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The study of social learning in robotics has been motivated
by both scientific interest in the learning process and
practical desires to produce machines that are useful,
flexible, and easy to use. In this review, we introduce the
social and task-oriented aspects of robot imitation. We
focus on methodologies for addressing two fundamental
problems. First, how does the robot know what to imitate?
And second, how does the robot map that perception onto
its own action repertoire to replicate it? In the future,
programming humanoid robots to perform new tasks might
be as simple as showing them.
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The study of the mechanisms that enable an individual to
acquire information or skills from another individual has
been a seminal topic in many areas of cognitive science.
For example, ethologists attempt to understand how bees
communicate the location of food sources, to describe how
successive generations of blue-tits learn to open milk
cans, and to categorize the spread of tool use in
chimpanzee troops. Developmental psychologists study
the emergence of social learning mechanisms in human
infants from the very early (but simple) imitative
responses of the newborn [1] to the complex replication of
task goals that toddlers demonstrate [2].

Research in robotics has focused on social learning for
many reasons. Commercial interest in building robots
that can be used by ordinary people in their homes, their
workplaces, and in public spaces such as hospitals and
museums, invoke social learning as a mechanism for
allowing users to customize systems to particular
environments or user preferences. Research in artificial
intelligence has focused on social learning as a possible
means for building machines that can acquire new
knowledge autonomously, and become increasingly more
complex and capable without requiring additional effort
from human designers. Other researchers implement
models of social behavior in machines to gain a deeper
understanding of social learning in animals (including
humans).

Differences between the study of social learning in animals
and machines
The methods for studying social learning in artificial
systems differ significantly from methods used to study
social learning in biological systems. When studying
animals, researchers attempt to determine the minimal
set of capabilities required to produce an observed
behavior. Precise taxonomies of the types of required skill
have been developed; however, none of these is
universally accepted (see Box 1). Although these
descriptions often focus on cognitive skills, they do not

completely capture the ways in which these skills can be
constructed or combined to produce the observed
behavior.

Whereas biological studies tend to be descriptive,
studies of social learning in artificial systems are
primarily generative; researchers attempt to construct a
desired behavior from a minimal set of capabilities. These
studies often use imprecise definitions of the external
behavior (often using the word imitation to mean any
type of social learning), but can precisely specify the
underlying mechanisms of the system (see Box 2).
Although these methodological differences do produce
terminology problems between these related disciplines,
on the whole, the literature on social learning in animals
is a very accessible source of inspiration for robots, both
physical and simulated (see Box 3).

Many different underlying mechanisms can produce the
same observable behavior
There are many ways in which a robot can be made to
replicate the movement of a human. Animatronic devices
(such as those used in amusement parks) continuously
replay movements that have been recorded either by
manually putting the machine into a sequence of
postures or by using devices that record the joint angles
of a human actor. Although these machines can perform
very high fidelity playback, they are non-interactive; they
neither respond to changes in their environment nor do
they adapt to new situations.

Other research has focused on the development of
robots that can learn to perform tasks by observing a
person perform that action. This technique, often called
‘learning from demonstration’, has been reviewed in
detail by Schaal [3]. Early explorations did not focus on
perceiving the movement of the human demonstrator, but
rather focused on observing the effects of those
movements on objects in the environment (such as
stacking blocks [4] or peg insertion [5]). In other work,
the robot observes the human’s performance as well,
using both object and human movement information to
estimate a control policy for the desired task. Providing
the robot with knowledge of the goal (in the form of an
evaluation function) allows the robot to further improve
its performance through trial and error, for instance, for
a 'ball-in-cup' task [6] or the task of playing air hockey
(Fig. 1). Atkeson and Schaal [7] demonstrated that far
fewer real-world practice trials were needed if the robot
could simulate its experience using a predictive forward
model for a pendulum-swing-up task. Although systems
that learn from demonstration have been programmed to
perform impressive feats, the systems are limited by the
fact that information flows only in one direction: from
human to machine.

