechanism for performing temporal 
integration of perceptual input, resulting in coherent sets of objects that are believed to 
exist in the world and their affiliated properties. It is represented as a dynamic database of 
“belief” objects, each corresponding to an external object in the world (Burke et. al, 



2001). For instance, Leonardo’s buttons are each represented as the associated features of 
color, shape, position, and a linguistic label (that as assigned when a person names the 
button for the robot).  
 
Internally, the belief system is defined by pointers to the percepts feeding into it and rules 
that govern the merging of new perceptions into the existing set of beliefs. Percepts may 
correspond to a multitude of sensory data: vision, tactile information, speech commands, 
audio inputs, and proprioceptive feedback. Whenever a new piece of sensory input 
arrives in the perception system, it activates a hierarchical structure (called the percept 
tree) that classifies the sensory information into a data structure called a "snapshot" 
which is then passed over to the belief system. Upon reception of this "snapshot", the 
belief system applies a set of sequential merging and arbitration rules to either create new 
beliefs from the sensory information, or to update existing beliefs about objects Leonardo 
already knows about.  
 
For instance, when a human wishes to teach Leo the name of an object, he or she will 
point to it and name it for the robot (e.g., “Leo, this is Button 1”). Upon recognizing this 
gesture, shared attention shifts to the indicated button, and the belief for that button is 
updated to denote that it is the current attentional focus and the current referent focus of 
the robot and human. The name for the button is extracted from the speech stream and 
associated with this belief given that it is the current referent focus. From this point 
onward, even when the button is physically moved, its location attribute is updated and 
the name moves with it since they are part of the same belief. Moreover, if a person 
requests that the robot press that button (e.g. “Leo press Button 1”) the belief for that 
button is queried for its current location so that Leonardo knows where to look for it and 
upon what object to apply its button-pressing action. 
 
6.4.2 Model of Human Beliefs 
 
Leonardo models the human’s beliefs (and assigns the attentional focus and referent 
focus attributes) using the same database representation and feature association 
mechanisms. In this way, the robot can compare those beliefs it holds personally with 
those that it attributes to the human. To update its model of the human’s beliefs, the robot 
follows the person’s gaze to nearby objects to update the human’s attentional focus 
attribute for beliefs associated with those objects. Those beliefs that are shared also with 
the robot are labeled as mutually held, $MutBel$. The robot updates the human’s referent 
focus attribute by using its joint attention mechanism.  
 
7 Learning Motor Skills from “Internal” Demonstration 
 
Leonardo learns how to press buttons from “internal” demonstration by a human 
operator. In this scenario, the human demonstrator wears a telemetry suit that allows her 
to control Leonardo’s joint angle movements. As she “shows” Leonardo how to perform 
an action by guiding the robot using the telemetry suit, the robot records these specific 
actions as they are applied to objects at specific locations. The motion capture suit 
measures joint angles at over 40 different places of the operator’s hips, torso, arms and 



neck using potentiometers and gyros at a frame rate of up to 120 hertz. The motion 
capture software associated with the suit generates accurate 3D models of the human in 
Euler angles. We convert these suit angle measurements in real-time into the equivalent 
joint angles, carefully calibrated to the robot, so that the operator can command 
Leonardo’s motors in a natural fashion.  
 
The human demonstrator can “show” Leonardo how to press a button at several different 
locations in its workspace. This defines the basis set of button-pressing examples that are 
indexed according to 2D button location. The robot can then interpolate these exemplars 
(see equation 1) using a dynamically weighted blend of the recorded button pressing 
trajectories (based on the Verb & Adverb animation blending technique of Bodenheimer 
et. al. (1998).  
 
Equation 1 
For each joint angle Jk in the robot: 
 

Jk = Ek, i×Wi

i=1

NumExemplars

∑  

Where Ek,i is the kth joint angle in the ith exemplar, and Wi is the weight of the ith exemplar 
 
To determine the blend weights, we first precompute the Delaunay triangulation of the 
target points (also known as the dual of the Voronoi diagram).  Then we find the triangle 
of targets that encloses the new location, and calculate the three weights such that a 
weighted sum of those targets is equal to the position of the new button location (see 
equation 2).  Once the weights are determined, we can blend these three source 
animations together according to the calculated weights on a per joint basis.  
 

