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Abstract

The purpose of this paper is twofold� The �rst purpose is to present important

issues in designing fault tolerant systems for autonomous robots� The second� is to

present the fault tolerance capabilities we implemented on our autonomous robot� Our

approach is characterized by a distributed network of concurrently running processes�

To tolerate hardware failures� a set of fault tolerance processes are written for each

component� These processes are responsible for detecting faults in their respective

component� and minimizing the impact of the failure on the robot�s performance� By

exploiting concurrency and distributedness� the system monitors� detects� and compen�

sates for component failures silmultaneously� The capabilities of this system have been

tested by physically disabling and enabling the robot�s sensors and actuators� The sys�

tem quickly recognizes and compensates for both minor and severe sensor and actuator

failures� It tolerates a variety of sensor failures such as decalibration� erroneous read�

ings� and permanent failures� It also tolerates various combinations of failures such as

individual failures� concurrent failures� and accumulative failures� We hope this work

will inspire further research in fault tolerant autonomy�

keywords� fault tolerance� failure recognition� autonomous robot� distributed control�

legged locomotion� adaptive sensing�

shortened title� Fault Tolerant Autonomy
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� Introduction

Fault tolerant behavior is important for autonomous mobile robots whether their task is

grand or mundane� Building autonomous mobile robots capable of performing tasks in

environments that are either too dangerous or unsuitable for humans has been a long term

goal of the �eld� For example� research is underway to develop autonomous systems capable

of exploring planets �Angle � Brooks �		
�� �Bares � Whittaker �		
� or oceans �Payton�

Keirsey� Kimple� Krozel � Rosenblatt �		��� �Stuart �	���� These tasks require that the

robot perform its task for long periods of time without the luxury of repair when components

fail� It is vital to the success of the mission that the robot continue to function e
ectively

despite component failures� For day to day goals� anyone who works with real autonomous

robots is familiar with how frequently their hardware fails� Sensor and actuator failures are

not surprising given how often the robots bump into things� rattle components� snag wires�

and stress connectors as they move through their environment� It would be nice if we did

not have to stop our research to repair the robot every time something fails�

� Hannibal

Hannibal� as shown in �gure �� is a small autonomous robot� It was designed and built under

the supervision of Prof� Rodney Brooks in the Arti�cial Intelligence lab at MIT �Angle �

Brooks �		
�� The robot is perhaps the most sophisticated and complex robot for its size�

It measures �� cm long� stands �� cm high and weighs ��� kg� It has six � degree of freedom

�DOF� legs� Despite its small size� Hannibal currently has �	 actuators and over �
 sensors

of � di
erent types all connected via a local network to � on�board computers� The robot�s
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control organization is behavior�based �Brooks �	���� It is programmed in the Behavior

Language� a front end for the Subsumption Architecture �Brooks �		
��

The following types of sensors are mounted on Hannibal�

� Leg mounted force sensors� these are foil strain gauges that can be used to measure

loads on the leg and to detect leg collisions� There is a set of strain gauges for each

DOF of the legs�

� Joint angle sensors� These are potentiometers that measure the joint angle for each

DOF of the leg�

� Joint velocity sensors� The joint angle sensors are di
erentiated in analog for each

DOF of the leg�

� Ground contact sensor� This is a linear potentiometer mounted on the ankle that

measures the de�ection of the foot as it presses against the ground�

� Inclinometer� This sensing unit is made up of a ��� �� degree roll sensor and a ��


degree pitch sensor�

� The Issues

For Hannibal� having many sensors and actuators is a double edged sword� Multiple sensors

provide more reliable sensing and a richer view of the world� More actuators provides more

degrees of freedom� However� more components also means there is more that can fail and

subsequently degrade performance� Physical failures can be attributed to either mechanical

failure� electronic failure� or sensor failure� Subtle changes in the state of the robot such
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as sensor signal drift also degrades performance� Hannibal�s task is to locomote in rough

and hazardous environments� As it scrambles along� it can be subjected to repeated bumps�

snags� and stresses� This places signi�cant wear and tear on Hannibal�s hardware� Not

surprisingly� components fail or decalibrate over time� These problems require that the fault

tolerant network address the following issues�

� Fast response time to failures� Hannibal operates in a hazardous environment� Con�

sequently� Hannibal must detect and remedy failures quickly or else its safety may be

jeopardized� This means failures must be detected and compensated for before system