Imitation and social interaction in robots



Studies of social learning in robotic systems have looked
at a wide range of learning situations and techniques.
Initial studies of social learning in robotics focused on
allowing one robot to learn to navigate through mazes [8]
or an unknown landscape [9] by using simple perception
(proximity and infrared sensors) to follow another robot
that was adept at maneuvering in the environment.
Other work in social learning for autonomous robots
addressed learning inter-pers. commun. protocols
between similar robots, between robots with similar
morphology but which differ in scale [10], and with a
human instructor [11]. Other approaches have looked at
expressive imitation involving facial displays and head
gestures [12–14].

Although the individual tasks in each of these studies
varied considerably, each of these studies looked at social
interaction as a means to address two fundamental
issues. First, how does the robot decide what to imitate?
Second, how does the robot act upon that decision to
perform a similar action? For simplicity, in the following
discussion we look only at systems that involve social
learning between a human and a robot that has a similar
physical body structure to a human (see [15] for a
discussion of the difficulties that arise when body
structures are radically different).

How does a robot know what to imitate?
When attempting to imitate a human, how does the robot
determine what perceptual aspects are relevant to the
task? The robot needs to detect the demonstrator, observe
his or her actions, and determine which are relevant to
the task, which are part of the instructional process, and
which are circumstantial [16]. This is a challenging
problem for perceptual systems and involves not only the
ability to perceive human movement, but also the
abilities to determine saliency (i.e. what is important)
and to direct attention.

Perception of movement
The visual perception of 3-D movement of humans or
objects continues to be a difficult problem for robot vision
systems. This problem can be avoided by using motion
capture technologies, such as an externally worn
exoskeleton that measures joint angle (e.g. a Sarcos
SenSuit), or placing magnetic markers on certain joints
and tracking them (e.g. the FastTrak system) [17]. Other
simplifications, such as marking relevant objects with
magnetic tags or distinctive colors, are often used [4,5,7,
18,19].

More general solutions to the problem of perceiving
human movement through vision have yet to be realized
[20,21], but many researchers are turning to techniques
such as hidden Markov models [22], or perceptual–motor
primitives (see Box 4) [23,24] to provide basic information
on how a human is moving in a visual scene. These
techniques combine task-based knowledge with
predictive models in an attempt to link expectations of
what the scene should look like with sensory data.
Although these techniques can provide information on
how a person is moving, subsequent extensive tuning to

the particular robot and environment are often necessary
to produce usable data.

Attention
The problems of perception are closely tied to models of
attention. Some attention models selectively direct
computational resources to areas containing task-related
information. They do this either by using fixed criteria
[23,25] (such as ‘always look at red objects when trying to
pick apples’) or by using adaptive models that modify the
attentional process based on the robot’s social context and
internal state. For example, the humanoid robot Cog (see
Fig. 2) was biased to attend to objects with colors that
matched skin tones when it was 'lonely', and to attend to
objects that were brightly colored when 'bored' [26].
Another strategy is to use imitative behavior as an
implicit attentional mechanism that allows the imitator
to share a similar perceptual state with the demonstrator
[27,9]. This approach is used in the ‘learning-by-
imitation’ paradigm, in which the ability to imitate is
given a priori and acts as a mechanism for reinforcing
further learning and understanding. Hence, as Demiris
and Hayes put it, 'the learner isn’t imitating because it
understands what the demonstrator is showing, but
instead learns to understand because it is imitating' [24].
For instance, those authors used this technique to teach a
robot a control policy for how to traverse a series of
corridors by following another robot [8].

Shared attention, the ability to attend to the
demonstrator’s object of attention, has also been explored
as a means for a robot to determine critical task elements
[13]. Many machine vision systems have looked at the
problems of identifying cues that indicate attention, such
as pointing [28], head pose [29], or gaze direction [30].
However, only in the past few years has it become
practical to use these systems in real time on robotic
systems [31,32].

How does a robot know how to imitate?
Once a relevant action has been perceived, the robot must
convert that perception into a sequence of its own motor
responses to achieve the same result. Nehaniv and
Dautenhahn have termed this the correspondence
problem [15]. Although it is possible to specify the
solution to the correspondence problem a priori, this is
practical only in simple systems that use the learning-by-
imitation paradigm described above. When the solution to
the correspondence problem is acquired through
experience, more complex perceptions and actions can be
accommodated, and this is then referred to as ‘learning to
imitate’.