Equation 2 
To calculate blend weights for point P, find weights W1, W2, and W3 such that:  

 

W 1=
L − T1P

L

L = T1T 2 sin(a) /sin(π − a − b)

Where:

T1T2

T3

P
•

La b

P =T 1W 1+ T 2W 2 + T 3W 3

W 2 and W 3 can be obtained similarly

We solved this problem geometrically: 
 
 
 
 
 
 
 
 
 
This process is done for each frame of the resulting movement trajectory; thus for each 
frame each joint angle is computed using a weighted sum of the joint angles from all of 
the motion-captured source trajectories for that frame.  While this type of computation 



can result in an end effector position that is not linearly related to the blend weights used, 
we have found that approximating this relationship as linear has been sufficient for this 
case. Using this technique, Leonardo does reasonably well at pressing a button located 
anywhere in its workspace.  
 
8 Learning Names of Things and Following Requests  
 
With the capabilities outlined in the previous sections, Leonardo is able to learn the 
names of objects from natural human instruction. For the human, teaching Leonardo the 
names of objects is straight forward---one simply has to point to the desired object and 
name it for the robot, e.g. “Leonardo, this is a hammer.” Given the use of the word “this” 
in the utterance, the speech understanding system recognizes that the object referent is 
being communicated to the robot through a deictic gesture. As a result, the speech 
understanding system passes the linguistic label, e.g., “hammer” to the robot’s belief 
system. In parallel, the vision and spatial reasoning systems pass the visual features of the 
object referent to the belief system as well. This allows the belief system to bind all 
relevant features into a coherent and persistent belief that an object exists in the world, at 
a particular 3D location, with the specified name, and is characterized by a number of 
visual features (color, size, etc.). Furthermore, Leonardo socially cues to the human that 
he understood the intent of the person’s utterance by looking to the object referent as the 
human points to it and names it, and then looks back the person’s face when he has 
formed the corresponding belief.  
 
Alternatively, if the robot did not understand the utterance, he communicates this to the 
human as well. Immediately upon hearing a person say something, Leonardo looks to the 
person’s face with an interested expression and perks his ears. This tells the person that 
Leonardo heard her and is attending to her. If the robot did not understand the utterance, 
he will display a look of confusion (cocks his head to the side and shrugs). This allows 
the person to correct the misunderstanding. This conveys to the human that the robot is 
committed to trying to understand her by letting her know when she is understood and 
when she is not. 
 
The human can confirm the robot’s understanding in a number of ways. For instance, the 
person can simply ask Leonardo to “Show me the hammer.” If Leonardo has assigned the 
“hammer” label to an object, the robot responds by first looking to that object, pointing to 
it, and then looking back at the human to await their response. If the robot has not 
assigned a “hammer” label to an object (perhaps the person did not label anything a 
“hammer” yet, or perhaps the robot didn’t understand when she did so) the robot 
communicates that it doesn’t know this by showing an expression of confusion (cocks its 
head to the side and shrugs). Alternatively, the person can also ask Leonardo, e.g.  “Can 
object. Otherwise, if not, Leo will disappointedly shake its head “No…” while shrugging 
to you show me the hammer?” In this case the robot will enthusiastically nod its head 
“yes” and then point to the corresponding object if Leo has assigned a “hammer” label to 
an communicate, “…because I don’t know.”  
 



Therefore, by using natural social cues as feedback, the human instructor can quickly 
assess what the robot has learned and what it hasn’t learned so far, and immediately 
correct any misunderstandings if needed before moving on to teaching the robot the next 
thing. This leads to an efficient training scenario where errors are quickly remedied, 
rather than being allowed to persist and thereby potentially lead to more errors and 
miscommunication in the future. Instead, this natural teaching scenario with immediate 
communicative feedback, allows both robot and human to establish and maintain a set of 
mutual beliefs about the situation at hand in a fluid and natural manner. 
 
Once the robot has learned the names of objects, Leonardo can follow human requests to 
attend to or to manipulate those items. For instance, the human can ask Leonardo to 
“Look at the wrench.” To respond, the robot directs its gaze from the humans’ face to the 
desired object. After a short period, the robot looks back to the speaker to await her next 
utterance. Alternatively, the human can direct the robot to operate on an object, such as 
“Leonardo, press button 1.” The robot responds by applying the desired action to the 
specified object. Video of a sample scenario can be viewed at 
http://robotic.media.mit.edu/projects/Leonardo/Leo-demo-movie.html. 
 