performance degrades to an unacceptable level�

� Graceful degradation of performance� Hannibal�s performance must degrade gracefully

as failures accumulate� This requires Hannibal to maintain the highest level of perfor�

mance possible given the functional state of the hardware�

� Access to all reliable resources� More sensors and actuators enhance system perfor�

mance provided they are functional� Hence� Hannibal should reincorporate the use of

repaired components�

� Fault coverage� The robot can su
er from a variety of failures� Failures can be per�

manent or transient� Some failures have a local e
ect while others have a global e
ect

on performance� Sensors may decalibrate� Furthermore� the robot should be able to

recover from di
erent combinations of failures� Failures can occur individually� con�

currently with other failures� or accumulate over time�
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� Con�nement of Errors

Sensor and actuator faults a
ect various levels of Hannibal�s system hierarchy� The lowest

level is the hardware level� the next level is low level control where sensor information is

processed� and the top level is high level control which determines the robot�s behavior�

Clearly sensor or actuator failures a
ect the hardware level of the system� Sensor failures

a
ect low level control because they a
ect the reliability of the virtual sensors within this

level� The virtual sensors are processes that are responsible for characterizing the robot�s

interaction with its environment using sensor information� Sensor failures may cause the

virtual sensor results to be incorrect� If this is indeed the case� then high level control is also

a
ected by sensor failures� The high level control uses the results from the virtual sensors

to activate the correct behavior at the appropriate time� Thus� if the results of the virtual

sensors are incorrect� then the wrong behaviors will be activated�

It is important to detect and con�ne errors to the lowest possible level in which they occur�

If an error is not con�ned to the level in which it originated� then higher levels must detect

and compensate for the fault� As an error propagates up the levels of the system hierarchy� it

a
ects increasing amounts of system state� Longer response times to error correction means

the error manisfestations become more diverse� Hence� detecting and con�ning errors to

the lowest possible level of the system hierarchy maximizes the e
ectiveness of the recovery

procedures and minimizes the impact of the error on system performance�
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� Levels of Fault Tolerance

Given that hardware failures a
ect various levels of the system� fault tolerance techniques

can be implemented at each level� Below� we present possible fault tolerance strategies for

each level� and describe the merits and shortcomings of each method�

��� Replication of Hardware

We are concerned with sensor and actuator failures� so reliable sensing and actuating hard�

ware is desirable� Replication of hardware is commonly used to enhance hardware reliability�

Several commercial systems� such as Gray ��		
�� Siewiorek � Johnson ��	���� use this

approach to achieve robustness� Replication of processors has been used to achieve fault

tolerance in a few robotics applications ��Lin � Lee �		�� and �Kabuka� Harjadi � Younis

�		
��� In Hannibal�s case� this approach would correspond to replicating sensors and actu�

ators� For a sensing example� multiple potentiometers could be used to sense a particular

joint angle� An aribitor could gather the joint angle values of each potentiometer and accept

the most common joint angle value as correct� With this approach� hardware failures would

be detected and con�ned to the hardware level of the system hierarchy�

Ideally we could detect� con�ne� and correct hardware errors at the hardware level� By

doing so� the application software need not be alerted to these failures� However� this

approach has some drawbacks� First� replication of sensors and actuators is expensive�

Second� it assumes that a majority of replicated components are working� Ideally� Hannibal

should perform reliably with a minority of functional sensors� Third� Hannibal�s size and

weight contraints restrict how may sensors and actuators can be mounted on the robot�
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Therefore it is impractical to enhance sensing or actuating capabilities on Hannibal by using

this approach� However� Hannibal was designed with multiple sensors and actuators that

provide complementary capabilites� For example� Hannibal can use several di
erent sensors

to detect ground contact� and it can lose the mechanical function of a leg and still walk�

Hannibal�s control system must be clever in the way it uses its existing sensors and actuators

to compensate for sensor or actuator failures�

��� Redundant Control Behaviors

Fault tolerance techniques using redundant sets of control strategies have been investigated

by Payton et al� ��		��� The redundant strategy approach implements fault tolerance in

high level control and addresses high level failures� For example� a high level failure occurs

when the robot encounters a situation it was not explicitly programmed to handle� In

this approach� the controller is designed with redundant strategies to perform a task� A

performance model exists for each stragety� and a failure is detected if the behavior�s actual

performance is worse than the behavior�s expected performance� If the �rst strategy tried

does not su�ce� the controller eventually tries another strategy� The controller goes through

its repertoire of strategies until it �nds a strategy with acceptable performance instead of

unsuccessfully trying the same thing over and over�

The redundant strategy approach is not well suited for hardware failures� First� it does

not speci�cally address the cause of the problem� it only addresses the symptoms� It may

take several tries before the controller �nds a strategy that works� For example� let us say