Representing perceived movement in motor-based terms
One strategy to attempt to solve the correspondence
problem is to represent the demonstrator’s movement
trajectory in the coordinate frame of the imitator’s motor
coordinates. This approach was explored by Billard and
Schaal [33], who recorded human arm movement data
using a Sarcos SenSuit, and then projected that data into
an intrinsic frame of reference for a 41-degree-of-freedom
humanoid simulation [34]. Another approach, the use of
perceptual–motor primitives [35,36], is inspired by the



discovery of 'mirror neurons' in primates, which are
active both when a goal-oriented action is observed and
when the same action is performed [37–40]. Mataric
adapted this idea to allow a simulated upper-torso
humanoid robot to learn to imitate a sequence of arm
trajectories [23] (see Fig. 3 and Box 4).

Representing motor movements in task-based terms
An alternative to converting perceptions into motor
responses is to represent the imitator’s motor acts in task
space, where they can be compared directly with the
observed trajectory. Predictive forward models have been
proposed as a way to relate observed movement to those
motor acts that the robot can perform [19,24,41,42]. Their
power has been demonstrated in model-based imitation
learning: Atkeson and Schaal have shown how a forward
model and a priori knowledge of the task goal can be used
to acquire a task-level policy from reinforcement learning
in very few trials [18]. They demonstrated an
anthropomorphic robot learning how to perform a pole-
balancing task in a single trial, and a pendulum swing up
task in three to four trials [18,19].

Demiris and Hayes [24] present a related technique
that emphasizes the bi-directional interaction between
perception and action, whereby movement recognition is
directly accomplished by the movement-generating
mechanisms. They call this ‘active imitation’ to
distinguish it from passive imitation (which follows a
one-way perceive–recognize–act sequence). To accomplish
this, a forward model for a behavior is built directly into
the behavior module responsible to producing that
movement.

Conclusion
Imitation-inspired mechanisms have played three
dominant (and related) roles in robotics research to date.
First, imitation can be an easy way to program a robot to
perform novel actions simply by observing a
demonstration (see Fig. 1). Second, imitation can be a
mechanism for communicating (between a robot and a
human or between two robots). Shared meaning for
gestures (Fig. 3) or a lexicon (Fig. 4) have been
accomplished by learning to map shared sensory–motor
experiences between two different bodies (robot to
human, or robot to robot). 'Learning to imitate' frames
the motor learning problem as one of acquiring a
mapping between a perceived behavior and the
underlying movement primitives. By representing
perceptual–motor primitives as predictive forward
models, both the observation and the output of the
primitive share the same coordinate representation, so
measuring similarity is computationally efficient. A
solution to the correspondence problem is not given to the
robot in 'learning by imitation'. Instead, the learner
acquires a state–action policy by following the model and
thereby sharing a similar perceptual and motor state
[8,9,27]. This mapping often represents a shared inter-
personal communication protocol, where the model
announces the labels for particular sensory–motor states
as they occur and the follower learns their association.

Third, imitation has been an effective tool for efficient
motor learning in high-dimensional spaces. For a
humanoid robot with many articulated joints, the state–
action space becomes prohibitively large to search for a
viable solution in reasonable time. The issue of learning
efficiency has been addressed both by building more
compact state–action spaces using movement primitives
(Box 4) (inspired by their biological counterpart [40]), and
by constraining the search through state–action space by
using a human demonstration of the skill as an example
[3]. Alternatively, a predictive forward model can be
learned from the human demonstration, and used as
simulated experience to accelerate trial and error
learning [7].

