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Abstract

The purpose of this paper is twofold� First� we outline important issues in designing

real�time controllers for robots with numerous sensors� actuators� and behaviors� We

address these issues by implementing a behavior based controller on a sophisticated

autonomous robot� Hence� this work provides a point of reference for the scalability�

ease of design� and e�ectiveness of the behavior based control for complex robots�

Second� we explore the viability of using cooperation among local controllers to achieve

coherent global behavior� Our approach is to decompose a di�cult control task for a

complex robot into a multitude of simpler control tasks for robotic subsystems� We

illustrate and examine the e�ectiveness of this approach via rough terrain locomotion

using an autonomous hexapod robot� Traversing rough terrain is a good task to test the

viability of this approach because it requires a considerable amount of leg coordination�

We found that implementing a complicated global control task with cooperating local

controllers can e�ectively control complex robots�
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� Introduction

As the �eld of autonomous robot control advances� people will continue to design robots with

greater capabilities to perform more challenging and comprehensive tasks� For example� re�

search is underway to develop autonomous systems capable of exploring other planets �Angle

	 Brooks �

��� �Bares 	 Whittaker �

�� and deep within oceans �Payton� Keirsey� Kim�

ple� Krozel 	 Rosenblatt �

��� �Stuart �
�� Equipping robots with more sensors increases

the quantity and reliability of information the robot can extract from its environment� Sub�

sequently� the robot can use this information to behave more intelligently� Providing robots

with more actuators increases the physical capabilities of the robot �i�e� arms� hands� im�

proved locomotion� active vision�� Programming the robot with more behavioral capabilities

makes it more �exible and versatile� However� expanding the capabilities of robots also makes

them more complicated� Understanding how to control robots of signi�cant complexity will

be an important issue in the future�

This paper explores issues and methods which we encountered for designing and imple�

menting controllers for complex robots with many sensors and actuators� We outline these

important issues� and explore the viability of using cooperation among local controllers to

achieve coherent global behavior� This approach decomposes a di�cult global control task

of a complex robot into a multitude of simpler local control tasks for robotic subsystems�

The approach is inspired by the apparent decomposition of locomotion control in insects�

We illustrate and examine the e�ectiveness of this approach via rough terrain locomotion

using an autonomous hexapod�
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� Hannibal

Hannibal �shown in �gure ��� is the small autonomous robot used in our experiments� It was

designed and built under the supervision of Prof� Rodney Brooks in the Arti�cial Intelligence

lab at MIT �Angle 	 Brooks �

�� as an experimental platform to explore planetary micro�

rover control issues �Angle �

���

��� Size

Hannibal bene�ts in several ways from its small size as argued in �Angle �

��� Hannibal

measures �� inches long� stands eight inches high� and weight � pounds� Because Hannibal

is small� it has relatively low mass which gives rise to several advantages� including reduced

dynamic e�ects� which simpli�es control� Another advantage is lower power consumption�a

smaller robot can be driven with smaller� lower power motors� The greatest advantage is

a favorable strength�to�weight ratio of the robot�s structure� The strength of a structure

scales by its cross sectional area� while the weight of a structure scales by its volume� As a

structure is proportionally scaled up� its weight increases at a faster rate than its strength�

Hence� it is relatively easy to make a small structure quite strong with little mass�

��� Mechanics

When designing the robot� careful consideration was given to mobility� sensing� and robust�

ness issues� Much has been said concerning the advantages of legged vehicles over wheeled

vehicles in regard to their mobility over rough terrain �Song 	 Waldron �

�� �Hirose �
���

Hannibal was engineered with six � degree of freedom �DOF� legs and a � degree of free�
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dom body to give Hannibal enough degrees of freedom to traverse rough terrain� Each of

Hannibal�s six legs has � DOFs to allow arbitrary foot placement on a surface� The lift axis

is horizontal� and a rotational actuator raises and lowers the foot by rotating the leg about

this axis� The swing axis is vertical which is important for the e�ciency of the robot� When

the leg makes a step� most of the motion of the leg is rotation about the swing axis and

therefore parallel to gravitational forces� As a result� relatively little work is done against

gravity as the leg swings through the environment� A rotational actuator advances the leg

along the direction of travel by rotating the leg about the swing axis� The extension axis is

orthogonal to the lift and swing axes� A linear actuator extends and contracts the leg along

this axis� Finally� a global degree of freedom mounted on Hannibal�s body links the rotation

of all six legs about their axles together� A spine actuator is responsible for rotating the

legs about this global degree of freedom� The purpose of this DOF is to ensure the legs are

always vertical� Angle 	 Brooks ��

�� argues that the load on each of the leg motors is

independent of robot inclination if the legs are always vertical� As the robot�s inclination

increases during a climb� the global rotation of the legs brings the center of mass of the

robot closer to the surface being climbed� and keeps it within the polygon of support for any

inclination�

��� Sensors

Rovers must have su�cient terrain sensing capabilities to locomote safely and e�ectively over

rugged terrain� To meet this requirement� Hannibal�s legs are encrusted with a multitude

of sensors that provide complementary information� This serves several purposes� First�

multiple sensors provide the robot with more information about its environment� which
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helps the robot behave more intelligently� Second� multiple complementary sensors increase

sensing robustness�if one sensor fails� its complementary sensors can provide the robot with

similar information� Third� they enhance sensing reliability since the information from each

sensor can be used to con�rm the results of the other complementary sensors� This increases

the con�dence in the net sensor output� Ferrell ��

�� describes how complementary sensor

suites can be used to integrate fault tolerance capabilities into distributed controllers�

Hannibal receives a tremendous amount of sensor information� The robot has over ��

sensors of � di�erent types� These sensors are used to sense the immediate terrain� provide

the robot with knowledge of its physical con�guration� and servo the motors which control

its DOFs to speci�ed positions� Most of Hannibal�s sensors are mounted on its legs� These

sensors provide the robot with terrain information as the legs sweep through the environment�

Strain gauges mounted on the legs measure the force the external world is exerting on them�

Hannibal uses them to sense vertical loading of the legs and to detect collisions the legs su�er

as they move through the environment� An ankle potentiometer on each leg is used to sense

foot loading� The robot uses this information to �nd secure footholds as it walks through the

environment� Joint potentiometers are used to measure joint angles of all the robot�s degrees

of freedom� This information is used to servo control the motors to speci�ed positions and to

inform the robot of its physical con�guration� Joint velocity sensors are used to control the

motors� Velocity information in conjunction with target position information can be used

to roughly sense leg collisions� For example� if a leg prematurely stops before it reaches its

target position� the leg may have experienced a collision along the way� An inclinometer is

used to sense the robot�s pitch and roll� The spine potentiometer and the inclinometer� both

mounted on Hannibal�s body� are used to control Hannibal�s spine actuator to keep all the
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legs vertical�

��� Computing

Not surprisingly� Hannibal is quite complex for its size� It is approximately the size of a bread

box and uses over �� sensor signals to orchestrate �
 DOFs while locomoting over rough

terrain� To make the design and control of this robot manageable� Hannibal was divided

into smart subsystems which are linked together with a medium speed serial network �I�C

bus��

Hannibal is organized with a single central processor to which seven subsystem control

processors are attached� Each leg and the body are individual subsystems that posses a set

of sensors� actuators and a satellite processor� This allows high bandwidth communication

and motor servoing to be handled locally� with only high level communication on the serial

network�

� The master processor is a �� MHz Signetics ����� It serves as the computational

engine of the robot and runs the behavior control code� It receives sensor information

from the robot�s subsystems over the serial bus and uses this information to intelligently

control the robot�s behavior� It dictates the actions the robot takes by sending position�

velocity� and force control commands to the actuators of the subsystems�

� Each local satellite processor is a Signetics �c���� The processor has two responsi�

bilities� The �rst is to acquire the sensor information of its subsystem and send it to

the master processor� The second is to receive commands from the master processor

to servo the actuators of its subsystem� Servo control code running on this processor
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at ��� Hz moves the subsystem�s actuators to the commanded position with velocity

and�or force considerations� The processor uses the command information from the

master processor and the sensor information of its subsystem to generate the pulse

width modulation wave forms which drive the actuators�

� The I�C serial bus is a ��� K bit communication system which is used to connect the

various subsystems on Hannibal� Bus transactions occur �� � of the time which allows

the satellite processors to exchange information with the master processor at �� Hz�

The bus is idle for �� � of the time to allow the satellite processors to execute their

servo control code� The I�C bus is not fast enough to do real�time motor servoing�

and this limitation forces modularity on the robot�

��� Software

Hannibal is programmed using the subsumption approach� a set of philosophical concepts

about robot behavior design which stresses the issues of reactivity� concurrency� and real�

time control� Brooks ��
�� proposed the idea of subsumption as an alternative approach

to the robot behavior control problem� This approach decomposes the control problem into

task achieving layers� Each slice in the vertical division is level of competence� The main

idea is that we can build layers of a control system corresponding to each level of competence

and simply add a new layer to an existing set to move to the next higher level of overall

competence� The lower layers run continually and are unaware of higher layers� However�

when the higher layers wish to take control� they can subsume the roles of lower levels� This

approach is robust since failure of any layer does not a�ect the layers below� Additionally� this
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organization allows for modular addition and removal of behaviors� and thus for incremental

design and debugging� Most importantly� it allows for a tight loop between sensing and

action which can be performed quickly and with much less computation�

The subsumption approach is embodied in the Subsumption Architecture which uses

networks of �nite state machines augmented with timing elements and registers �AFSMs

or processes� to construct simple rules� The networks can be thought of as explicit wiring

diagrams connecting the outputs of AFSMs to the inputs of AFSMs� Message passing

between AFSMs is performed by connecting a wire to the input of a AFSM and writing to

its register� On Hannibal� messages are �� bit integer values� The internal state of an AFSM

can change either by the expiration of a timer or by the arrival of an incoming message� In

this paper� we say a process excites another when a message passed from the �rst AFSM

is received by the second and causes the second to become active �perform computation�

command actuators� or send output messages�� As new wires are added to the network

they can connect to existing registers� suppress inputs �a message from an AFSM stops all

inputs along a wire to another for a �xed time period�� or inhibit outputs �a message from an

AFSM stops all outputs along a wire from another for a �xed time period�� In this paper� we

de�ne combinations of AFSMs as either behaviors if their processing results in an outwardly

observable a�ect� or agents if their processing has only an internal a�ect� Behaviors and

agents are the building blocks of the Behavior Language �Brooks �

���

Hannibal is programmed in Behavior Language� a high level language for writing sub�

sumption programs� Behaviors run concurrently �simulated concurrency if running on a

single processor� and asynchronously� perform their own perception� monitor their input

wires� perform computation� control actuators� or send messages through their output wires�
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It is important to design the controller such that con�icting behaviors are not active at

the same time� To deal with this situation� behaviors have the ability to inhibit outputs

or suppress inputs of other behaviors� Inhibition of outputs is used when the inhibiting

behavior does not want the inhibited behavior�s outputs in�uencing the system� Behaviors

can prevent other behaviors from becoming active by suppressing inputs used for activating

other behaviors� Individual behaviors are connected to form task�achieving modules� and

these task�achieving modules can be grouped together to form layers� Each layer is a level

of competence which corresponds to the robot�s abilities�

� Controller Design Issues

Hannibal is a complex robot which operates in a complex environment� Naturally occurring

terrain has holes� cli�s� obstacles of various sizes� and undulations� To locomote over varying

terrain� the robot needs su�cient sensory information to recognize changes in the terrain�

Hannibal�s ���plus sensors provide the information necessary to negotiate obstacles and avoid

hazards� Managing Hannibal�s sensors and actuators and controlling the robot in real�time

are important for the robot�s success and safety� To complete this formidable task� Hannibal�s

controller must satisfy several requirements�

� The controller must scale well to e�ciently and e�ectively utilize numerous sensors�

actuators� and processes� Adding more sensors� actuators� or processes to the system

increases the load on the controller� We do not want this additional load to result in

computational bottlenecks� If the controller scaled poorly� attempting to enhance the

robot�s capabilities by adding more sensors� actuators� or processes could degrade the
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robot�s performance rather than enhance it�

� The controller must be modular so that additional sensors� actuators� or processes can

be integrated readily� Speci�cally� we want to be able to quickly add or change the

processes which interpret new sensor information� utilize new actuators� or add new

processing capabilities to the system�

� The controller must be �exible� It must perform diverse functions such as characterizing

terrain features and controlling the robot through a variety of maneuvers�

� The controller must be robust and adaptive� The robot�s behavior should be resilient

to both environmental changes and internal changes� Environmental changes are at�

tributed to irregular terrain� The robot must be able to detect these terrain variations

and adapt to them accordingly� Internal changes are attributed to various hardware

failures� erroneous sensor readings� or sensor drift� The robot must recognize these

faults and minimize their e�ect on the robot�s performance �Ferrell �

���

Numerous papers argue in favor of behavior based control for modularity� �exibility� ro�

bustness� and adaptability considerations �Brooks �
��� �Maes �

��� �Rosenblatt 	 Payton

�

�� These qualities are important as more capabilities are added to controllers� To date�

the subsumption approach has been successfully demonstrated on several autonomous robots

in our lab such as Toto �Mataric �

��� Herbert �Connell �

�� Squirt �Flynn� Brooks� Wells

	 Barrett �

�� and Genghis �Brooks �

�� These robots are representative of the typical

level of complexity of other behavior based autonomous robots in the �eld�

Hannibal�s controller is signi�cantly more complicated than the controllers of these earlier

systems� Sensori�motor integration on Hannibal is more involved than these earlier systems
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because Hannibal has considerably more sensors and actuators� Hannibal also has a com�

paratively large behavior repertoire including insect�like gaits and rough terrain locomotion

as well as extensive failure recognition� fault tolerance� and sensor processing capabilities

�Ferrell �

��� �Ferrell �

��� The fully compiled system consists of approximately ����

AFSMs performing diverse tasks� Hence� we view this work as a point of reference for the

scalability� ease of design� and e�ectiveness of the behavior based approach for addressing

the control of increasingly more complex robots�

� Local Control with Cooperation

This section presents a method for controlling a complex robot in real�time by e�ciently

managing its numerous sensors and actuators� In this method� coherent global behavior is

achieved by local controllers that cooperate with each other� The idea is to simplify the

control problem by decomposing the global task into local tasks for the robot�s subsystems�

As described earlier� each subsystem has its own set of sensors� actuators� servo code� By

writing behavior code for each subsystem� each subsystem can be treated as a sub�robot