Hannibal has redundant walking behaviors�each behavior implements a di
erent gait� If a

leg fails� some of these gaits are unstable� The redundant strategy approach requires that
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Hannibal undergo unstable locomotion until the controller �nds a gait that is stable with the

loss of that leg� It is more desireable if Hannibal could recognize which leg failed and adapt its

gait to speci�cally address the failure� Second� the redundant strategy approach inherently

requires that the hardware errors manifest themselves in the robot�s behavior before the con�

trol system can detect something is wrong� Thus� the performance of the infected behaviors

must degenerate to an unacceptable level before the controller takes corrective action� This

could be detrimental to a robot that must function in a hazardous environment�

��� Robust Virtual Sensors

Hannibal�s controller uses robust virtual sensors to con�ne hardware failures to low level con�

trol� Robust virtual sensors are virtual sensors which remain reliable despite sensor failures�

Recall that the virtual sensors are responsible for characterizing the robot�s interaction with

its environment using sensor information� and for activating the robot�s behaviors� If the

virtual sensors give the correct output despite sensor failures� then the robot will continue

to do the right thing at the right time despite these failures�

Robust virtual sensors are appealing because they con�ne the e
ect of faults to low level

control and prevent errors from infecting high level control� This approach e
ectively com�

pensates for local failures� Local failures �also called non�catastrophic failures� are failures

whose e
ect is con�ned to the leg on which it occurs� For example� the failure of a leg�s

ankle sensor is a local failure because it a
ects that leg�s ability to sense ground contact� but

it does not a
ect the ability of the other legs to sense ground contact�

Unfortunately� it is not possible to con�ne the e
ects of all sensor�actuator faults to low

level control� Some failures a
ect the behavior of the overall system � we call these failures
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global failures� Global failures �also called catastrophic failures� must be compensated for

within high level control� For example� if a leg�s shoulder actuator fails� then the leg cannot

support the body� Consequently� this failure a
ects the global stability of the robot� The

high level control must compensate for this failure by changing the robot�s gait so the robot

can walk in a stable manner with one less leg�

� Adaptivity vs Redundancy

Hannibal�s fault tolerance capabilities are implemented using adaptive agents� The use of

adaptive agents distinguishes Hannibal�s implementation of robustness from other implemen�

tations� One adaptive virtual sensor �instead of several redundant virtual sensors� exists per

leg for each leg�terrain interaction of interest to the controller� As sensors fail� the adaptive

virtual sensors maintain reliable performance by changing how they use their sensor infor�

mation� For example� when a failure is detected� the appropriate virtual sensors are alerted

of the failure and respond by recon�guring the way they use their sensory information� This

entails ignoring the input from the broken sensor and changing the way the virtual sensors

use information from the reliable sensors� In this manner� the virtual sensors use their most

reliable sensors to produce the most reliable result� If the failed sensor starts working again�

the virtual sensor reintegrates the previously failed component�

The approach Hannibal uses to tolerate catastrophic failures also exploits adaptivity

instead of redundancy� When a leg su
ers a catastrophic failure it cannot be used� High level

control must change the gait so locomotion remains stable with one less leg� A redundant

approach might involve implementing redundant walking behaviors where each behavior
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exhibits a di
erent gait� This is undesirable because of the extra code space required to

implement each gait behavior plus the gait switching mechanism� In contrast� the adaptive

approach implements one walking behavior which can alter its gait by changing a parameter�

Low level control is responsible for detecting catastrophic failures and alerting high level

control� High level control is responsible for adapting the robot�s behavior so that locomotion

remains stable �see �Ferrell �		�� for details��

� Fault Tolerance Network

The following sections describe the distributed network that implements fault tolerance on