Imitation and other forms of social learning hold
tremendous promise as a powerful means for robots
(humanoid and otherwise) to acquire new tasks and
skills. Unfortunately, the most advanced robots we have
currently are less adept than 2-year-old children at
imitating the actions and goals of people. This review
focused on two fundamental issues (what to imitate and
how to imitate) that are far from solved, but there are
many other important research areas that need to be
addressed (see Questions for future research). It is our
belief that research on these issues in artificial systems
will both benefit from, and inform, research on imitation
in biological systems. The synthetic approach of building
systems that imitate requires attention to details that are
often not part of the analytic study of social behavior in
animals. For example, the process of selecting which
object to imitate is not often addressed in literature on
animal social learning but is a critical part of any robotic
implementation. Further, we believe that imitating
robots offer unique tools to evaluate and explore models
of animal (and human) behavior. Just as simulations of
neural networks have been useful in evaluating the
applicability of models of neural function, these robots
can serve as a test-bed for evaluating models of human
and animal social learning.

Imitation is a sophisticated form of socially mediated
learning. To date, however, robots that learn by
imitation-inspired mechanisms are not particularly social
themselves. In the examples above, the interaction is in
one direction, from demonstrator (or model) to learner,
rather than there being a bi-directional exchange of
information. In human infants, imitation is hypothesized
to play an important early role in the development of
social cognition, serving as a discovery procedure for
understanding persons, and providing the earliest 'like
me' experiences of the self in relation to others [2].
Beyond ease of programming and skill transfer from
human to robot, imitation could one day play a role in
understanding the social cognition of robots as they begin
to co-exist with people.
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Questions for future research
• Just as children develop the ability to imitate the goal of an action rather than a specific act, can we construct robots that are
capable of making this inference? Today’s robots respond only to the observable behavior without any understanding of the intent of an
action.



• Who should the robot learn from, and when is imitative learning appropriate? Robots that imitate humans today are programmed
to imitate any human within view.
• Can robots capitalize on the two-way communication of social interactions to enhance learning? What capabilities would be
gained if the robot could interrupt an instructional session to ask questions, or when the instructor notices that the robot is performing an
action incorrectly?

Box 1. Taxonomies of social learning
There has been little consensus on operational definitions for many of the behavioral terms used to describe social learning,
although many taxonomies have been developed [a–c]. The following incomplete set of simplified definitions (adapted from [d]) is
provided as an example of the range of behaviors considered under social learning.

Let A and B represent two individuals or sub-populations of individuals:

Imitation: A learns a behavior performed by B that is novel to A’s behavioral repertoire. A is capable of performing the behavior in
the absence of B.

Goal emulation: after observing B’s actions, A produces the same end product as B. The form of A’s behavior differs from B’s.
Stimulus enhancement: A’s attention is drawn to an object or location as a result of B’s behavior.
Social support: A is more likely to learn B’s behavior because B’s performance produces a similar motivational state in A.
Exposure: as a result of A’s association with B, both are exposed to comparable environments and thus acquire comparable

behaviors.
Social facilitation: an innate behavior is released in A as a result of B’s performance.

Other attempts at categorizing types of social behavior have focused on the distinction between the observable behavior and the
underlying behavioral goal [e]. For example, suppose a robot were to observe a person picking up a paintbrush and applying paint
to a wall. The robot could imitate the surface form of this event by moving its arm through a similar trajectory, perhaps even
encountering a wall or a brush along the way. However, the underlying organizational structure of applying paint to a wall involves
recognizing the intent of the action as well as the usefulness of the tool in accomplishing the goal. Meltzoff [f] has noted that by 18
months of age human children are capable of responding to both the surface form and the intended action.
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Box 2. Terms used to describe social learning in robotics
Imitative behavior refers to a robot’s ability to replicate the movement of a demonstrator [a]. This ability can either be learned or
specified a priori. For instance, in learning by imitation [b–d], the robot is given the ability to engage in imitative behavior, which
serves as a mechanism that reinforces further learning and understanding. When the ability to imitate is learned, called learning to
imitate [e–g], the robot learns how to solve the ‘correspondence problem’ through experience. In learning by demonstration [h–j],
a new task is acquired by the robot, but this may or may not involve imitative behavior. In the case where it does not, called task-
level imitation, the robot learns how to perform the physical task of the demonstrator (such as an assembly task [k,l]) without
imitating the behaviors of the demonstrator. When given knowledge of the task goal, robots have learned to perform a physical task
(e.g. learning the game of 'ball in cup' [m], or a tennis forehand [n]) by making use of both the demonstrator’s movement and that of
the object. Finally, the ability of a robot to learn a novel task, where it acquires both the goal and the manner of achieving it from
demonstration, is referred to as true imitation.
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Box 3. Robotic platforms: physical and simulated
The robotic community has explored the topic of imitation on a wide assortment of platforms, including physical robots and
sophisticated physics-based simulations.

Humanoid robots can engage in physical and social imitation tasks and serve as extremely compelling demonstrations. They are
also expensive, challenging to build, and require continual maintenance. Some systems are primarily upper torsos [a–d], some are
full-body systems [e], some are only a head with a vision system [f], and some have an expressive face [g]. Although many other
full-body humanoid robots have been constructed (e.g. Honda’s child sized Asimo and Sony’s knee-height SDR-4X) they have not
yet been used in social learning systems. Simpler robots, such as small mobile robots [h,i] or robot dolls [j], have also been used to
explore the social dimension of imitation. Robotic arms are popular for exploring learning how to perform physical tasks by
demonstration [k–o].

Physics-based 3-D rigid-body simulations of humanoid robots are a popular alternative, allowing researchers to implement and
evaluate systems quickly. Simulations produce results that are more easily replicated, as the software can often be shared among
researchers. The primary difficulty with simulations is in transferring results from simulation to physical robots. Solutions that tend to
work even in complex simulations often fail in the real world because of the inherent lower fidelity of simulations. A few
collaborations exist allowing researchers who work mostly with simulated humanoids to test their theories and implementations on
actual robots [p,q].
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Box 4. Movement primitives
‘Movement primitives’ (also referred to as perceptual–motor primitives, basis behaviors, motor schemas, macro actions, or motor
programs [a,b]) are a compact representation of action sequences for generalized movements that accomplish a goal. From a
computational perspective, a movement primitive can be formalized as a ‘control policy’, encoded using a few parameters in the
form of a parameterized motor controller for achieving a particular task [c,d]. Examples of movement primitives include behaviors
such as 'walking', 'grasping', or 'reaching', and they are often characterized as discrete straight-line movements, continuous
oscillatory movements, or postures [e]. The primitives of a system serve as the basis set of motor programs (a movement
‘vocabulary’), which are sufficient, through combination operators, for generating the robot’s entire movement repertoire. The
primitives allow positions and trajectories to be represented with fewer parameters, although with a corresponding loss of granularity
and/or generality. As a result, more recent work has focused on using imitation as a way of acquiring new primitives (as new
sequences or combinations of existing primitives) that can be added to the repertoire [f,g].
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Fig. 1. DB, a full-torso humanoid robot offered commercially by Sarcos, which can learn to play air hockey by observing the movements that a human player makes. The
robot’s visual system attends to the green puck and the positions of the human player’s red paddle. By playing against experienced opponents, the robot learns to position
its own paddle to defend its goal successfully and to shoot at the opponent’s goal.

Fig. 2. Cog, an upper-torso robot capable of mimicking arm gestures. Cog uses an attention system based on models of human visual attention to locate multiple objects of
interest in the environment (such as the author’s hand here), selects object trajectories that display animate characteristics (i.e. trajectories that display self-propelled
motion) and that the human instructor is attending to (based on the instructor’s head orientation), and attempts to map these trajectories onto the movement of its own arm.

Fig. 3. Adonis, a rich physics-based simulation of a humanoid upper torso, which has learned to dance the Macarena based on motion capture data from a human dancer.
Adonis uses motion primitives to map the recorded movements of the human dancer to the range of possible motions that it is capable of performing.



Fig. 4. Robota is a robot doll currently under development at USC. It is able to mimic a few simple gestures of a person wearing infrared markers, such as raising an arm or
turning one’s head. The demonstrator presses a sequence of keys on a keyboard (each key represents a label such as 'move’, ‘arm', 'left', etc.), at the same time as
performing the corresponding gesture. Using a recurrent, associative neural network, the doll learns the association between the sequence of keystrokes and how they map
onto its actions and perceptions of different parts of its body. After training, the demonstrator can press a new sequence of keys without performing the corresponding
gesture, and the robot performs it.