9 Learning Task Structure from Collaborative Interaction 
 
In addition to requesting that Leonardo perform actions with his buttons, we are able to 
teach Leonardo more complex tasks made up of these actions.  Tasks are represented in a 
hierarchical structure of actions and sub-tasks.  Completing a task involves completing 
each of its child actions or tasks (unless higher-ranking goals have been achieved 
otherwise), which are then recursively expanded to their actions.  The task representation 
encodes constraints among the actions, which are currently utilized only as sequential 
constraints, but the representation is generic and others could be added in the future.   
 
In the learning of a task, a goal is associated with each of the constituent actions as well 
as the task as a whole.  Therefore, the task goal is more than just the conjunction of the 
goals of its actions and sub-tasks.  Additionally, in executing the task, the task goal can 
be evaluated as a whole rather than evaluating each of its children's goals to determine if 
the task is done, improving efficiency. We found the goal driven approach crucial for 
both the tutoring of tasks and collaborating on them. Goals provide a common ground for 
action segmentation and understanding as well as for coordinating actions as part of a 
collaborative activity. 
 
Leo encodes the goal state associated with an action performed in the tutorial setting by 
comparing the world state before and after its execution.  The system currently has two 
different types of task goals.  Goals that represent a state change in the world, and those 
in which the goal is simply to perform the activity.  One key difference between the two 
is that in the state-change goal you have to evaluate whether the goal has been met before 
doing the activity and thus may not have to perform it, but in the other the activity must 
always be performed.  Another difference is that in the state-change goal just doing the 
activity once may not have achieved the goal (if there was a mistake) so there is the 
possibility of needing to try again. 

http://robotic.media.mit.edu/projects/Leonardo/Leo-demo-movie.html


 
 
 
9.1 Teaching Tasks Using Natural Instruction 
 
Teaching is best illustrated with an example; the following goes through teaching 
Leonardo to turn his buttons on and then off.  The teacher begins by asking Leo to do the 
task, “Buttons-On-and-Of.” To this, the robot indicates that it does not know how to do 
this task and goes into learning mode.  The teacher then tells the robot that the task starts 
with the task “Buttons-On”; again Leonardo indicates that he does not know “Buttons-
On” either. As a response, the teacher begins to teach him how to do this subtask by 
leading him through it.  When asked to “Press Button 1,” the robot notices that pressing 
Button 1 changes the state of the world, such that Button 1 is now on.  Hence, this is 
encoded as the goal of the press-action for Button 1, and this action is stored as part of the 
“Buttons-On” subtask.   
 
The rest of the “Buttons-On” task is instructed in a similar fashion, and when all of the 
buttons are on the teacher tells Leonardo that the “Buttons-On” task is done.  At this 
point the robot notices the difference in the state of the world before and after the 
“Buttons-On” task, and encodes that the goal of this subtask is to have all of the buttons 
in the ON state.  This task is then stored as the first part of the larger “Buttons-On-and-
Off” task.  
 

Press 1Press 2 Press 2Press 1 

 On  Off

On & Off 

Task and Action Goals: 
On&Off: no state change, complete sub  
actions/tasks 
On: state change, all buttons off to on 

Press1: state change, button 1
off to on. 
Press2: state change, button 2 
off to on. 

Off: state change, all buttons on to off 
Press1: state change, button 1 
on to off. 
Press2: state change, button 2 
on to off. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10: The diagram on the left is the resulting hierarchical task representation from the 
“Buttons-On-and-Off” learning scenario described in the text.  The right box describes the task, 
subtask, and action level goals that Leonardo learned.  The goal associated with the overall task is the 
completion of subtasks and actions.  On the other hand, state changes were seen with each of the 
subtasks and their respective actions; therefore, these state changes are taken to be the goals. 
 
The “Buttons-Off” subtask is taught in a similar way, and Leonardo then has a 
representation of the “Buttons-Off” task with the goal of ending up with all of the buttons 
in the off state.  After this, the robot is told that the original “Buttons-On-and-Off” task is 
done.  Leo sees that the state of the world before and after the “Buttons-On-and-Off” task 
is the same, so the robot assumes that the goal of the task is simply the act of doing it.  



The overall task goal is encoded as a just-do-it goal. Figure 10 shows the resulting 
representation from the above teaching example. 
 