Hannibal� As with the rest of Hannibal�s control system� fault tolerance is implemented

with concurrently running processes� Fault tolerance consists of four phases� error detection�

masking� recovery� and reintegration� Non�catastrophic faults a
ect local control� They are

detected within the low level network and compensated for within the virtual sensors� In

this way� these faults do not a
ect the high level performance of the system� Catastrophic

faults unavoidably a
ect global system performance� They are detected within the low level

control and compensated for within the high level control�

In the following sections we illustrate Hannibal�s fault tolerance processes through an

example� The example we use to illustrate tolerance to local failures is a robust ground

contact virtual sensor� Keep in mind that this example is of only one virtual sensor on one

leg which uses only a few of the sensors on that leg� Similar processes run concurrently on the

same leg to make its other virtual sensors robust as well� The example we use to illustrate

tolerance to global failures is a broken shoulder actuator� Other processes run concurrently
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on the same leg to tolerate a variety global failures as well� The processes mentioned above

are replicated for each leg and run simutaneously�

We refer the interested reader to �Ferrell �		�� which presents our fault tolerance imple�

mentation in more detail as well as the overall control of our legged robot�

��� Detection

The detection processes are responsible for recognizing sensor and acutator failures� De�

tection is the hard part of the fault tolerance problem because the robot does not know a

priori the correct behavior of the sensor� Sensor failure recognition is performed using two

methods� The �rst method exploits the context provided by the time history of the leg

motion� The robot does not know what the correct sensor behavior is for a given step cycle�

However� the robot does know the plausible leg motions because the plausible leg motions

are the behaviors that have been programmed for the leg� We call the set of plausible leg

motions the model� If the leg sensors re�ect a plausible leg motion� i�e� they agree with the

model� then the robot has some con�dence that the sensor is working� However� we could

still have the case where the robot�s sensors do not re�ect reality although they re�ect a

plausible reality� For instance� a sensor could say the robot is stepping on the ground when

it is really stepping in a hole� To overcome this problem� the second method exploits the

context provided by complementary sensors� If reliable complementary sensors agree with

the sensor in question� i�e� they con�rm the robot is stepping on the ground� then the system

has more con�dence in that sensor� The con�dence level in a sensor is re�ected by a pain

parameter a�liated with that sensor� The pain level is the inverse of the con�dence level�
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����� Sensor Model

It is possible to model sensor behavior if the behavior of the leg is known� Rotational

potentiometers measure leg joint angle� strain gauges measure leg loading and linear poten�

tiometers measure foot loading� Hence the motion of the leg and the leg�s interaction with

the environment directly a
ect sensor output� To model plausible sensor behavior� we �rst

classify the leg behavior in terms of states� Each phase of the step cycle is divided into four

possible leg states� Sstart� Smiddle� Send� and Sexception� The Sstart� Smiddle� and Send states

account for the typical behavior of the leg �see �gure ��� The Sexception state accounts for

leg�terrain interactions that may occur during that phase but typically do not� For exam�

ple� during the step phase Send corresponds to ground contact and Sexception corresponds to

stepping in a hole� We assume the leg behaves as programmed �unless a catastrophic failure

occurs�� so the constraints on the transitions between leg states for each phase of the step

cycle are known� A set of sensor values corresponds to each leg state� From this sensor�state

relationship� we derive a model for plausible sensor behavior� The sensor model consists of

the expected transitions between sets of sensor values given the plausible transitions between

leg states� The transformation from leg states to sensor values were derived experimentally

by observing sensor values as the robot walked through its environment� Processes �called

sensor�state processes� are written for each sensor and classify the sensor�s values into leg

states�

����� Monitoring Individual Sensors

Each sensor has a process that monitors sensor performance� These processes are called

sensor monitor processes and they exploit the context provided by the time history of the
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leg motion� Each sensor�s monitoring process uses the corresponding model of acceptible

sensor�state transitions to detect sensor failures� Essentially� if a sensor�s behavior does

not re�ect plausible behavior� then the con�dence in that sensor decreases� Each process

monitors the transitions between states by recording when each state occurs� The sensor

monitor processes check that a timely and sequential transition of leg states is upheld� If

the sequential and time contraints of state transitions are upheld� the process inhibits that

sensor�s pain parameter� otherwise it excites it� Figure � presents run�time data for the

sensor monitor processes of the vertical force sensor�

����� Consensus Monitoring of Sensors

Each step cycle phase has a consensus monitor process that monitors agreement between

complementory sensors� The sensor�state processes categorize sensor values into leg states�

this provides a common measure for comparing sensor behavior� The consensus monitor

processes use discrepancies between sensor�state values of complementary sensors to detect

sensor failures� To do this� each sensor casts votes for the state it thinks the leg is in based

on its sensor value� The state with the majority vote is elected as the leg state� Each time

a leg state is elected� each sensor�s votes are compared with the newly elected leg state� If a

sensor voted for the elected state� the consensus monitor process inhibits that sensor�s pain

parameter� otherwise it excites it� Figure � presents run�time data for the consensus monitor

processes for the ground�contact virtual sensor�
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����� Injury Agents