�recall that the behavior control code is distributed among the subsystems in software since

all behavior control code runs on one processor��� The sub�robots are signi�cantly simpler

than the overall robot because each subsystem has signi�cantly fewer sensors and actuators

and performs relatively simple tasks� Since each local controller is responsible for managing

a simpler system� the load on each local controller is reduced accordingly�

The local controllers must cooperate for the overall system to have coherent behavior�

To keep the load on any one controller to a minimum� we establish an abstraction barrier
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between low level control issues �processing sensor information and commanding actuators�

and higher level control issues �coordinating the behavior of the subsystems�� On one side of

the abstraction barrier� the local controllers are responsible for implementing tight coupling

between sensors and actuators to achieve real�time behavior control of the subsystems� On

the other side� the local controllers communicate with each other to coordinate their be�

havior� This is done either directly between local controllers� or indirectly through special

broadcast agents which communicate a message to all relevant subsystems� All communica�

tion is implemented using the message passing mechanisms as described in section ���� The

messages sent between local controllers excite or inhibit agents within the local controllers�

Hence� these messages coordinate the behavior of the subsystems without having to explicitly

deal with sensory information and commanding actuators�

To simplify controlling a robot of Hannibal�s complexity� we decomposed the global lo�

comotion problem into several local problems by implementing a behavior�based controller

for each subsystem �such as the head� the body� and each leg� which is responsible for gov�

erning the behavior of that subsystem� Instead of controlling a complex robot with a single

behavior�based controller� the task is distributed among several controllers�each responsible

for a subset of the overall control problem� Thus� Hannibal�s control structure is distributed

on two levels� each local controller is distributed among behaviors� and the overall control

is distributed among several behavior�based controllers�

With this approach� Hannibal can be modeled as a robot which is composed of several sub�

robots� Each of Hannibal�s subsystems �legs� head� and body� is an autonomous sub�robot

possessing its own set of sensors� actuators� servo control� and behavior control� However�

these sub�robots cannot function independently because they are physically coupled to each
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other through the robot and the terrain� Consequently� they must cooperate so the overall

system can achieve its goals� To achieve cooperation the sub�robots communicate with each

other� with direct messages or through special broadcast agents�

� Insect�Inspired Locomotion

The local control with cooperation approach decomposes a di�cult global control task of

a complex robot into a multitude of simpler local control tasks for robotic subsystems�

The approach is inspired by the apparent decomposition of locomotion control in insects�

Several researchers have implemented biologically motivated locomotion controllers� either

on robots or in simulation� to understand neural control mechanisms and to �nd better ways

of programming six legged robots� A variety of insect motivated approaches have been used

to produce real�time locomotion with limited computational power� This is particularly

important for small autonomous hexapod robots that carry their own computation� In this

section� we review four insect�like locomotion controllers� We compare these implementations

to Hannibal�s controller in section ���

��� De�nition of terms

Below are several terms we use throughout this section� Please also refer to �gure ��

�� Protraction� The leg moves towards the front of the body�

�� Retraction� The leg moves towards the rear of the body�
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�� Power stroke� The leg is on the ground� where it supports and propels the body� In

forward walking� the leg retracts during this phase� Also called the stance phase or the

support phase�

�� Return stroke� The leg lifts and swings to the starting position of the next power stroke�

In forward walking� the leg protracts during this phase� Also called the swing phase

or the recovery phase�

�� Anterior extreme position �AEP�� In forward walking� this is the target position of the

swing degree of freedom during the return stroke�

�� Posterior extreme position �PEP�� In forward walking� this is the target position of the

swing degree of freedom during the power stroke�

��� Cruse

Cruse ��

�� describes a neural net implementation of a locomotion controller modeled after

the neural control of walking stick insects �Cruse �
��� The controller is implemented

in simulation where an agent with walking�stick insect mechanics locomotes over �at or

irregular terrain and can be subjected to various leg perturbations� The simulated system

can walk at di�erent speeds using di�erent gaits� walk over irregular surfaces composed of

small obstacles� and quickly re�establish gait coordination in response to leg perturbations�

However� the simulation does not take loading considerations into account� so it is unclear

how this simulation would transfer to a physical system�

In the controller� each leg has its own control system that generates rhythmic stepping

movements� Each of these local controllers is a neural network consisting of three sub�
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networks� a superior state selector net and subordinate swing and stance nets� The state

selector net �consisting of two input units and two output units� governs the transition

between the power stroke and the return stroke of the leg by rhythmically suppressing the

output of either the swing network or the stance network� The swing network �consisting of

� input units� � output units� and a single bias unit� was trained to produce return stroke

movements despite leg perturbations� The stance network �consisting of two inputs and six

outputs� was trained to produce the power stroke movement�

The state selector net was trained to switch between the stance network and the swing

network based on sensory input and the condition of adjacent legs� The state selector net

causes a transition from the swing phase to the stance phase when ground contact is achieved�

and it causes a transition from the stance phase to the swing phase when the leg reaches the

PEP position threshold� In the simulation� three mechanisms modify the PEP threshold� ��

A rostrally directed inhibitory signal sent during the return stroke of the next caudal leg�

�� A rostrally directed excitatory signal sent when the next caudal leg and contra�lateral

leg begin active retraction� �� A caudally directed in�uence which is dependent on the

position of the next rostral leg and the contra�lateral leg� All other connections responsible

for coordinating in�uences were hard�wired based on biological experiments with walking

stick insects� Several gaits emerge from the cooperation of local leg controllers where their

interaction is governed by these mechanisms�

��� Case Western Hexapod

Beer and colleagues implemented a neural network control architecture on a small walking

robot� The robot measures �� cm long� �� cm wide� weighs � kg and has six � DOF legs �Beer
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	 Chiel �

��� �Chiel� Quinn� Espenschied� 	 Beer �

��� �Quinn 	 Espenschied �

��� The

neural controller was developed by Beer and was inspired by Pearson�s �exor burst�generator

model of cockroach locomotion� Using this controller� the Case Western Hexapod is capable

of producing a continuous range of wave gaits on �at terrain by varying the tonic level of

activity of the command neuron� The robot was not tested under conditions that would

e�ect leg loading such as walking it over irregular terrain� However� the system is robust to

lesion studies performed by removing certain sensors or controller connections�

The controller is implemented with �� arti�cial neurons� six neurons per local leg con�

troller and one command neuron� In this model� two mechanisms generate the stance�swing

cycle of each leg� one based on rhythmic outputs of a pacemaker and the other on sensory

input� At the center of each leg controller is a pacemaker neuron whose output rhythmically

oscillates� A pacemaker burst initiates a swing by inhibiting the foot and backward swing

motor neurons and exciting the forward motor neuron� This causes the foot to lift o� the

ground and the leg to swing forward� Between pacemaker bursts� the foot is down and tonic

excitation from the command neuron moves the leg backward� On each leg� the output of

a pacemaker neuron is tuned by feedback from two sensor neurons that signal when the leg

is reaching the AEP or the PEP� Approaching the AEP encourages a pacemaker neuron to

terminate a burst by inhibiting it� Approaching the PEP encourages a pacemaker neuron

to initiate a burst by exciting it� Inserting mutually inhibitory connections between the

pacemaker neurons of adjacent legs generates statically stable gaits� and phase�locking the

pacemaker neurons on each side of the body enforces metachronal waves�
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��� SSA Hexapod

In the early �s� Marc Donner implemented an insect�inspired locomotion controller on the