The tutoring of tasks exemplifies our approach to teaching as a collaborative interaction. 
Joint attention is established both on the object level and on the task structure level. 
Leonardo uses subtle expression to indicate to the human tutor when the robot is ready to 
learn something new, and its performance of taught actions provides the tutor with 
immediate feedback about the robot’s comprehension of the task. Envelope displays such 
as gaze aversion, eye contact, and subtle nods and are used to segment a complex task 
learning structure in a natural way to the tutor.  Natural key words such as “next”, “first” 
are used to indicate task structure and sequencing constraints. 
 
Failure to comprehend an action or its goal is easily and naturally detected by the tutor, 
and we are currently working to incorporate negative feedback to correct a task 
representation. As in a natural teacher-student interaction, errors are corrected just as they 
happen as part of the natural flow of the interaction.   
 
10 Performing a Learned Task In Collaboration with People 
 
Our goal-oriented representation affords task collaboration between the robot and a 
human partner. We have implemented a turn taking framework in which the human 
collaborator and Leonardo can work in partnership to achieve a common goal.  This is 
made possible by continually evaluating both the state of the task and the state of the 
world before trying to execute an action.  
 
We placed a high importance on communicating the robot’s perceived state of the world 
and the task (recall our discussion in section 3). Goals refer to world state as well as to 
activity state, establishing common ground between the robot and the human. As a result, 
joint intention, attention and planning is naturally achieved. Throughout the 
collaboration, the human partner has a clear idea as to Leonardo’s current singular intent 
as part of the joint intent.  
 
Leonardo meshes sub-plans for how to execute the shared task dynamically according to 
its abilities and the actions of the human partner. If, when Leo is doing one part of the 
task the human completes a separate element, Leonardo will take this into account and 
will no longer keep this on the list of things for it to do.  Furthermore, before attempting 
an element of the task, Leonardo negotiates who should complete it.  The robot has the 
ability to evaluate its own capabilities. Thus, if Leonardo is able to complete the task 
element, the robot will offer to do so.  Conversely, whenever Leonardo believes that it 
cannot do the action, the robot will ask the human for help. Since Leonardo does not 
speak at the moment, the robot indicates its willingness to perform an action by pointing 
to its self and adopting an alert posture and facial expression. Analogously, when 
detecting an inability to perform an action assigned to it, Leonardo’s expression indicates 
helplessness, as the robot points to the human. Leo uses gaze direction to indicate what it 
is that it needs help with.  
 



Again, a variety of gestural cues have been used in order to communicate Leonardo’s 
internal state (who it thinks is doing an action, whether it believe the goal has been met) 
with the human.  When the human partner changes the state of the world, Leonardo 
acknowledges that it has detected this change by glancing shortly towards the area of 
change before redirecting its gaze to the human. We found this particularly valuable 
when the human completes part of the joint plan synchronously as Leonardo performs a 
different part of the task (or when the human unexpectedly changes something in the 
world). Leo's post-factum glance reassures the human collaborator that the robot noticed 
the human’s actions and establishes a mutual belief on the progress of the shared plan. 
Similarly, Leonardo uses subtle nods while looking at his partner to indicate when he 
thinks a task or subtask is completed.  
 
11 Discussion 
 
For humans, learning and teaching form a coupled system in which the learner and the 
teacher work together. Humans can serve as motivated and natural teachers for creatures 
(natural or artificial) that are rewarding to teach. Given that humanoid robots are targeted 
for tasks in the human environment, it only makes sense to design them in a way that they 
can take advantage of natural human instruction.  
 
The social and collaborative style of interaction that characterizes human tutelage plays 
an important role in constraining and guiding the learning process in a wide number of 
ways. At its best, the teaching and learning process is intimately coupled, well tuned, and 
transparent. The teacher and learner read and respond to the other, tuning their behavior 
to each other, to more effectively guide the learner’s exploration. In this way, the 
instructor becomes a more effective teacher and the pupil a more effective learner---each 
simplifies the task for the other. The role of a teacher is largely to make the world simpler 
for the learner and to guide the search by providing timely feedback, luring the learner to 
perform desired behaviors, controlling the environment so the appropriate cues are easy 
to attend to, etc.  
 
Our architecture supports the construction of collaborative learners that are easy and 
rewarding to teach using techniques that are intuitive for people. In Breazeal (2003) we 
outline several key issues in learning a new task, and describe how social cues, offered 
during natural human teaching scenarios, can be used to address them. These are meant to 
supplement existing statistical learning techniques, to make the robot’s ability to learn 
more effective and require fewer examples. Leonardo’s cognitive architecture addresses 
the following issues of learning from people as outlined below. 
 