An injury agent for each sensor determines whether the sensor is working or broken by

monitoring the sensor�s pain level� As described above� each sensor�s sensor monitor process

and consensus monitor process excite its pain parameter when a discrepancy occurs� and

inhibit the pain parameter when no discrepancy occurs� The level of the pain parameter

increases upon excitation and decreases upon inhibition� The injury agent compares the

sensor�s pain level with a threshold value� If the pain level exceeds the threshold� the injury

agent declares the sensor is broken� and when the pain level is below threshold� the injury

agent declares the sensor is working� See �gure ��

��� Masking

The masking processes are responsible for removing the a
ects of local faults so that these

faults do not e
ect high level behaviors� Masking is performed by the virtual sensors� A

minor form of masking is also performed by the consensus monitoring processes� The injury

agents continually inform the virtual sensors and consensus monitor processes about which

sensors are functional or broken� Once informed of a broken sensor� the masking processes

within the virtual sensors and consensus monitor processes remove the e
ects of the broken

sensor�

To uphold the integrity of the elected leg state� the consensus monitoring processes disre�

gard information from broken sensors� Provided the elected leg state is correct� the consensus

monitor processes can detect valid disagreements between a sensor�s leg state vote and the

actual leg state� However� the wrong leg state could be elected if votes from broken sensors
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are honored� Therefore� if a sensor is faulty� the sensor consensus process removes the broken

sensor�s votes in the leg state election process� In this way� the leg state is determined only

by functional sensors� and the result remains reliable despite failures�

The virtual sensors mask sensor failures by disregarding information from failed sensors�

To show how this is implemented� we use the ground�contact virtual sensor as an exam�

ple �see �gure ��� The ground�contact virtual sensor uses information from the shoulder

potentiometer� the ankle displacement potentiometer� and the vertical load strain gauge�

Each sensor value is passed through a �lter� The �lter outputs true if the value satis�es its

condition for ground contact� otherwise it outputs false� The �ltered results are sent to a

decision process that combines these results to determine whether the leg is contacting the

ground or not� This process also receives inputs from the injury agent of each sensor� If

an injury agent declares its sensor is broken� the decision process ignores the broken sensor

in computing the output� Consequently the �nal ground�contact decision is made only by

functional sensors� Figure � presents run�time data of the masking process performed by a

ground contact virtual sensor�

��� Recovery

The purpose of recovery is to return the system to an operational state once components fail�

The new operational state should have as many of the original resources available as possible�

and the transition to this new state should have minimal impact on normal system operation�

We want the system to recover from transient errors as well as permenant errors� Transient

errors result from occasional erroneous sensor values or sensor drift� Permenent errors result

from sensor failure� Recovery takes three forms� retry addresses transient errors� dynamic
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recalibration addresses sensor drift� and recon�guration addresses permanent failures�

����� Retry

Transient sensor errors are �ltered out by the pain mechanism� In essence� the pain mecha�

nism provides a means for �retrying� a sensor if it produces a bad value� Instead of calling a

sensor broken after it produces an erroneous sensor reading� the pain mechanism continually

adjusts the pain level of the sensor� The pain threshold of each sensor is set such that a

series of errors must occur before the pain level rises above threshold� However� since the

error is transient� the sensor displays normal behavior during subsequent cycles� and the

pain level diminishes� In e
ect� occasional errors are averaged out and carry little weight for

determining whether a sensor is functional or broken�

����� Dynamic Recalibration

Dynamic recalibration processes are written for each sensor� These processes update the

reference values used by the sensor model processes� These values are used to compute the

state transition values for the sensors� It is important to deal with sensor decalibration be�

cause the sensor models become less accurate as the reference values become less accurate�

The dynamic recalibration behaviors assume sensor gain remains constant� hence any decal�

ibration is attributed to DC o
set only� This is a reasonable assumption given Hannibal�s

leg sensors�
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����� Recon�guration