SSA Hexapod �Donner �
��� The SSA is a large hexapod built at CMU by Dr� Ivan

Sutherland of Sutherland� Sproull� and Associates� The robot has a ��� inch steel frame�

weighs ��� pounds� and can carry a human operator� Its six � DOF legs are hydraulically

actuated and have position and force sensing for each DOF �among other sensors�� The

controller implements a statically stable� metachronal gait�

The locomotion part of the controller can be described by approximately �� concurrent

processes� Each local controller uses four processes that move the leg through a step cy�

cle� The step cycles of the legs are coordinated by constraining when the stance�to�swing

transition of each leg occurs� These constraints are provided by inhibition and excitation

signals sent between adjacent local leg controllers� The stance�to�swing transition of a given

leg occurs when the measured leg load is less than the unload decision threshold for that leg�

Excitation and inhibition mechanisms were used to modulate this decision threshold in three

ways� �� Each swinging leg inhibits its neighbors from swinging by subtracting a constant

from the neighbors� unload decision threshold� �� Each supporting leg excites its forward

neighbor to swing by adding an excitatory constant to the neighbors� unload decision thresh�

old� and removes this constant when the supporting leg begins its swing phase� �� When a

rear leg reaches the halfway point of its drive stroke� it excites its crosswise neighbor to swing

by adding an excitatory constant to its crosswise neighbor�s unload decision threshold �the

local controllers of the rear legs have an extra process to implement this mechanism�� The

�rst mechanism maintains gait stability� the second mechanism encourages a back�to�front
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wave gait� and the third mechanism encourages proper left�to�right side phasing� Statically

stable gait coordination emergs from the interaction of these mechanisms�

��� Genghis

Genghis is a small autonomous walking robot built in the mid ��s by the Mobile Robotics

Group at MIT �Brooks �

�� It measures �� cm long� �� cm wide� weighs � kg� and has

six � DOF legs� Using the Subsumption Architecture� a network of �� AFSMs was designed

which allows Genghis to walk with a ripple gait� traverse rough terrain� and follow people�

Basic walking on �at terrain is implemented by �� AFSMs� Two centralized AFSMs

are used for global coordination� The Walk machine acts as a centralized gait sequencer

by telling each leg when to begin its swing phase �only a single gait can be implemented

at a time�� The centralized Alpha Balance machine determines how much each supporting

leg propels the robot forward� By default� it continually sends motor commands to all the

advance motors� Each local leg controller consists of �ve AFSMs and is responsible for

generating the cyclic motion of that leg� Two of these machines� Beta Pos and Alpha Pos

simply send commands to the lift and advance motors� respectively� The remaining three

machines produce the recovery movement� The Leg Down machine continually tells the Beta

Pos machine to put the leg down� Hence� the default position is for the leg to support the

robot� This message gets through to the Beta Pos machine except when the Up Leg Trigger

machine blocks it� Once activated by the Walk machine� the Up Leg Trigger machine inhibits

this message for a predetermined period of time and lifts the leg� Once the leg is o� of the

ground� the Alpha Advance machine commands the Alpha Pos machine to swing the leg

forward while inhibiting the Alpha Balance machine� Hence� whenever the leg is lifted� it is
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re�exively swung forward as well� The leg lowers to support the body once the activation

period of the Up Leg Trigger machine expires� The stance phase resumes when messages

from the Alpha Balance machine are no longer inhibited by the Alpha Advance machine�

By adding four more AFSMs to each leg� Genghis walks over obstacles� By adding an extra

centralized machine� Genghis turns in either direction�

� Basic Walking

This section illustrates the local control with cooperation method by presenting Hannibal�s

basic walking implementation� Locomotion control is distributed evenly among the six legs�

Each local leg controller is responsible for generating the cyclic motion of its leg� The local

leg controllers run simultaneously� however� they are not independent of one another� The

six legs must work together as a team for the robot to move e�ectively� Using this approach�

we have implemented the following basic locomotion capabilities on Hannibal �Ferrell �

���

� Walk in a statically stable manner

� Change speed by switching among a variety of insect�like gaits �wave gaits�

� Change direction of travel

� Turn with various radii of curvature

� Compensate for broken legs

For space limitations� we only present the implementation of the �rst two capabilities

in this paper� The design of the corresponding behaviors is inspired by the work of Keir
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Pearson and his collaborators� They investigated the neural systems that control walking in

the cockroach �Wilson �
���� �Pearson �
��� and developed neurological models to explain

the control of an individual leg and the coordination between legs�

��� Step Cycle Generation

In Pearson�s model for individual leg control� a pacemaker on each leg is responsible for

generating the cyclic motion of the leg �see �gure ��� It does this by coordinating the return

stroke and power stroke of the leg� Similarly� each of Hannibal�s legs has an oscillator agent

which generates the cyclic motion of the leg� The oscillator agent is modeled as a clock that

cycles through its values at regular time steps �see �gure ��� A stage spans one oscillator clock

period� We say the oscillator period �time between adjacent oscillator peaks� spans M clock

stages� Each oscillator is synchronized to a common clock� In the current implementation�

the oscillator clock value changes every ��� seconds�

To produce the return stroke� the oscillator agent excites a lift agent �which lifts the leg��

a swing agent �which swings the leg to the AEP�� and a step agent �which lowers the leg

until it supports the body� as shown in �gure �� The lift� swing� and step agents serve a

similar function as the �exor neurons of Pearson�s model� The lift portion of the recovery

phase is performed during the �rst stage of the oscillator �clock value � ��� The step portion

of the recovery phase is performed during the second stage of the oscillator �clock value �

��� During these two stages� the leg swings to the AEP�

To produce the power stroke� the oscillator agent excites the support agent as shown in

�gure �� The support agent serves a similar function as the extensor neurons of Pearson�s

model� For clock stages � through M� the support agent moves the leg an incremental
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amount towards the PEP each clock stage� where the increment is equal to S�N where

S � abs�PEP � AEP� and N � number of support stages� This increment is determined

so that the leg reaches the PEP during the last of the series of support stages� Ergo all

supporting legs propel the body in synchrony� and the duration of the power stroke is equal

for all the legs� The transition from the support phase to the swing phase occurs on clock

value � �� immediately after the leg reaches the PEP�

��� Gait Generation

Similar to Pearson�s model� Hannibal changes gait as a function of oscillator frequency� A

broadcast agent called the speed agent �analogous to Pearson�s command neuron� is respon�

sible for changing the leg oscillator frequency of all the leg oscillators� In addition� local

inter�leg communication agents called coupling agents are responsible for establishing the

phasing between leg oscillators by sending coupling signal messages between local leg con�

trollers � Changing the value of M changes the oscillator frequency� This excites the coupling

agents to change the phase between the metachronal waves along each side of the body ��gure

��� which causes di�erent wave gaits to emerge�

Figures � and  illustrate an example of the networks responsible for gait transitions�

Currently� Hannibal uses three gaits� a slow wave gait� a ripple gait� and a tripod gait�

Wilson ��
��� reports the slow wave gait is the slowest gait and the tripod gait is the fastest

gait observed in insects� More gaits could easily be implemented using this network by

varying M and the phasing between leg oscillators�

� The Speed agent� Whenever Hannibal wants to change speed� this broadcast agent
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sends a new M value to all the oscillators� This serves to extend the support phase of

the step cycle since the recover phase takes a constant amount of time independent of

walking speed� Higher level agents command speed through this agent�

� The Activate�Phasing agent� If a new M value is sent to the leg oscillators from the