11.1 Knowing What Matters 
 
Faced with an incoming stream of sensory data, a robot must figure out which of its 
myriad of perceptions are relevant to learning the task. As its perceptual abilities 
increase, the search space becomes enormous. If the robot could narrow in on those few 
relevant perceptions, the learning problem would become significantly more manageable.  
 



Knowing what matters when learning a task is fundamentally a problem of determining 
saliency, which can be guided either externally (the environment), internally (the robot’s 
goals, etc.), or socially (by the instructor) as discussed in section 6.3.  Such social and 
guiding cues help the learner to identify the most relevant items to consider and 
accelerates state-space discovery, where the robot learns new groups of features that have 
behavioral significance. Alternatively, temporal cues (such as saying “pay attention 
now”) can be used to highlight a distinct environmental context or change that is relevant 
to the task.  To facilitate this process, the state of the learner’s attention must be 
transparent to the instructor so that he or she can easily infer what the learner is attending 
to, at what time, and what it is about to do.  
 
Leonardo’s attention system (in conjunction with its perceptual, discourse and motor 
systems) support a variety of attentional cues that help the robot to identify the 
appropriate object to be named (the referential focus), important state-action-result 
associations, and how to group these associations to acquire a high-level task model. 
Simultaneously, Leonardo communicates its focus of attention and current referential 
focus to the human using gaze direction and gestures. By doing so, human and robot can 
share joint attention over a wide number of possible contexts --- a critical skill for 
learning via tutelage. 
  
11.2 Knowing What Action to Try 
 
Once the robot has identified salient aspects of the scene, how does it determine what 
actions it should take? As robots become more complex, their repertoire of possible 
actions increases. This also contributes to a large search space. If the learner had a way of 
focusing on those potentially successful actions, the learning problem would be 
simplified.  
 
Determining which action to try can be addressed in a number of ways. For instance, the 
robot could experiment on its own by selecting an action based on past experience, as in 
reinforcement learning. For large state-action spaces this requires a prohibitively large 
number of trials. Alternatively, in learning by imitation, the robot is given the ability to 
follow the actions of the demonstrator. The demonstrator can be either a human (Billard 
et. al., 1998) or another robot (Dautenhahn, 1995). The learner follows the model, 
thereby sharing a similar perceptual and motor state, to learn a reactive state-action policy 
(Billard & Dautenhahn, 1998). This mapping often represents a shared inter-personal 
communication protocol, where the model announces the labels for particular sensory-
motor states as they occur and the follower learns their association (Billard et. al., 1998). 
It has also been applied to learn a control policy for navigating a maze environment 
(Hayes & Demiris, 1994). 
 
A human teacher, however, can play a far more important and flexible role in guiding the 
learner’s selection of the most promising actions in specific contexts. For those actions 
that robot already knows how to perform, the human instructor can simply show or tell 
the robot what to do under what circumstances. Friedrich & Dillmann (1995) make this 
process explicit where at each step the teacher provides information on which goal he 



wants achieved and what actions or objects are relevant to achieving that goal. This 
approach views teaching as explicit programming of the robot, which might prove 
burdensome. It also fails to capture the social and collaborative spirit of the teaching-
learning process that characterizes human tutelage and our work with Leonardo. 
 
In contrast, we model teaching as a collaborative process rather than as a form of explicit 
programming.  The human intuitively guides the robot through the task, teaching it how 
to do the portions the robot does not understand yet. The instructor helps the robot 
determine what action to try either by showing the robot through demonstration or telling 
the robot what to do next. At a more fundamental level, the instructor can teach the robot 
how to perform new motor skills via “internal” demonstration (recall section 7). 
 
Through the process of learning the task model, Leonardo is able to infer the conditions 
upon when to apply the actions according to the situational context (the observable state 
of the world) and the task context (what portion of the task the robot is currently 
performing). Leonardo is also able to infer the desired outcome that is to result from 
performing each action. Because the robot can assess its own success, Leonardo can 
diligently bring about the desired situational context (using multiple attempts if 
necessary) before proceeding to the next portion of the task. The goal representation used 
for actions and subtasks, as well as the task model, allow the robot to perform the learned 
task either on its own, or in collaboration with the human. 
 
11.3 Knowing How to Recognize Success and Correct Failures 
 
Once a learner can observe an action and attempt to perform it, how can the robot 
determine whether it has been successful? How does it assign credit for that success? 
Further, if the learner has been unsuccessful, how does it determine which parts of its 
performance were inadequate? It is important that the robot be able to diagnose its errors 
in order to improve performance. In many situations, this evaluation depends on 
understanding the goals of the task and intentions of the instructor.  
 
Fortunately, the human instructor can help the robot do this given that he or she has a 
good understanding of the task and knows how to evaluate the learner’s success and 
progress. One way that a human instructor facilitates the learner’s evaluation process is 
by providing feedback through a number of channels (facial expression, gesture, speech, 
tone of voice, etc.). For instance, Nicolescu & Mataric (2003) use verbal cues to help 
their robot identify the incorrect aspects of its task model as it performs the task. By 
saying the word “bad” the human instructor identifies which part of the robot’s task 
model is incorrect, and the subsequent demonstration is used to correct the problem. 
Animal training techniques, such as clicker training, have been used to teach a robot dog 
new tricks  (Kaplan et. al., 2002; Blumberg et. al., 2002). In clicker training, the “click” 
sound is associated with a positive reward. Its distinctive sound and short duration allow 
the trainer to signal reward at a precise time to reinforce a specific association.  In both of 
these examples, the timing of when the feedback is given (either positive or negative) is 
extremely important in helping the learner identify what is to be reinforced or corrected. 



Feedback can also be provided to the robot to help it measure progress toward the goal 
(closer or further) or to recognize when the goal has been achieved. In this way, the 
human can play an important role in helping the robot to evaluate its own success through 
intuitive communication channels 
 
In our work, Leonardo collaborates with the human instructor to infer his or her intended 
goal for each step of the instruction process. The robot is able to identify an intended goal 
on multiple levels---i.e., the desired outcome of an action, a subtask goal, or the overall 
task goal.  The robot can distinguish two different kinds of goals: either to realize a 
desired state change on the world or simply to perform the action.  
 
Leonardo is able to make these distinctions because of the collaborative process. There is 
a shared understanding between human and robot that the instructor wants to teach the 
robot the goal of each step of the overall task. There is an assumption that there is a 
desired outcome for each action, task, or subtask that the human offers to teach the robot. 
When Leonardo indicates that it does not how to perform something, it tries to infer the 
desired outcome when the human offers to teach the robot how to do it. Leonardo can 
make distinctions as to the nature of the goal and whether it is associated with an action, a 
subtask, or the overall task based on the instructional dialog and the changes it sees in the 
world state.  
 
To confirm that it properly understood the desired outcome, Leonardo demonstrates this 
understanding to the instructor and waits for feedback. Positive feedback indicates that 
the robot is correct. We are currently adding negative feedback if the robot made the 
incorrect hypothesis and repair is necessary. If the human goes on to the next part of the 
task, the robot assumes that the inferred goal is correct. For state-change goals, the robot 
knows that it is not successful until it has achieved this desired outcome and it will 
reattempt if initially unsuccessful. If no net change on the world is observed after 
performing the action or subtask, then the robot assumes the goal is to simply perform it. 
 
11.4 Knowing How to Explore 
 
A human instructor plays an important role in helping the learner to explore its state-
action space to discover a solution more quickly. Providing a robot with a demonstration 
of the desired task is one way to do this. For instance, teaching humanoid robots 
dexterous skills is challenging because their state-action space becomes prohibitively 
large to search for a viable solution in reasonable time. Imitative learning has been 
applied as an efficient way to explore this space, using a human’s demonstration to help 
initialize the robot’s own search (see Schaal 1999 for a review). The robot observes the 
human’s performance, using both object and human movement information to estimate a 
control policy for the demonstrated motor skill.  Providing the robot with knowledge of 
the goal (in the form of an evaluation function) allows the robot to further improve its 
performance through trial and error, for instance, for a “ball-in-cup” task (Miyamoto et. 
al., 1996) or hitting a tennis forehand (Miyamoto & Kawato, 1998)   
 



Animal training techniques, such as shaping and luring, guide search by leading the 
learner through the task. Blumberg et. al. (2002) applied a luring technique in 
conjunction with clicker training to train a virtual dog to perform new tricks, such as 
“roll-over” or “walk-a-figure-eight.” To do so, the virtual dog is given the behavior to try 
to place its nose as close as possible to the end of a training baton. By moving the baton 
around the virtual dog, the trainer can leverage this “follow-your-nose” behavior to help 
the character explore its movement repertoire. When the “dog” does a desired behavior, a 
clicking sound (already associated with a reward signal) reinforces the action with verbal 
command and biases the character to repeat that action in the future. 
 