As sensors fail we want system performance to degrade gracefully� In fact� we want to main�

tain the highest level of performance given the functional state of the robot� To accomplish

this� the virtual sensors speci�cally tailor their use of sensor information to minimize the

impact of sensor failures on virtual sensor performance� Virtual sensor performance consists

of reliability and response time� We have found� by experimental means� that virtual sensors

perform better as more sensors are used�

The virtual sensors can achieve faster response times without compromising reliabiltiy�

provided su�cient quantity and type of sensors are used� To illustrate this� we look at

the ground contact virtual sensor as an example� The ground contact virtual sensor uses

information from three types of sensors to ascertain leg loading� shoulder position� ankle

displacement� and vertical force� Velocity and position are the only types of information the

position sensor provides to determine loading� Loading can be inferred from the position

sensor when the leg is prematurely stopped above its lowest possible position� The force

and ankle sensors directly measure loading and do it faster than the position sensor�the leg

does not have to stop moving before they signal loading� Thus� if only the position sensor is

working� the leg must come to a complete stop in the vertical axis to satisfy the condition for

ground contact� However� if a force or ankle sensor is working� the condition for the position

sensor can be relaxed so that it is satis�ed sooner� In this case� the position sensor satis�es

the condition for ground contact if either the downward velocity is su�ciently small or zero�

Similarly� if all sensors are working� the conditions for the force and ankle sensors can be

relaxed as well� Hence� the response time of the ground contact virtual sensor can be sped up
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if more sensors are used without compromising reliability� Figure � presents our results for

how performance relates to the number of sensors used for a ground contact virtual sensor�

��� Reintegration

The robot�s performance is enhanced if more sensors are used� The purpose of reintegration is

to reincorporate repaired sensors so the robot uses the maximum number of reliabile sensors�

Repaired sensors are sensors that were previously faulty but behave well again� Reintegration

is useful if a sensor is broken and then �xed� or if the sensor was incorrectly classi�ed as

broken� In either case� we call a sensor �broken� if its pain level is above threshold� and

we call it �repaired� if the sensor�s pain level rises above threshold and then lowers below

threshold�

Both the sensor monitor processes and sensor consensus processes induce reintegration of

repaired sensors ��gure 	�� They accomplish this by inhibiting the pain parameter� If a failed

sensor exhibits normal behavior� the sensor�s behavior agrees with the modeled behavior

again� Consequently� the sensor monitor process inhibits the pain parameter� Similarly� if a

failed sensor exhibits normal behavior� the sensor behaves in consensus with other functional

sensors again� Consequently� the sensor consensus process also inhibits the pain parameter�

Eventually� the sensor monitor process and sensor consensus process lower the sensor�s pain

level below threshold� Once this occurs� the sensor�s injury process tells the virtual sensors

that the sensor is working� The virtual sensors respond by reincorporating the repaired

sensor in computing their output� Hence� the in�uence of the repaired sensor is reintegrated

into the control system� Figure �
 presents run�time results for reintegration of the ankle

sensor�
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��� Catastrophic Failures

Global failures are detected in low level control� but must be compensated for in the high

level control� Hip actuator failures� hip potentiometer failures� shoulder actuator failures�

and shoulder potentiometer failures are global failures� These failures e
ectively prevent the

leg from behaving as programmed� This is obviously the case if an actuator fails� If a joint

angle potentiometer fails� the servo processors have no way of knowing the positional error�

so they cannot servo the actuator� In the event of a global failure� the leg is rendered not

usable� so the robot must modify its behavior to function with fewer legs�

����� Detection

Global failures are detected by the same processes used for detecting local failures� Po�

tentiometer failures are found using their respective sensor monitor process and consensus

monitor process� Actuator failures are inferred through concurrent failure of sensors whose

behavior depends on that actuator working� Once an actuator fails� all dependent sensor

models are invalid� Consequently� the corresponding sensors look as if they have failed even

though this may not be the case� If the shoulder actuator fails� for example� the ankle sen�

sor� vertical loading sensor� and shoulder position sensor all appear broken to the monitoring

processes ��gure ���� Once a global failure occurs� it is irrelevant whether the local sensors

appear broken because the leg is not usable anyway� The detection of global failures can

be reduced to detecting potentiometer failures only because the monitoring processes detect

joint angle potentiometer failures when either type of global failure occurs�
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����� Masking

Once a leg fails� the output of its ground�contact virtual sensor is not valid� The ground�

contact virtual sensors of the stepping legs in�uence when the next step cycle occurs� Each

recovering leg inhibits the supporting legs from proceeding to the next step cycle until it

attains ground contact� Thus� it is important to mask the e
ect of non�valid ground�contact

virtual sensors or else they may adversely a
ect the robot�s gait� To prevent this from

happening� the output of the ground�contact virtual sensor defaults to ground�contact �

true for all broken legs ��gure ���� By doing so� the e
ect of renegade ground�contact virtual

sensors on the robot�s gait is removed�

����� Recovery

Given a global failure� high level control agents compensate by lesioning the broken leg�

Each leg has a lesion mechanism which is responsible for lesioning the leg once it su
ers

a global failure� Within high level control� each critical potentiometer has a leg�pain pa�

rameter and a leg�injury agent associated with it ��gure ���� Each leg�injury agent receives

messages from its corresponding low level potentiometer injury agent every 
�� second� If a

message indicates the potentiometer is broken� the corresponding leg�injury agent excites the

appropriate leg�pain level� The leg�pain level automatically decays every three seconds� If

a leg�pain energy level rises above the lesion threshold� the corresponding leg�injury agent

activates the lesion behavior� The lesion behavior disables the leg and adopts a gait that is

stable without the use of the damaged leg ��gure ���� The lesion behavior is described in

�Ferrell �		���
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����� Reintegration

If the broken leg is repaired or the leg was wrongly determined to be broken� high level

agents reintegrate the leg� This is accomplished by occasionally testing the leg to see if it

is functional again� Leg reintegration is performed by the lesion mechanism� After the leg�

pain level rises above the lesion threshold� the leg�injury agent is prevented from exciting

the leg�pain level� Consequently� the leg�pain level decays slowly back towards zero� When

the leg�pain level lowers to the retry threshold value� the system tries to use the leg and

the leg�injury agent is allowed to increase the leg�pain level ��gure ���� If the leg is still

broken the leg�pain level raises above threshold� and the process repeats� If the leg works

the next time it is tested� the leg�pain level decays to zero� Once this happens� the system

acknowledges the leg is functional again� de�activates the lesion behavior� and resumes using

the leg�

	 Performance

��� Tests

Several tests were conducted to determine the system�s response to various types and com�

binations of failures� The tests involved in�icting the desired fault and observing its e
ect

on the robot�s behavior while the robot walked through its environment� We tested sensors

with a local e
ect and sensors with a global e
ect� Permanent sensor failures were in�icted

by disconnecting the power� ground� or output wires to the sensors� Broken wires are the

most common cause of permanent sensor failure on Hannibal� Sensor decalibration was
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induced by adjusting the reference voltage o
set of the sensor signals� decalibration also oc�

cured naturally over time� Transient errors are di�cult to force but arose during the course

of the tests� Di
erent combinations of permanent errors were tested as well� We disabled

sensors individually� concurrently� and sequentially over time� We repeated the concurrent

and sequential tests by disabling the sensors in various permutations� Actuator failures were

evoked by disconnecting the wires to the motor� On one occasion the shoulder actuator shaft

sheared o
� so we had the opportunity to test for motor shaft breakage as well�

��� Results

The results of the tests described above are presented in �gure ��� As shown� the system

is quite �exible and responds to a wide variety of types and combinations of failures� We

conducted the tests by evoking various types and combinations of sensor faults on the left

front leg �the same processes run on the rest of the legs�� The tests were performed while

Hannibal walked over �at terrain with holes and cli
s� Within this environment� the in�

teresting virtual sensors are the ground�contact virtual sensor and the step�in�hole virtual

sensor� As a result� we focused our tests on the sensors used by these virtual sensors and the

acutators that a
ect the behavior of these sensors� Hence� the sensors and actuators involved

in the tests are the shoulder potentiometer� ankle displacement sensor� vertical force sensor�

and shoulder actuator� It is interesting to note that the system responds to the failure of

a local leg processor as well� Once a local leg processor fails it cannot send the leg sensor

signals to the main processor� Consequently all sensors look as if they have failed� and the

system responds by lesioning the leg�

Figure �� presents the response time of the system to recover from failures and to reine�
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grate repaired components� The system recovers from failures quickly enough such that