Speed agent� this broadcast agent �nds the furthest posterior leg performing the lift�

and�swing stage �the most rearward leg with its oscillator in the �rst stage� and acti�

vates its coupling agent�

� Coupling agents� When a di�erent M value is sent to the leg oscillators� the instanta�

neous oscillator clock values must be re�phased with respect to each other to maintain

a proper gait� The active coupling agent sends messages to all legs which re�initialize

their current oscillator clock values �with respect to the oscillator clock value of the leg

with the active coupling agent�� Correspondingly� the leg oscillators simply activate

the proper agent �lift� swing� step� or support� in accordance to its new clock value�

and continue to run as usual� Figure 
 shows a Behavior Language code segment im�

plementing the coupling agent for the left rear leg� Figures � and  illustrate this code

segment�

��� Results	 Flat Terrain Locomotion

Using this approach� Hannibal walks in real�time in a stable manner� The emergent gaits of

this network posses similar characteristics to insect gaits �Wilson �
���� �Cruse �

���

In regard to individual leg control�

� The oscillator agent keeps protraction time constant and decreases retraction time as
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step frequency increases�

� The leg reaches the AEP when transitioning from the return stroke to the power stroke�

� The leg reaches the PEP when transitioning from the power stroke to the return stroke�

In regard to the coordination between legs� the leg oscillators are synchronized such that�

� A wave of protraction runs from posterior to anterior�

� No leg protracts until the leg behind is placed in a supporting position�

� The supporting legs propel the body in synchrony�

� The duration of the power stroke is the same for all legs�

� Contra lateral legs of the same segment are �� degrees out of phase�

� On each side� the time between steps of the hind leg and middle leg and the time

between steps of the middle leg and foreleg are constant�

� The time between the foreleg and hind leg steps varies inversely with frequency�

The transition between Hannibal s gaits is smooth and immediate� Figure �� shows run

time data of these three gaits� and �gure �� shows transitions between various gaits� These

results demonstrate that local control with cooperation can be used to e�ectively control

robotic subsystems in real�time and coordinate the behavior between robotic subsystems�
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� Rough Terrain Locomotion

Hannibal�s rough terrain implementation highlights the di�erent ways the local controllers

communicate with each other� The task of traversing rough terrain can be viewed as a team

e�ort where the legs must work together for the global system� Hannibal� to accomplish

its task� Rough terrain control is fully distributed and exploits local control of the legs

with inter�leg cooperation� Each leg is programmed to operate as a individual subsystem�

Local leg control is responsible for handling challenges that confront individual legs such

as stepping over an obstacle or �nding a foothold� E�ective inter�leg cooperation is vital

because the legs are physically connected through Hannibal�s body and the terrain� Legs

communicate with each other not only to coordinate and synchronize their behavior� but

also to alert each other of hazards and to recruit the help of the other legs when necessary�

Using this approach� we have implemented the following capabilities on Hannibal �Ferrell

�

��� �For space limitations� we do not present all of these capabilities in this paper��

� Walk over small and medium sized obstacles

� Avoid large obstacles blocking the robot�s path

� Search for footholds

� Walk over holes

� Avoid cli�s

� Adapt gait to terrain roughness

� Adapt to slopes
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�� Inter�leg Communication

Negotiating obstacles exploits di�erent uses of inter�leg cooperation� which is achieved through

inter�leg communication� Hannibal�s rough terrain network implements several types of inter�

leg communication using the mechanisms provided by the Behavior Language �as described

in section ����� For example� if a leg is stepping in a hole or over an obstacle� it tells the

other legs to pause while it negotiates the hazard� It communicates this by having its step

agent inhibit the oscillators of the other legs until it achieves ground contact �see �gures ��

and ���� This communication ensures the robot�s stability by delaying the next step cycle

until all recovering legs support the body� A leg can also recruit help from other legs� For

instance� when a leg is trying to step over an obstacle� it asks the supporting legs to raise the

body to help it clear the obstacle� It requests this help by sending a message to activate the

lift�body behaviors in the supporting legs �see �gure ���� A leg can also alert the other legs

of a dangerous situation� For example� if a leg either is stepping over a cli� or encounters

an obstacle too large to step over� it tells the other legs to move the robot backwards� by

sending a message to the direction and turn agents� A broadcast backup agent coordinates

the direction and turn behaviors of all the legs ��gure ����

Communication between locally controlled legs is essential for the legs to maintain a

cohesive e�ort� This is especially true if di�erent legs want the robot to do di�erent things�

As shown in �gure ��� one leg may hit a large obstacle and want the robot to back up�

whereas another leg may be searching for a foothold and want the robot to hold still until

it �nds one� This is essentially behavior con�ict� but on a larger scale than is typically

encountered by other robots� Instead of having con�icting behaviors in competition over one
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actuator� con�icting behaviors on di�erent legs are in competing over the action of all the

legs� An inter�leg priority scheme� implemented using inhibition and suppression mechanisms

as described in section ���� is used to resolve inter�leg con�icts� For this example� the stability

of the robot has the highest priority� so the legs wait until the searching leg �nds a foothold

before performing the backup maneuver�

	 Tests

We designed several tests to examine the e�ectiveness of di�erent types of inter�leg commu�

nication for negotiating hazards and for dealing with behavior con�icts between legs� The

success of Hannibal�s rough terrain behaviors indicate the viability of inter�leg communica�

tion in achieving coherent behavior of the legs�

��� Individual obstacle tests

These tests challenged Hannibal�s ability to handle a single obstacle in its path� The tests

were designed to test the performance of speci�c rough terrain behaviors� They were used

to determine if Hannibal could correctly characterize the type of obstacle in its path and

respond to it� To isolate the robot�s performance with respect to a particular hazard� the

test terrain was �at with the exception of the terrain feature� Only one leg encountered the

challenge at a time� The following terrain features were tested�

� Obstructive objects of varying heights and shapes

� Cli�s
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� Holes or gaps in the terrain

��� Multiple obstacle tests

We also conducted tests to challenge Hannibal�s ability to handle multiple obstacles in its

path� The hazards could be of the same type or of di�erent types� and either sequential or

concurrent� The tests were designed to test the �exibility of the controller� Hannibal�s ability

to adapt to changing circumstances� the legs� ability to handle concurrent obstacles� and the

legs� ability to behave in a uni�ed manner�particularly when behaviors on di�erent legs may

be in con�ict� We chose a few sample terrains� listed below� to test various capabilities �other

terrains were used as well but served redundant purposes��

� Small plateau� This terrain causes the robot to frequently encounter cli�s while walking

forwards� backwards� or turning� The terrain tests the ability of the robot�s legs to

maintain a cohesive e�ort since behaviors on di�erent legs want the robot to move in

di�erent directions�

� Multiple small obstacles� This terrain causes the robot�s legs to traverse obstacles

concurrently� It tests the robot�s ability to handle local terrain features simultaneously�

� Crevice� This terrain causes the robot�s legs to sequentially step over the gap� It tests

the ability of the legs to address a hazard in rapid succession�

� Small object on plateau� This terrain causes the robot to handle di�erent types of

challenges� It tests the robot�s ability to coordinate obstacle avoidance which legs

perform individually with hazard avoidance which the legs perform as a team�
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��� Naturally occurring terrain