Alternatively, a human can use feedback to guide exploration.  Within a reinforcement 
learning paradigm, Kaiser (1997) explores the use of positive or negative feedback given 
at the end of a trial after the robot demonstrates the desired skill. Refinement of learned 
skills is considered where an exploration process alters the performance skill during 
execution, and the feedback is used to assess the quality of the exploration. It was found, 
however, that providing a delayed reward at the end of the trial presents problems with 
credit assignment. As discussed in section 11.3, the timing of when feedback is given is 
very important to facilitate the learning process. 
 
In our approach, the human instructor collaborates closely with the robot to guide its 
exploration as it quickly and efficiently learns each step of the task. This is done in a very 
intuitive way, where the robot leverages from the human’s demonstration or verbal 
instruction to quickly infer the critical preconditions and desired outcome for each step, 
as well as how these steps relate to one another in the overall task structure. The robot 
immediately demonstrates its understanding back to the instructor to confirm and move 
on or to correct if necessary. This prevents misunderstandings or mistakes from persisting 
for multiple steps---which would make them more awkward to correct later on. Instead, 
the robot and human progress fluidly through the task at each step, confirming and 
correcting along the way. As a result of this collaboration, the robot can learn a 
sophisticated and flexible task structure, including learning task components such as 
actions and subtasks from the bottom-up, very quickly and efficiently from few 
examples. The overall interaction is natural and intuitive for the instructor. 
 
11.5 Knowing How to Leverage from Provided Structure 
 
As discussed in section 4, little attention has been paid to the question of how a human 
can guide the learning process of a robot. Instead, the dominant trend in machine learning 
has been to eschew built-in structure or a priori knowledge of the environment or task at 
hand, and set out to discover the structure that is in data or the world through exhaustive 
search and/or sophisticated statistical learning techniques. As a result, the most powerful 
techniques rely on the availability of a great deal of data in order to discover this 
structure. This makes these techniques difficult to apply when the number of examples 
may be very small or the time to learn the task is limited (e.g., the patience of the human). 
Also, such techniques are not well suited to rapidly changing environments where earlier 
examples are no longer relevant.  In addition, the underlying representations used in 



machine learning typically make it difficult for the systems to generalize from learning 
one particular thing or strategy to another type of thing.  
 
In contrast, our approach recognizes that much of human instruction provides structure 
through social interaction and communication. This socially provided structure frames 
the learning task for the robot so that the task can be acquired quickly and efficiently. For 
instance, our work illustrates how a human instructor can help frame a complex learning 
task into simpler components that can be learned individually and then combined to 
define full task specification. For instance, Leonardo understands specific dialogs that 
cue the robot of the human’s intention to teach the robot a new task and when the 
instruction for that task is completed. Other specific dialogs cue the robot as to where 
these tasks fit within the overall task structure (e.g., those that begin with sequencing 
words such as “first,” “next,” “finally,” etc.). 
 
To do this well, the instructor needs to maintain an accurate mental model of what the 
robot understands thus far. With this information, the instructor can control the rate of 
information exchange --- to either speed it up, to slow it down, repair misunderstandings, 
or to elaborate as appropriate. Leonardo helps the teacher to form an accurate mental 
model by communicating its internal state (what it is attending to, when it is confused, 
etc.) and demonstrating its understanding using natural cues such as mutual gaze, 
feedback nods, facial expressions, etc. By regulating the interaction in partnership with 
the robot, the instructor provides relevant instruction at the time the robot needs it 
(Breazeal, 2002; 2003). 
 
Leonardo’s ability to take turns with the human lends significant structure to the 
interaction that the robot can use to incrementally refine its performance (Breazeal 2000; 
2002). The instructor demonstrates, the learner performs, and if necessary the instructor 
demonstrates again, often exaggerating or focusing on aspects of the task that were not 
performed successfully. Similarly, in learning by experienced demonstration, Nicolescu 
& Mataric (2003) view teaching and learning as a mixed-initiative process that 
interleaves instructive demonstrations with supervised practice trials of the robot. The 
human instructor leads the robot through the task as the first demonstration, and the robot 
encodes this into its approximation of the task model. The robot then demonstrates its 
representation of the task, where the teacher can intervene to correct and refine the 
robot’s performance. Our approach models this as a more collaborative process where the 
robot shares responsibility for confirming the correctness of what it has learned so far 
with the human instructor. This allows errors to be repaired quickly at the time they 
occur, rather than being allowed to persist. 
 
Furthermore, Leonardo and the human instructor collaborate to frame the purpose of the 
interaction. For instance, is the purpose of the interaction to learn from it or to 
demonstrate understanding? Also what level of representation is currently being 
addressed---at the level of an action, a subtask or the overall task? In Nicolescu & 
Mataric (2003), the instructor takes the sole responsibility by issuing single word 
commands that places the robot in either demonstration mode or learning mode. This is 
used by the human to stop the robot’s demonstration during an incorrect portion of the 



task, then put the robot in learning mode where it follows the human through a corrected 
sequence to update its task model, and finally restore demonstration mode to allow robot 
to finish the task. Alternatively, the instructor may provide a new demonstration of the 
same task in a different way to help the robot generalize its task representation.  
 
In our approach, the robot shares this responsibility with the human. The robot readily 
confesses to what it does and does not understand, thereby prompting the human for what 
it would like to be taught next. When the human offers to teach the robot that step of the 
task, the robot does its best to learn how to achieve the goal specified by the human. 
Leonardo then takes the initiative to demonstrate this understanding and waits for 
feedback to either quickly confirm (using short utterances such as “good,” “OK,” etc.) or 
correct its performance. If the human goes on to the next step, the robot understands that 
this implies its performance was satisfactory and proceeds to the next step. In this 
manner, the robot fluidly switches between learning from the human and demonstrating 
what it has learned as the interaction unfolds at a natural pace. In addition, the human has 
confidence that the robot is acquiring the correct task structure because he or she has a 
good mental model of what the robot has learned so far. 
 
12 Summary 
 
This paper presents an overview of our work to build humanoid robots that can cooperate 
with people as capable partners and learn from natural human instruction. As argued in 
section 2, there are many reasons to believe that a social interaction will be the most 
natural and intuitive way for ordinary people to work with humanoid robots and to teach 
them. In section 3, we carefully distinguished human-robot cooperation from other forms 
of human-robot interaction to identify those key issues that must be addressed to build 
robots that can serve as helpful assistants and effective teammates. Of primary 
importance is to build robots that understand people as people. In contrast to inanimate 
objects, our behavior arises from a rich network of mental states. In short, humanoids will 
have to understand why people do what they do---inferring key mental states such as 
beliefs, desires, intentions, etc. from people’s observable behavior--- to be able to provide 
them with the right kind of help at the appropriate time, or to learn the intended thing at 
the right time.  
 
Toward this ambitious goal, we have presented how our ideas (informed by Joint 
Intention Theory and Theory of Mind) can be applied to building humanoid robots that 
communicate with people in human terms, work with people as capable partners, and 
learn quickly from natural human instruction. We have also highlighted a number of 
Theory of Mind competencies, developed for our humanoid robot, and have been applied 
to teaching the robot how to perform a simple task from natural human instruction. In 
contrast to standard approaches in machine learning that rely on many examples to infer 
task structure, our work leverages from social structure provided through natural human 
instruction to learn hierarchical tasks quickly and efficiently---from low level actions to 
subtasks, and how these relate to model the overall task.  
 



In addition, we have shown how this approach can be extended to allow the robot to 
perform the learned task cooperatively with a human teammate. The robot collaborates 
with the human to maintain a common ground from which joint intention, attention, and 
planning are naturally achieved .The robot is aware if its own limitations and can work 
with the human to dynamically divide up the task appropriately (i.e., meshing sub-plans), 
offering to do certain steps or asking the human to perform those steps that it cannot do 
for itself. If the human proactively completes a portion of the task, the robot can track the 
overall progress of the overall task (by monitoring the state of the world and following 
the task model). Leonardo demonstrates this understanding (e.g., using social cues such 
as glancing to notice the change in state the human just enacted, or giving quick nod to 
the human) so they are both in agreement as to what has be accomplished so far and what 
remains to be completed. 
 
Based on the work presented in this paper, we argue that building socially intelligent 
robots has extremely important implications for how we will be able to communicate 
with, work with, and teach robots in the future.  These implications reach far beyond 
making robots appealing, entertaining, or easy with which to interact. This is a critical 
competence for robots that will play a useful, rewarding, and long-term role in the daily 
lives of people---robots that will cooperate with as capable partners rather than needing to 
be operated (either manually or by explicit supervision) as a complicated tool. 
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