the robot�s behavior does not have to degrade to an unacceptable level before the failure is

compensated for� It also reintegrates repaired components quickly so the system readily has

access to its reliable resources�

��� Evaluation

To evaluate the fault tolerant aspects of Hannibal�s system� we discuss them in relation to

the following topics�

	���� Completeness of fault detection

The system successfully detects a wide assortment of common failures� It distinguishes be�

tween non�catastrophic failures and catastrophic failures� Regarding local failures� it recog�

nizes which type of sensor has failed� Regarding catastrophic failures� the system recognizes

potentiometer failures� Actuator failures appear as the massive failure of all sensors whose

behavior depends on that actuator� Local processor failures appear as the massive failure of

all sensors whose values are communicated to the main processor by that processor� When

these types of catastrophic failures occur� the corresponding potentiometer�s� appears bro�

ken� Furthermore� all catastrophic failures evoke the same recovery procedure� Hence� the

system only looks for potentiometer failures to detect catastrophic failures�

	���� Fault coverage

The robot successfully recovers from a wide assortment of failures� The system recovers

from sensor failures� actuator failures� and local processor failures� It addresses failures with
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a local e
ect as well as failures with a global e
ect� It handles transient errors� sensor

decalibration� and permanent failures� It compensates for various combinations of failures�

failures that occur individually� concurrently with other failures� or accumulate over time�

It tolerates these combinations of failures in various permutations�

	���� Con�nement of errors

The system e
ectively prevents sensor and actuator failures from adversely in�uencing robot

behavior� To accomplish this� the detection processes monitor the sensor outputs and alert

the system of failures as they arise� This nips the failure problem in the bud because the

system can e
ectively compensate for failures once it knows when and what type of failures

have occurred� For example� robust virtual sensors �lter out the e
ects of non�catastrophic

failures so the failures do not in�uence the robot�s behavior� Potentiometer injury processes

evoke the lesion behaviors when catastrophic failures occur� so the loss of the leg does not

cause the robot to become unstable�

	���� Response time to failures

The system successfully detects and recovers from failures before the robot�s performance

degrades to an unacceptable level� A fast response time is important for successfully imple�

menting error con�nement� After all� it does not do the system much good to implement

the dection and recovery procedures in the low level control if it takes them a long time to

respond to failures�
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	���� Extent of graceful degradation of performance

The recovery processes maintain the robot�s performance at the highest level given the

functional state of the hardware� Because the system purposefully recognizes failures� the

recovery processes can speci�cally tailor the robot�s use of sensors and actuators to minimize

the e
ects of failures on the robot�s behavior� At the virtual sensor level� the recovery

processes tradeo
 speed for reliability as the number of functional sensors decreases� At the

locomotion level� the recovery processes trade o
 speed for stability as the number of useable

legs decreases�

	���
 Availability of reliable resources

The reintegration processes reincorporate repaired components so the robot has access to all

its reliable resources� This is important because the more sensors and actuators the system

can use� the better its performance will be� The reintegration response time is relatively fast

so the system does not have to wait long before it can reuse repaired components�


 Conclusion

There are several contributions this work makes towards achieving fault tolerant autonomous

robot systems� First� this work presents an autonomous robot which can purposefully rec�

ognize sensor failures quickly and reliably� Second� the robot speci�cally and dynamically

tailors its use of sensors and actuators to minimize the impact of failures on its performance�

Third� the robot dynamically reintegrates repaired components to enhance its performance�

I have tested the capabilities of this system by physically disabling and enabling the robot�s
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sensors and actuators� I have found the system recognizes and compensates for sensor and

actuator failures with a fast response time� It tolerates a variety of sensor failures such as

decalibration� erroneous readings� and permanent failures� It also tolerates various combina�

tions of failures such as individual failures� concurrent failures� and accumulative failures� It

handles minor failures such as a broken ankle sensor as well as catastrophic failures such as

a broken leg� This is the �rst autonomous robot we know of with this level of fault tolerant

capabilities�
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Figure �� Hannibal is quite complex for its size� It is approximately the size of a bread box
and is equipped with �	 degrees of freedom� over �
 sensors� and � computers� This robot
was used as the platform for our fault tolerance experiments�
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Figure �� The relationship of sensor output to step cycle phase and leg state for the sensors
used by the ground�contact virtual sensor�
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behavior� Consequently� the sensor�s pain level increases�
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