We tested Hannibal�s ability to traverse naturally occurring terrain in two environments�

The �rst environment is called the �sandbox�� It�s �oor consists mostly of gravel� with some

sand� and rocks of various sizes� Our lab built the sandbox to test Hannibal and our other

robots in a more realistic setting� The second environment is Mars Hill in Death Valley� CA�

This location has an uncanny resemblance to terrain images taken of Mars� It is characterized

by a fairly �rm� undulating� sandy surface with scattered rocks�


 Results

Figure �� quanti�es Hannibal�s performance at traversing various aspects of rough terrain�

It shows the size range of obstacles that the robot can successfully negotiate� These results

were gathered from the individual obstacle tests�

On average� Hannibal successfully traversed the sample terrains of the multiple obsta�

cle tests� provided the terrain features remained within the values of �gure ��� Similarly�

Hannibal could also traverse natural terrain as long as the terrain was subject to similar

constraints� If the obstacles exceeded these limits� Hannibal�s feet and legs could get into

awkward circumstances from which the robot could not recover� For example� Hannibal�s

feet could slip between gaps on the down�step� but get stuck in the crevice during the search�

ing movements� Slippery feet were sometimes a problem when Hannibal tried to back away

from ledges� Occasionally the front supporting foot could slip over the ledge while the robot

tried to back away� Jagged rocks seemed to be di�cult for the robot to walk over because it

is di�cult to obtain a secure foothold and relatively easy for a leg to get stuck on the rock�s
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protruding parts�

The rough terrain controller pushes the envelope of Hannibal�s physical capabilities� Han�

nibal successfully handles a wide assortment of terrain features� but the maximum sizes of

the obstacles are primarily determined by the physical capabilities of the robot� Obviously�

if the robot had greater physical capabilities� such as larger work spaces for the legs� better

leg kinematics� better sensing� or a greater strength to weight ratio� the robot could traverse

more challenging terrain� These issues are beyond the scope of this work� and we will not

address them further� It would be interesting to implement a similar control network on

future legged robots for comparison�

�� Evaluation

Hannibal�s rough terrain performance gives us a means to evaluate Hannibal�s controller� In

this section� we evaluate Hannibal s controller with respect to the controller design issues

presented earlier in the paper� and the e�ectiveness of the local control with cooperation

approach in achieving coherent global behavior�

��� Controller Design

Designing and implementing Hannibal�s controller is an exercise in managing complexity� We

found the subsumption approach implemented using the Behavior Language was e�ective

for designing and implementing a controller for a robot of Hannibal�s complexity�

� Scalability� The controller scales well for our application� Hannibal operates in real�

time despite the large number �approximately ����� of concurrently running processes�



�� EVALUATION ��

It is impressive that Hannibal�s full behavioral functionality is implemented on a single

microprocessor and runs in real�time�

Since all of Hannibal�s control code runs on a single processor� the controller code can be

scaled until its requirements exceed what the master processor can provide� A logical

step would be to implement behavior control on multiple processors� The robot�s

behavior control code is written so that it could be physically distributed provided

that a processor is added to each subsystem� However� the Behavior Language would

have to be modi�ed to support multiple processors� The scalability of this alternate

architecture is limited by the communication latency of the behavior code processors�

This may not be a stumbling block for the current implementation since the subsystems

mostly perform local functions and communicate with the other systems on a relatively

limited basis�

� Modularity� In building a controller of this complexity from the bottom�up� we have

demonstrated the modularity of the controller design� This modularity appears on

every scale of the controller� Augmented �nite state machines form agents� agents form

task�achieving behaviors� task�achieving behaviors form levels of competence� levels of

competence form a subsumption�based controller� subsumption�based controllers run

within intelligent subsystems� and these subsystems cooperate to control the behavior

of the overall robot�

Over the course of this work� the robot and it�s controller underwent many changes�

Sensors were added or changed� actuated subsystems such as the body and legs were

brought on�line� and new locomotion� sensor processing� and fault tolerance capabil�
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ities were added to the system� The controller�s modular organization allowed us to

quickly add or change the processes which interpret new sensor information� utilize

new actuators� or add new processing capabilities to the system�

� Flexibility� The controller�s �exibility is demonstrated by the rough terrain tests�

These tests require that the controller perform diverse tasks such as sense terrain

hazards� perform basic mobility skills� and execute evasive maneuvers� The robot suc�

cessfully completed each obstacle course provided the hazards remained within the

limits of �gure ���

� Adaptability� The controller�s adaptiveness is demonstrated by the rough terrain tests�

which require that the robot�s behavior readily adapt to changing terrain� Hannibal

successfully negotiates small obstacles in its path� large obstacles blocking its path�

gaps in the terrain� and cli�s�

��� Cooperating Local Controllers

We have demonstrated that local leg control with inter�leg communication can implement

real�time control of a complex robot in an unstructured environment� Hannibal�s implemen�

tation of locomotion capabilities separates local sensori�motor tasks from global communi�

cation tasks� In this way� each controller is responsible for managing relatively few sensors

and actuators compared to the overall system� As a result� the load on the local controllers

is relatively light� Thus� a tight coupling between sensing and action is maintained so that

each local controller operates its leg in real�time� For example� in rough terrain locomo�

tion� each leg is responsible for sensing and negotiating the rough terrain challenge it faces�
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Consequently� all legs simultaneously handle local obstacles in real�time� This ability was

demonstrated in the multiple small obstacles test�

The cooperation tasks are achieved through inter�leg communication� Two types of

communication have been described� direct inhibition�excitation messages sent between

controllers� or indirect messages distributed by broadcast agents� Through our examples� we

have illustrated several ways this communication is used� First� each leg behaves as a scout

for the other legs and alerts them of common dangers� In this manner� the local terrain view

of each leg is shared with the other legs� This ability was demonstrated in the tests using

cli�s and large obstacles� Second� inter�leg communication enables the legs to act as a team�

With help from the other legs� each leg accomplishes more than it could on its own� For

example� by asking the supporting legs to elevate the body� a leg can clear a taller obstacle�

This was demonstrated in the individual obstacle tests using obstructive objects of varying

heights and shapes� Third� inter�leg communication enables the legs to maintain a uni�ed

e�ort� and the inter�leg priority scheme maintained the uni�ed e�ort even when behaviors

of di�erent legs were in con�ict� This ability was demonstrated by the small plateau test�

�� Discussion

Why is Hannibal�s controller so complex� Is it unnecessarily complex� It is understandable

that more processes would be required to perform sensori�motor integration of a system with

more sensors and actuators� Hannibal has considerably more sensors and actuators than a

typical autonomous robot of today� It is also understandable that more processes would be

required to add more behaviors to a robot�s capabilities� Hannibal has a comparatively large
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behavioral repertoire to that of a typical autonomous robot� It performs insect�like gaits�

rough terrain locomotion� and possesses extensive failure recognition� fault tolerance� and

sensor processing capabilities�

However� it is di�cult to say what a reasonable requirement is on the number of processes

necessary to implement a controller of comparable capabilities� and on a robot of similar

physical sophistication� as Hannibal� To grapple this question� we compare the complexity

of other insect�inspired controllers to the appropriate subset of Hannibal�s controller� The

four biologically motivated controllers presented in section � are used in the comparison�

We refer to table � which summarizes the number of processes used by each controller to

implement stable gaits on �at terrain and locomotion over small obstacles �where applicable��

Di�erent approaches were used� but we roughly equate one process� to one neuronal element�

to one AFSM�

The complexity of Hannibal�s controller compares rather favorably to the complexity of

the other controllers � For �at terrain walking with one gait� Hannibal requires two fewer

AFSMs than Genghis� For �at terrain walking with multiple gaits� Hannibal only requires

one more process than that of the Case Western Hexapod� For locomotion over terrain

with small obstacles� Hannibal requires the same number of AFSMs as Genghis� If one

neuronal element is equated to one AFSM� Hannibal�s controller is approximately two times

less complex than that of Cruse� Treating this example as a guideline for the number of

processes used to implement the entire controller� Hannibal�s controller does not appear to

be gratuitously complex�
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�� Comparison of Insect�Inspired Controllers

Thus far we have argued that local control with cooperation is a viable control scheme for

controlling a complex robot� We have used the example of rough terrain locomotion to make

our case� As presented earlier� several other groups have used insect�inspired schemes to

program their legged robots� or have explored these schemes in simulation� In this section� we

compare the performance of our robot to those systems which have also employed biologically

motivated mechanisms� Ferrell ��

�� implements several biologically inspired controllers on

the same robot� which provides an interesting comparison�

The controllers described in Donner ��
��� Cruse ��

��� and Beer 	 Chiel ��

��

are more re�exive than the controller implemented on Hannibal in that all step cycle phase

transitions are largely determined by inhibition�excitation signals sent between adjacent legs�

In contrast� Hannibal�s transitions are determined by the phase of local leg oscillators where

the phase can be a�ected by excitation�inhibition signals sent from rough terrain behaviors�

The appeal of these more re�exive locomotion control schemes is their elegance� It has been

demonstrated either in simulation or on robots that these sorts of controllers provide a lot of

functionality for a handful of clever mechanisms� Several interesting behaviors emerge from

these controllers� For example� each controller has the ability to produce a family of stable

insect�like gaits� the controller of Chiel et al� ��

�� has demonstrated robustness to lesions�

and the simulated controller presented in Cruse ��

�� is resilient to leg perturbations caused

by small obstacles�

However� these schemes have drawbacks as well� First� the gait coordination mech�

anism parameters require a fair amount of adjustment to achieve acceptable performance�
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Cruse ��

�� adjusted his simulation parameters based on results from studying stick insects�

Other researchers have arrived at the proper weighting of in�uences through optimization

techniques �Beer 	 Gallagher �

��� or by experimentation �Quinn 	 Espenschied �

���

�Ferrell �

��� Another drawback is the di�culty in adding new behaviors� The controller

mechanisms interact in a very specialized way to produce gait coordination� Consequently

it is di�cult to incorporate dramatically di�erent behaviors without disrupting controller

dynamics� For example� locusts use rapid searching movements with a leg to locate a secure

foothold �Pearson 	 Franklin �
��� This behavior is characterized by rapid� repeated cy�

cling of a single leg while the other legs may even come to rest� It is not clear how to modify

the current mechanisms to incorporate such an asymmetrical behavior� A typical approach

is to simply add some sort of centralized process on top of the locomotion network that can

override it �Donner �
��� but this detracts from the elegance of the re�exive approach�

Finally� there is a long way to go before robots using re�exive control schemes can loco�

mote like insects over naturally occurring terrain� Typical mechanisms don�t account for a

lot of rough terrain locomotion behaviors observed in insects� Pearson found that locusts use

several single leg tactics such as rhythmic searching movements when a leg does not contact

a surface at the end of its swing� an elevator re�ex to lift a leg above an object contacted

during the swing phase� and local searching movements once a leg contacts a potential sup�

porting surface� Pearson also found that animals do not adopt a rigid gait when walking

on rough terrain� In fact� he observed a wide range of stepping patterns in which the gait

pauses and shifts frequently� Progress is being made in this area� as evidenced by Cruse

��

��� but much work has do be done�

In contrast� the appeal of the approach used on Hannibal is the ease of adding new
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features to the system� On the downside� this makes for a bulkier controller � more code

must be added which takes up more computing cycles� But the designer also has more

control over the interactions of processes within the controller� This makes the controller

easier to design around and build upon� although traditional issues like behavior con�ict must

be carefully resolved� �This is typically done using inhibition and suppression mechanisms�

and testing the result through trial and error during the design phase�� For example� a

wide assortment of rough terrain behaviors and terrain sensing processes were integrated

into our basic locomotion controller� Several of these behaviors are inspired after those

observed in insects such as local searching movements� an elevator re�ex� stepping over holes�

walking around large obstacles� and walking away from ledges� More re�exive insect�inspired

locomotion schemes do not exhibit a comparable repertoire of rough terrain behaviors�

�� Conclusions

We demonstrated that the subsumption approach is e�ective for controlling robots of Han�

nibal�s complexity� The complete implementation consists of approximately ���� concurrent

processes performing diverse tasks� such as terrain sensing� rough terrain locomotion� and

fault tolerance� Through building a controller of this complexity for a robot with many

sensors and actuators� we demonstrated the importance of controller scalability� modularity�

�exibility� and adaptability� Hence� this work provides a point of reference for the ease of

design and e�ectiveness of the behavior based approach in controlling more complex robots�

We showed that the local control with cooperation paradigm is an e�ective means of

controlling a robot of Hannibal�s complexity� and tested this approach by presenting Hannibal
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with various test terrains� In regard to basic locomotion� communication between coupling

agents causes various insect�like gaits to emerge� For rough terrain locomotion� inter�leg

communication enables each leg to behave as a scout for the other legs and alert them of

common dangers� In this manner� a high level terrain view local to each leg is shared with

the other legs� Communication between legs also enabled them to act as a team� which

enables each leg to accomplish more than it could alone� Finally� inter�leg communication

enables the legs to maintain a uni�ed e�ort� and the inter�leg priority scheme maintained

the uni�ed e�ort even when behaviors of di�erent legs were in con�ict�

This work of particular interest because the controller was implemented and tested on a

physical robot of signi�cant complexity� It is important to study behavior control systems

on real robots� As robots become more complex� the di�cult issues in control are magni�ed

to the point where they cannot be ignored or only partially addressed as is often the case

with simulation� It is important that all aspects of the control system be implemented and

tested on real robots of su�cient complexity to make sure the integrated system works in the

real world� By developing our controller on a physical system� we were forced to make sure

all the pieces �t together at every stage� This also helped us maintain a common framework

when implementing diverse capabilities� Finally� testing our controller on a physical system

served as a strong validation test for our gait generation and rough terrain locomotion

implementations�
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Figure �� Hannibal is quite complex for its size� It is approximately the size of a bread box
and is equipped with �
 degrees of freedom� over �� sensors� and  computers�
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Figure �� During the return stroke� the leg lifts and swings to the start position of the next
power stroke� In forward locomotion� the leg moves towards the AEP during the recovery
phase� During the power stroke� the leg supports and propels the body along the direction
of motion� In forward walking� the leg moves toward the PEP during the support phase�
Adapted from �Cruse �

���
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Figure �� Pearson�s neural circuit for controlling the stepping motion of a single leg� An
oscillator provides the stepping rhythm� It triggers a swing command near the peak of its
cycle� The swing command excites the motor�neuron circuit that swings the leg forward�
and inhibits the push circuit� The push circuit presses the foot to the ground and draws it
back� A steady excitatory input keeps the push circuit active whenever it is not inhibited
by the swing command� Adapted from �Wilson �
����
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Figure �� The in�uences used in the step cycle generation mechanism� The leg lifts and
swings for the �rst clock stage� steps and swings for the second clock stage� and supports
and propels the body for the remainder of the oscillator period�
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Figure �� Implementation of leg oscillators on Hannibal� Each oscillator is modeled as a
clock which cycles through its values at regular time intervals� The peak of the oscillator
phase corresponds to a clock value of ���� The period of the clock corresponds to the period
of the oscillator� which changes for the di�erent gaits�
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Figure �� Various gaits emerge from changing the frequency of the local leg oscillators� Each
gait has a characteristic phase di�erence between the ipsilateral legs� Adapted from �Wilson
�
����
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Figure �� Circuit for activating a coupling agent� Initially� M��� which evokes a slow wave
gait� The Speed agent sends a new M value to all the leg oscillators to change the oscillator
frequency� In this example� it sends the message M��� which evokes a ripple gait� The
Activate Phasing agent becomes active when it receives a new M value from the Speed agent�
Once activated� it determines the most posterior leg in the lift�to�swing stage �clock���� and
activates its coupling agent� In this example� the left rear leg�s coupling agent is activated�
The Activate Phasing agent also passes along the new M value to this coupling agent�
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Figure � Circuit for re�phasing leg oscillators� Once activated� the coupling agent re�phases
the leg oscillators by re�initializing the oscillator clock values of the legs� It uses the new M
value �passed to it by the Activate Coupling agent� to determine the proper re�initialization
values� It sets the oscillator clock values of the other legs with respect to the oscillator clock
value of its leg�



(defbehavior L3-coupling-agent
  :inputs (newM)      ;; incoming message  = no. stages/osc. period
                                ;; incoming received only when command speed changes.
  :outputs (L3clock  ;; outgoing messages = reinit. osc. clock values       
                 L2clock
                 L1clock
                 R3clock
                 R2clock
                 R1clock)
  :activation (+ received-activation 10)
  :received-activation-range (-30 30)
  :threshold 10
  :continuance 0.05
  :i-processes ((whenever (received? M)
                          (cond ((= M $slow_wave_gait)
                                 (output L3clock 1)
                                 (output L2clock 11)
                                 (output L1clock 9)
                                 (output R3clock 7)
                                 (output R2clock 5)
                                 (output R1clock 3))
                                ((= M $ripple_gait)
                                 (output L3clock 1)
                                 (output L2clock 5)
                                 (output L1clock 3)
                                 (output R3clock 4)
                                 (output R2clock 2)
                                 (output R1clock 6))
                                ((= M $tripod_gait)
                                 (output L3clock 1)
                                 (output L2clock 3)
                                 (output L1clock 1)
                                 (output R3clock 3)
                                 (output R2clock 1)
                                 (output R1clock 3))))
                ))
;; make connections from coupling agent to leg oscillators
(connect (L3-coupling-agent L3clock) (L3-osc reinit-clock))
(connect (L3-coupling-agent L2clock) (L2-osc reinit-clock))
(connect (L3-coupling-agent L1clock) (L1-osc reinit-clock))
(connect (L3-coupling-agent R3clock) (R3-osc reinit-clock))
(connect (L3-coupling-agent R2clock) (R2-osc reinit-clock))
(connect (L3-coupling-agent R1clock) (R1-osc reinit-clock))

Figure 
� Code segment for the coupling agent of the rear left leg� This code segment is
illustrated by �gure �
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Figure ��� Run�time data of various gaits implemented on Hannibal� R�� R�� and R�
correspond to the right front� right middle� and right rear legs respectively� and L�� L�� and
L� correspond to the left front� left middle� and left rear legs respectively� Each wave form
is high when the recovery phase excited� and low when the support phase is excited�
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Figure ��� Run�time data of the robot switching between gaits as the speed command
changes the oscillator frequencies� Each wave form is high when the recovery phase excited�
and low when the support phase is excited� When the speed command changes� some of
the legs become out of phase� As the leg oscillators re�synchronize themselves� they modify
the recovery phase of these legs� As a result� the duration of the recovery phase excitations
varies as the speed command changes� The observed gait transitions are stable and quick�
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Figure ��� To enforce stable locomotion� the step agents of the recovering legs prevent the
robot from advancing to the next step cycle unless the recovering legs support the body�
Here� the right rear leg is in the recover phase� The step agent of this leg inhibits the
oscillators of the supporting legs until the output of ground�contact virtual sensor of this
leg is true� When this is the case� the step agent releases the oscillators of the other legs�
Ankle� F�� and P� are the physical sensors that measure ankle displacement� vertical force�
and vertical position respectively�

step-in-hole
virtual sensor

p1, v1

f1

ankle

target
swing

lift

step

ground-contact
virtual sensor

find-foothold
agent

osc

leg

inhibit other osc. if no 
ground  contact

P1, V1

F1

Ankle

Figure ��� For each leg� the �nd�foothold agent is activated once the output of the step�
in�hole virtual sensor is true� While active� it generates the searching pattern by making
the leg�s oscillator agent repeat the recover phase with new target values� Meanwhile� the
leg�s step agent makes the robot pause by inhibiting the oscillators of the supporting legs�
The �nd�foothold agent is de�activated when the output of the ground�contact virtual sensor
is true� Ankle� F�� P�� and V� are the physical sensors that measure ankle displacement�
vertical force� vertical position� and vertical velocity respectively�
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Figure ��� For each leg� the step�high agent is activated when the output of the swing�
collision virtual sensor is true� When active� the step�high agent lifts the foot by activating
the extend�elbow agent� Once the elbow is fully extended� the leg swings to its target value�
Meanwhile� the lift body agents of the supporting legs are also activated while the swing�
collision virtual sensor is true� This helps the collided leg clear the obstacle by elevating
the body� The swing agent de�activates the step�high agent when the leg reaches the target
value� Once this occurs� the elbow is contracted and the leg steps down�
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Figure ��� This network causes the robot to back away from obstacles that are too large to
step over� The backup agent is activated when a leg collides with and obstacle after its foot
is lifted as high as possible o� the ground� The broadcast backup agent sets the number of
steps the robot walks backwards and the turn sharpness based on the avoid�obstacle message�
The direction of rotation is set such that the robot turns away from the obstacle�
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Figure ��� Inter�leg behavior con�icts are handled by a pre�programmed priority scheme�
Behaviors that achieve goals with a higher priority inhibit behaviors that achieve goals with
a lower priority� For example� stability has a higher priority than obstacle avoidance� As a
result� the �nd�foothold behavior inhibits the backup behavior� Once the leg �nds a foothold�
the robot is allowed to backup�
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Figure ��� Hannibal successfully traverses rough terrain as long as the obstacles remain
within the limits of this table� The minimum size column lists the smallest obstacle that
will evoke the corresponding behavior� The maximum size column lists the largest terrain
feature the robot can negotiate with the corresponding behavior�
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Figure �� Comparison of the number of elements used to implement several biologically
motivated locomotion controllers� For this table� � neuronal element � � process � � AFSM�
This is a very rough comparison since the amount of computation performed by each element
varies by implementation� For comperable locomotion behaviors� the number of processes
used to implement Hannibal�s controller is similar to the number used by other controllers�


