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1.  Introduction

Measuring physiological signals such as heart rate and breathing rate is critical for early diagnosis of chronic 
cardiovascular and respiratory diseases as well as their long-term monitoring. However, some of the most 
frequently used devices require attaching irritating electrodes on the skin and/or adding cumbersome straps 
around the torso. In addition, some of these devices have wires and require maintenance (e.g. replacing 
electrodes, charging batteries) which limit their use in daily life monitoring and often lead to high attrition rates. 
Moreover, these devices are not appropriate for certain settings in which the skin is too sensitive (e.g. neonates, 
burn patients) or in which a high level of unobtrusiveness is desired (e.g. sleep monitoring).

To help minimize the previous challenges, researchers have explored measurement methods that can capture 
physiological signals remotely and without any skin contact. Some of the most commonly used methods include 
but are not limited to thermal imaging of faces (Garbey and Sun 2007, Fei and Pavlidis 2010, Cho et al 2017), 
wireless/radar signals bouncing on torsos (Adib et al 2015), and RGB videos of faces in bright conditions (Bal-
akrishnan et al 2013, Sun and Thakor 2016). In contrast, this work uses low-cost NIR imaging devices to track 
subtle carotid pulse and breathing movements from the neck (see figure 1). Due to the increasing popularity of 
such devices, we believe this configuration complements previously explored methods and allows expanding the 
sensing opportunities to other real-life scenarios. In particular, we believe the proposed approach offers a good 
alternative in settings in which face-facing cameras may not be possible (e.g. monitoring drivers), the face of the 
person may want to be protected (e.g. workplace monitoring), and/or the illumination of the environment may 
be too dynamic or absent (e.g. sleep monitoring).
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Abstract
Objective: Non-contact physiological measurement is a growing research area that allows capturing 
vital signs such as heart rate (HR) and breathing rate (BR) comfortably and unobtrusively with 
remote devices. However, most of the approaches work only in bright environments in which subtle 
photoplethysmographic and ballistocardiographic signals can be easily analyzed and/or require 
expensive and custom hardware to perform the measurements. Approach: This work introduces 
a low-cost method to measure subtle motions associated with the carotid pulse and breathing 
movement from the neck using near-infrared (NIR) video imaging. A skin reflection model of the 
neck was established to provide a theoretical foundation for the method. In particular, the method 
relies on template matching for neck detection, principal component analysis for feature extraction, 
and hidden Markov models for data smoothing. Main results: We compared the estimated HR and 
BR measures with ones provided by an FDA-cleared device in a 12-participant laboratory study: 
the estimates achieved a mean absolute error of 0.36 beats per minute and 0.24 breaths per minute 
under both bright and dark lighting. Significance: This work advances the possibilities of non-contact 
physiological measurement in real-life conditions in which environmental illumination is limited 
and in which the face of the person is not readily available or needs to be protected. Due to the 
increasing availability of NIR imaging devices, the described methods are readily scalable.
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The work is organized as follows. First, we describe relevant previous work in the context of non-contact 
physiological measurement. Second, we establish a skin reflection model of the neck and derive how the physi-
ological signals can be separated from the other motion sources. Third, we describe the apparatus and exper
imental setup used in this work. Fourth, we describe the proposed methods to estimate HR and BR from NIR 
video. Fifth, we describe the results and discuss the main findings. Finally, we provide some concluding remarks 
and lines of future work.

2.  Previous work

Non-contact physiological measurement methods have significantly advanced during recent years. For instance, 
physiological parameters such as HR and BR have been accurately extracted from RGB facial videos in which 
subtle color changes of the skin caused by blood circulation can be amplified and analyzed (Verkruysse et al 
2008, Poh et al 2010, 2011, De Haan and Jeanne 2013, Tarassenko et al 2014, Wang et al 2016). Similar metrics 
have also been extracted by analyzing subtle face motions associated with the blood ejection into the vessels 
(a.k.a. ballistocardiography) (Balakrishnan et al 2013) as well as more prominent chest volume changes during 
breathing (Tan et al 2010, Philips 2011, Janssen et al 2016). Most of the previous studies leverage pervasive RGB 
cameras such as webcams that require a bright environment to work well (Wu 2012). However, this requirement 
may not be possible in many real-life scenarios such as sleep monitoring, dark office spaces, and night surveillance.

To help address this problem, researchers have explored the use of other sensing modalities. For instance, 
microwave Doppler radar and thermal imaging have been used for non-contact HR and BR measurements 
(Greneker 1997, Garbey and Sun 2007, Fei and Pavlidis 2010, Cho et al 2017), and laser Doppler vibrometry has 
been used to remotely track the carotid pulse (Rohrbaugh et al 2006). However, measuring these modalities usu-
ally requires expensive and custom hardware which is not readily available. A less expensive alternative involves 
using NIR video monitoring, which has recently grown in popularity with the increasing interest in motion 
sensing and its potential uses in virtual and augmented reality (e.g. Intel RealSense, Leap Motion). Using this 
modality1, researchers have analyzed videos of torsos to diagnose obstructive sleep apnea (Ching et al 2006), 
and have observed pulsatile signals associated with arterial and breathing activity on the arm and the lower leg 
(Such et al 1997, Wieringa et al 2005). However, none of these previous methods directly estimated and evaluated 
physiological metrics from NIR frames. One exception is the works of van Gastel et al, which considered NIR face 
videos to estimate HR and BR (van Gastel et al 2015, 2016). In their study, they observed that the relative pho-
toplethysmographic amplitude was significantly reduced in NIR compared to visible light and, therefore, they 
needed to use three NIR wavelengths (hence three NIR cameras with different optical filters) to appropriately 
separate pulse-induced intensity variations from motion artifact. Similarly, our work also considers NIR video to 
estimate HR and BR. Instead of focusing on the face or the torso areas, we focus on the neck which may be more 
convenient in certain experimental conditions in which front facing cameras are not feasible. In addition, we 
focus on subtle cardiorespiratory motions instead of photoplethysmographic changes which allow us to rely on 
a single NIR wavelength.

Figure 1.  Carotid pulse visualization. (a) The first frame of a NIR video with a red scan line on the neck. (b) The scan line plotted 
over time, which shows a subtle crenation along both edges corresponding to the carotid pulse.

1 Here the modality refers specifically to raw NIR imaging. There are also methods estimating depth maps in NIR for 
physiological sensing (Xia and Siochi 2012, Yang et al 2015), but they rely on structured light sources or time-of-flight sensors 
associated with extra cost and complexity.
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3.  Skin reflection model of the neck

Figure 2(a) shows a cross-section of the neck and the location of the carotid arteries which can be simplified to 
a cylindrical model (figure 2(b)). With each cardiac cycle, the heart pumps blood to the periphery, and causes 
palpable pulsatile changes in the carotid arterial diameter, reflected as subtle skin deformations ∆r(t) along the 
two sides of the neck. To model these deformations in video and its relationship with lighting, we adopted the 
Blinn–Phong reflection model. Compared with other models commonly used for modeling skin reflection such 
as the Lambert–Beer law and Shafer’s dichromatic reflection model, the Blinn–Phong reflection model is better 
at illustrating geometric relationships.

Assuming a surface point p on the neck illuminated by a single NIR light source S, its illumination captured 
by a NIR camera C can be expressed as

Ip(t) = Iaka + Ii(t)(kd(�l · �n(t)) + ks(�n(t) ·�h)α) + In(t).� (1)

It consists of four terms:

	(i)	� Iaka is the ambient light intensity, which is the result of multiple reflections from walls and objects. Ia is 
the ambient component of the light source, and ka is the ambient reflection coefficient. The whole term 
is usually considered to be constant for a particular object and uniform at every point.

	(ii)	� Ii(t)kd(�l · �n(t)) is the diffuse reflection intensity, associated with the absorption and scattering of the 
light in skin-tissues. Ii(t) is the intensity of the light source after distance attenuation. kd is the diffuse 
reflection coefficient, which depends on the nature of the material (skin) and the wavelength of the 
incident light. In theory, there is a pulsatile component in kd similar to photoplethysmography due 
to the variations of hemoglobin absorption. However, in NIR hemoglobin absorption of the skin is 
one order of magnitude smaller than dermal scattering and two orders of magnitude smaller than 
melanin absorption (Mendenhall et al 2015), causing the component to be much weaker than in visible 
light (van Gastel et al 2015). Thus we assume kd to be a constant. �l  is the direction vector from point p 
toward the light source. �n  is the surface normal at p.

	(iii)	� Ii(t)ks(�n(t) ·�h)α is the specular reflection intensity, which is a mirror-like light reflection from the skin 
surface. ks is the specular reflection coefficient, usually taken to be a material-dependent constant. �h  is 

the halfway vector defined as �h = (�l +�v)/2, in which �v  is the direction vector from point p toward the 
camera. As we assume S is a distant light source at the same location as C, �h =�l = �v . α is the shininess 
coefficient controlling the strength of specular highlight.

	(iv)	� In(t) is the quantization noise of the camera sensor.

The movement of the neck involves rigid motions and non-rigid motions. Assuming a Cartesian coordinate 
system with its z-axis parallel to �l  and its y-axis perpendicular to the neck cross-section, the rigid motions will 
include translations along three axes ∆x(t), ∆y(t) and ∆z(t), and rotations around the axes ∆θx(t), ∆θy(t) and 
∆θz(t). Due to the assumption of a distant light source, ∆x(t), ∆y(t) and ∆θz(t), which are orthogonal to �l , will 
have no influence on Ip(t). With interferences like talking and eating avoided, the skin deformation ∆r(t) caused 
by carotid pulse will be the only non-rigid motion.

Figure 2.  (a) Cross-section of the human neck showing the location of the carotid arteries. (b) Geometric relationships among the 
light source S, the camera C, and all the potential motion sources of the neck.

Physiol. Meas. 39 (2018) 10NT01 (15pp)
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Next, we elaborate on how the motions ∆z(t), ∆θx(t), ∆θy(t) and ∆r(t) influence the illumination of the 
neck point Ip(t). First, the relationship between the light intensity Ii(t) and the camera distance z(t) obeys the 
inverse-square law:

Ii(t) =
I0

a + bz(t) + cz2(t)
, z(t) = zp +∆z(t)� (2)

in which I0 is the light source intensity before distance attenuation, zp is the distance of point p to the camera, and 
a, b and c are constants. To simplify the notation, assume B(z) = I0/(a + bz + cz2). Since ∆z(t) � zp, we can 
rewrite (2) as

Ii(t) = B(z(t)) = B(zp +∆z(t)) ≈ B(zp) + B′(zp)∆z(t).� (3)

Second, the strengths of both the diffuse reflection and the specular reflection are dependent on the direction of 
the surface normal �n . In figure 2(b), �nzx  is the projection of �n  in the z-x plane, and �nyz  is the projection of �n  in the 
y-z plane. Assuming θy(t) to be the angle between �nzx  and the z axis, and θx(t) to be the angle between �nyz  and the 
z axis, we can get

�l · �n(t) = �n(t) ·�h =
1√

1 + tan2 θx(t) + tan2 θy(t)
.� (4)

Both θx(t) and θy(t) can be separated into a stationary part and a varying part:

θx(t) = θx +∆θx(t)� (5)

θy(t) ≈



θy +∆θy(t), θy < θ0 −

√
2∆r(t)

r

θy +∆θy(t)− k∆r(t), θy � θ0 −
√

2∆r(t)
r

� (6)

in which k is a constant, θx(t) is affected by the rigid rotation around the x-axis, and θy(t) is affected by the rigid 
rotation around the y-axis and the non-rigid deformation (only when the point p is close enough to the carotid 

arteries). To simplify the notations, assume Ψ(θx, θy) = 1/
√

1 + tan2 θx + tan2 θy  so that (4) can be rewritten 

as

�l · �n(t) = �n(t) ·�h = Ψ(θx(t), θy(t))

≈ Ψ(θx, θy) +
∂Ψ

∂θx
∆θx(t) +

∂Ψ

∂θy
(∆θy(t)− k∆r(t)).

� (7)

Finally, by substituting (3) and (7) into (1), Ip(t) becomes

Ip(t) ≈ Iaka + (B(zp) + B′(zp)∆z(t)) · (kdΨ(θx, θy)

+ ksΨ
α(θx, θy) + (kd + ksαΨ

α−1(θx, θy))

· (∂Ψ
∂θx

∆θx(t) +
∂Ψ

∂θy
∆θy(t)−

∂Ψ

∂θy
k∆r(t))) + In(t).

� (8)

In (8), the camera quantization error In(t) can be attenuated by spatially downsampling the video frames, and the 
product of the small varying terms can be neglected. Then we reach the final expression of Ip(t):

Ip(t) ≈ Iaka + kdB(zp)Ψ(θx, θy) + ksB(zp)Ψ
α(θx, θy)

+ (kdB′(zp)Ψ(θx, θy) + ksB
′(zp)Ψ

α(θx, θy)) ·∆z(t)

+ B(zp)
∂Ψ

∂θx
(kd + ksαΨ

α−1(θx, θy)) ·∆θx(t)

+ B(zp)
∂Ψ

∂θy
(kd + ksαΨ

α−1(θx, θy)) ·∆θy(t)

− kB(zp)
∂Ψ

∂θy
(kd + ksαΨ

α−1(θx, θy)) ·∆r(t)

�

(9)

which is approximately a linear combination of ∆z(t) the distance change between the neck point and the 
camera, ∆θx(t) the anterior–posterior rotation of the neck (e.g. nodding), ∆θy(t) the neck rotation around the 
cervical spine, and ∆r(t) the skin deformation caused by the carotid pulse.

Among the four motion sources, ∆z(t) is usually much stronger than the others, so simply calculating the 
common average reference of Ip(t) among all neck points p ∈ [1, · · · , Np] will provide an estimate of ∆z(t):

Physiol. Meas. 39 (2018) 10NT01 (15pp)
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∆z(t) ∝ Īp(t) =
1

Np

Np∑
p=1

Ip(t).� (10)

Most human actions can affect ∆z(t). When there is no other large motion, ∆z(t) will be dominated by breathing 
movements, and sometimes also contain a weak ballistocardiography signal. The breathing signal and the pulse-
induced ballistocardiography signal can be further separated in the frequency domain.

To extract the carotid pulse deformation ∆r(t) from Ip(t), the strong ∆z(t) needs to be attenuated. Since 
∆z(t) is a global translation homogeneous on almost all neck points whereas ∆r(t) only exists on points satisfy-

ing θy < θ0 −
√

2∆r(t)/r , calculating Ip(t)− Īp(t) will diminish ∆z(t) while preserving ∆r(t). In the remain-
ing signals, ∆r(t) is uncorrelated with the other motion sources ∆θy(t) and ∆θx(t), so we can use principal 
component analysis (PCA) (Jolliffe 2002) to separate it. In the PCA transformed domain, the first three principal 
components of Ip(t)− Īp(t) with the highest variances will correspond to ∆r(t), ∆θy(t) and ∆θx(t), but their 
order is not guaranteed.

In brief, the breathing movement can be estimated from ̄Ip(t), while the pulse signal can be selected from ̄Ip(t) 
(when ballistocardiography exists in it) and the first three principal components of Ip(t)− Īp(t).

4.  Apparatus

A large variety of NIR imaging devices are available in the market. This work uses the Leap Motion controller, 
which is a computer hardware sensor device that supports non-contact hand and finger interactions, analogous 
to a mouse. Using two monochromatic infrared cameras and three infrared LEDs (figure 3), the device observes 
a roughly hemispherical area, to a distance of about 1 m. The LEDs generate NIR light at a wavelength of 850 nm, 
and the cameras capture frames in 8 bits with a pixel resolution of 640 × 240, which are sent through a USB cable 
to the host computer at a floating frame rate around 62 frames per second (fps) and stored with timestamps. The 
recording program was written in Python using the Leap Motion SDK, while all the data analysis was done in 
MATLAB R2015b (MathWorks, Inc., Natick, MA, USA). To make the proposed methods transferable to devices 
with a single NIR camera, only the frames from one camera were used.

5.  Experimental protocol

Twelve participants (eight males, four females) between the ages of 23–34 years were recruited for this study, 
which was pre-approved by the Massachusetts Institute of Technology review board. The participant sample 
covers both genders, different ages, and varying skin colors (Asians, Africans and Caucasians). Informed consent 
was obtained from all the participants prior to each study session.

In each experiment, participants were seated at a desk naturally (figure 4). The Leap Motion controller 
was placed on the edge of the desk, parallel with it, and facing upward. Due to different heights and postures 
of participants, the distance between the controller cameras and the neck of participants varied. Gold stand-
ard physiological measurements were obtained with an FDA-cleared sensor (FlexComp Infiniti by Thought 
Technologies Ltd.) that simultaneously recorded blood volume pulse (BVP) from a finger probe and breathing 
waveform (BW) from a chest belt at a constant sampling frequency of 256 Hz. The sensor data were synchronized 
with the NIR frames via timestamps. Every experiment consists of two phases. In the first phase, the room was 
bright (184 lux at the camera place), while in the second phase all the lights were turned off to make the room fully 
dark (1 lux at the camera place). Participants were asked to breathe spontaneously and avoid major movement 

Figure 3.  Visualization of a real (a) and schematic view (b) of the Leap Motion controller. Note that the optical filter of the device 
was removed in (a) only to reveal its inside. It was kept intact in our experiments. Reproduced from Weichert et al (2013). CC BY 3.0.

Physiol. Meas. 39 (2018) 10NT01 (15pp)
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for 1 min during each of the phases. Figure 5 shows that there is no visible difference in image brightness and 
quality between infrared frames captured in a bright room and a fully dark room by the NIR cameras.

6.  Heart rate estimation

This section describes the extraction of heart rate from carotid pulse movements which is depicted in figure 6.

6.1.  Region-of-interest detection
The neck area (a rectangular area including the neck) was automatically located in every NIR video using template 
matching (Brunelli 2009). In particular, a template (figure 7) was created by manually cropping neck areas from 
48 static infrared photos of the 12 participants with various postures and lighting conditions, resizing them to 
the same size (81 by 19 pixels) and taking the average of them. For each video, the template matching algorithm 
slides the template image over the first frame, and compares the template and patch of the frame by calculating 
an adjusted mean of absolute differences (AMAD). As shown in figure 8, a mean of absolute differences (MAD) 
metric averages the absolute values of the differences between pixels in the original frame and the corresponding 
pixels in the template image. To enhance the contrast between the neck and the other body parts, the geometric 
feature of the neck was exploited. Since in a MAD map the neck is always horizontally the slimmest part compared 
with the head and the torso, the horizontal mean was calculated and subtracted from every column of the map 
after multiplication with a factor of 4 (chosen heuristically to balance the neck-torso contrast against the neck-
background contrast) to generate the AMAD map:

MAD(x, y) =
1

TrowsTcols

Trows−1∑
i=0

Tcols−1∑
j=0

|Is(x + i, y + j)− It(i, j)|� (11)

AMAD(x, y) = MAD(x, y)− 4

Scols − Tcols + 1

Scols−Tcols∑
y=0

MAD(x, y)� (12)

Figure 4.  Experimental setup (BVP: blood volume pulse).

Figure 5.  Infrared frames captured by one of the Leap Motion cameras in a bright room (a) and a fully dark room (b).

Physiol. Meas. 39 (2018) 10NT01 (15pp)
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Figure 6.  Flow chart for HR measurement. (a) An exemplary NIR frame with the detected 81 by 19 pixels neck area marked in 
yellow, and the enlarged version of the area after being downsampled to 41 pixels  ×  10 pixels. (b) Time series showing the intensity 
changes of the pixels on the neck area. (c) Component candidates: c0 the common average of all the time series, c1 the second 
principal component, and c2 the third principal component. (d) PSD estimates of the three component candidates within [0 Hz,  
5 Hz], and their normalized band power (NBP). (e) The same PSD estimates within the prospective HR frequency band [0.75 Hz,  
2.5 Hz], their kurtosis (K) and pulse significance (PS).

Figure 7.  Template image of the neck area used in template matching.

Figure 8.  A NIR frame, and how its AMAD map was derived from the MAD map in neck detection.

Physiol. Meas. 39 (2018) 10NT01 (15pp)
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in which x = 0, · · · , Srows − Trows, y = 0, · · · , Scols − Tcols, Is is the search image with a dimension of Srows × Scols, 
and It is the template with a dimension of Trows × Tcols (Trows � Srows and Tcols � Scols).

As described in the experimental setup, there was no restriction on the distance between the camera and the 
neck of a participant, which caused the sizes of the necks to vary in videos. To make the neck detection more scale-
robust, the template was resized by a scale of 0.8 (based on the smallest neck area we observed among the static 
photos), and AMAD maps were computed twice using both the original template and the resized one. Finally, the 
lowest AMAD score among the two maps indicated the optimal size of the template and its best position within 
the frame. The size and the position were then applied to all the frames of the video for neck segmentation.

6.2.  Spatial denoising
To reduce random noise produced by the camera and the sensor circuits, the neck area segmented in every frame 
was downsampled to half of its size using bicubic interpolation, which helps reduce the computational cost of 
subsequent operations.

6.3.  Frequency denoising
The intensity change of every pixel within the downsampled neck area formed a 1 min time series, which can be 
considered as a channel of sensor recording. However, a single channel usually exhibited a mixture of the carotid 
pulse vibration, breathing movement and motion artifacts. To separate the different signals, we used PCA to 
combine all the channels (all the pixels within the neck area) and convert these correlated time series into a set 
of linearly uncorrelated components. The component corresponding to the pulse signal was then automatically 
selected from them based on features in the frequency domain. The procedure is illustrated in figure 6 with 
details given below:

	(i)	� A moving window of 30 s in length with 96.7% overlap (1 s increment) was applied to every 1 min time 
series so that 31 measurement windows were formed for each participant under either bright or dark 
conditions.

	(ii)	� Within each window, a common average reference (CAR) montage was performed by subtracting to 
each channel the average of all channels. The common average related to the global movement of the 
neck was saved as a component candidate c0, which was dominated by breathing movement in most 
cases but sometimes also showed weak ballistocardiography.

	(iii)	� PCA was applied on all the channels with the common average removed to return principal 
component scores in descending order of component variance. According to observation on the three 
scores with the highest variances, the first component was usually associated with motion artifacts, 
and the carotid pulse was visible in the second, the third or both depending on the posture of the 
participant and the distance between the camera and the neck. Therefore, the second and the third 
principal components were saved as component candidates c1 and c2.

	(iv)	� To select the component best representing the pulse, the power spectral density (PSD) estimates p0( f ), 
p1( f ) and p2( f ), f ∈ (0, fN) (fN is the Nyquist frequency), were computed from c0, c1 and c2 using the 
Lomb–Scargle method (Lomb 1976, Scargle 1982), which is good at finding weak periodic signals 
in otherwise random unevenly sampled data. The method was chosen over other PSD estimation 
methods, mainly because the Leap Motion controller captures NIR video at a non-constant sampling 
rate.

	(v)	� A single distinct peak in the PSD estimate represents a well-detected HR. However, with the existence 
of noise, a HR peak might be in company with other peaks and may not be significantly higher and/
or sharper. To evaluate the distinction of cardiac pulse in a PSD estimate, a measure called pulse 
significance (PS) was invented by combining two metrics, the normalized band power (NBP) and 
the kurtosis. The NBP reflects how high a HR peak is in a PSD estimate. It was calculated as the power 
within the prospective HR frequency band [0.75 Hz, 2.5 Hz] (corresponding to 45 and 150 beats per 
minute) divided by the full spectrum power:

NBP( pk) =

∑2.5
f=0.75 pk( f )

∑ fN

f=0 pk( f )
, k = 0, 1, 2.� (13)

		 The kurtosis, also called the fourth standardized moment, indicates the primary peakedness and lack 
of shoulder in a distribution (DeCarlo 1997), which in our method measures how sharp a peak is 
within the HR frequency band. It was derived as

Physiol. Meas. 39 (2018) 10NT01 (15pp)
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µk =

∑2.5
f=0.75 pk( f ) f
∑2.5

f=0.75 f
, k = 0, 1, 2� (14)

K( pk) =
E[( pk( f )− µk)

4]

(E[( pk( f )− µk)2])2
=

[
∑2.5

f=0.75( pk( f )− µk)
4f ][

∑2.5
f=0.75 f ]

[
∑2.5

f=0.75( pk( f )− µk)2f ]2
, k = 0, 1, 2.� (15)

			  Finally, the NBP and the kurtosis were multiplied with each other to get the pulse significance:

PS( pk) = NBP( pk) · K( pk), k = 0, 1, 2.� (16)

		 The component among c0, c1 and c2 whose PSD estimate had the largest PS was selected for HR 
extraction, and denoted as c.

6.4.  Temporal denoising
After the optimal component c corresponding to the carotid pulse was selected, the HR could be easily read 
from its PSD estimate p( f ) by locating the highest peak within the HR frequency band. However, sometimes the 
motion artifact was so strong that the HR reading of a window significantly deviated from its neighbors, which 
violated the continuity of the human heart rate. To address the problem, we designed a hidden Markov model 
(HMM, figure 9) to smooth readings in consecutive windows and used belief propagation to infer the HR. Each 
pair of gray and white nodes in the Markov chain corresponded to a time window. The gray nodes were observed 
PSD estimates, and the white nodes were the heart rates we wished to infer. Each window was connected to only 
its neighbors, and favored a smooth HR variance. Mathematically, we can write this chain with the probability 
density function (PDF):

P( f |p( f )) =
1

Z
φ( f1|p1( f ))

N∏
i=2

φ( fi|pi( f ))ψ( fi, fi−1)� (17)

where fi ∈ [0.75, 2.5] Hz is the HR frequency of window i, which we wished to infer given p( f ). Z is a  
normalization factor to guarantee the integral of the PDF equals 1. φ( fi|pi( f )) is known as the data term and 
ψ( fi, fi−1) is know as the smoothness terms. We defined them to be

φ( fi|pi( f )) ∝ exp(λ
pi( fi)∑2.5

f=0.75 pi( f )
)� (18)

ψ( fi, fi−1) ∝ exp(−|fi − fi−1|)� (19)

in which the parameter λ ∈ R  allows control over the relative strength of the data term versus the smoothness 
term. We used λ = 16 in this study to match the normal variation of physiological parameters under resting 
state. In use cases where the HR can change more abruptly, λ should be increased.

Belief propagation was used to obtain the maximum a posteriori (MAP) estimation of the possible HR fre-
quencies by passing messages left-to-right in the chain. The message update equation is

mp→q( fq) = max
fp

φ( fp)ψ( fp, fq)
∏

s∈N( p)\q

ms→p( f )
� (20)

where the expression s ∈ N( p)\q is all the neighbors of node p except node q. Finally, in the marginal distribution 
of each window, the HR was read by finding the maximum. Figure 10 shows an example of how HMM smoothing 
corrects a deviated HR data point.

Figure 9.  The hidden Markov model designed for HR smoothing. The gray nodes were observed PSD estimates, and the white 
nodes were the heart rates we wished to infer.
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7.  Breathing rate estimation

This section describes the extraction of breathing rate from movements of the neck which is depicted in figure 11.

7.1.  Region-of-interest detection
While the carotid pulse is reflected as local motions on the two sides of the neck, the breathing activity is associated 
with the global movement of the neck and the torso. To extract the BR, the same neck detection algorithm we 
used in HR measurement was applied. However, the region-of-interest was expanded to 5 times its height (twice 
above and twice below) to cover a complete neck area as well as the chin and a small part of the upper chest.

7.2.  Spatial denoising
To improve the signal-to-noise ratio (SNR), the intensities of all pixels within the region-of-interest (ROI) were 
averaged in every frame to form a single 1 min time series for each video. The same moving window (30 s in 
length and 1 s in increment) used for HR measurement was employed on the series.

7.3.  Frequency denoising
After spatial averaging, most local motions like the carotid pulse are neutralized, but some global motion artifacts 
might still exist. To remove noise, a 3rd order band-pass Butterworth filter with cut-off frequencies of 0.08 and 
0.5 Hz (corresponding to 4.8 and 30 breaths per minute) was applied to each windowed signal. To maintain 
synchrony with the gold standard data, zero-phase filtering was performed by processing the signal in both the 
forward and reverse directions (Oppenheim et al 1989).

7.4.  Temporal denoising
The Lomb–Scargle method was used again to obtain the PSD estimate of the filtered signal. The same hidden 
Markov model as in figure 9 was applied to consecutive windows of PSD estimates, and BR was selected to be the 
frequency where the marginal distribution achieved the maximum in every window.

Figure 10.  PSD estimates pi( f ) and marginal distributions within the prospective HR frequency band for four consecutive windows. 
The red triangles denote the maxima of each spectrum.

Figure 11.  Flow chart for BR measurement. (a) An exemplary NIR frame with the detected neck area marked in yellow and the 
respiration ROI marked in green. (b) The spatial average of all the pixel intensities within the ROI, fluctuating with time. (c) The 
breathing movement estimated by band-pass filtering the time series in (b).

Physiol. Meas. 39 (2018) 10NT01 (15pp)
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8.  Results

This section describes the performance obtained for heart rate and breathing rate estimation from the neck when 
compared with an FDA-cleared device.

8.1.  Heart rate
The time series and frequency spectra of the cardiac pulse measured by our proposed methodology and the 
reference device are compared in an exemplary window in figure 12. Though the time series shares the same 
periodicity, its wave patterns in each period look different. On one hand, this is because the carotid pulse observed 
over the skin surface can not faithfully reflect the blood volume changes inside the subjacent arteries. On the 
other hand, the reference BVP exhibits more details because of its higher sampling rate (256 Hz) compared with 
the NIR camera (around 62 Hz). Nevertheless, in the frequency domain within the prospective HR frequency 
band [0.75 Hz, 2.5 Hz], the periodograms of the two pulse signals look very similar to each other, including both 
the fundamental tone (around 1.17 Hz) and the 2nd harmonic (around 2.34 Hz) of the HR.

The agreement between the 744 pairs of HR measurements from 12 participants (744 pairs  =  31 measure-
ment windows  ×  12 participants  ×  2 lighting conditions) was tested by Bland–Altman analysis (Bland and Alt-
man 1986). According to figure 13(a), our HR measurements ranged from 48.5 bpm to 93.0 bpm, which almost 
cover the normal resting adult HR range 60–100 bpm. No trend of increased measurement error can be observed 
from both low and high ends of the range. With measurements under bright and dark conditions analyzed sepa-
rately, their Bland–Altman plots, superimposed in the same figure, have similar distributions.

Table 1 summarizes the descriptive statistics for comparing the proposed methodology with the gold stand-
ard. The overall mean absolute error (MAE) between them was 0.36 bpm, which proved the high accuracy of our 
technique. To verify the robustness of our NIR-based method under different lighting environments, a paired 
t-test was conducted to compare the absolute errors of HR measurements in bright and dark conditions. No 
significant differences were found in terms of error during bright (M  =  0.31, SD  =  0.81) and dark (M  =  0.41, 
SD  =  0.98) conditions; t(371) = −1.572, p  =  0.117.

8.2.  Breathing rate
Within a 30 s window, we plotted the time series and frequency spectra of the breathing movement measured by 
our proposed methodology and the reference device for comparison (figure 14). Both the pair of time series and 
the pair of periodograms within the prospective BR frequency band [0.08 Hz, 0.5 Hz] show high similarity in 
shape, though the two time series have opposite phases.

A Bland–Altman plot was drawn for all BR measurement pairs in figure 13(b). The measurements covered 
a BR range between 5.0 and 22.0 breaths per minute, where our method manifested high accuracy consistently 
except only a few outliers due to severe motion artifacts. The figure marks data points under two different light-
ing conditions differently, of which both the means and the standard deviations (SD) are alike.

Figure 12.  An exemplary 30 s window in HR measurement. (a) Blood volume pulse waveform measured by the finger probe. (b) 
The optimal component c extracted from the neck corresponding to the carotid pulse. (c) Lomb–Scargle periodogram of the BVP 
signal within the prospective HR frequency band. (d) Lomb–Scargle periodogram of c within the prospective HR frequency band.

Physiol. Meas. 39 (2018) 10NT01 (15pp)
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The quantitative statistics for comparing the proposed methodology with the gold standard are listed in 
table 2. The overall MAE of BR between the two methods was 0.24 bpm, even smaller than the same statistic for 
HR. To verify the robustness of our NIR-based method under different lighting environments, a paired t-test was 
conducted to compare the absolute errors of BR measurements in bright and dark conditions. Similarly to HR, 
no significant difference was found in terms of error during bright (M  =  0.22, SD  =  0.75) and dark (M  =  0.26, 
SD  =  0.54) conditions; t(371) = −0.936, p  =  0.350.

Figure 13.  Bland–Altman plots for overall 744 pairs of (a) HR measurements and (b) BR measurements, with two halves of these 
pairs respectively measured in bright and dark conditions (HR: heart rate, BVP: blood volume pulse, BR: breathing rate, RW: 
respiration waveform, NIR: near-infrared, bpm: beats/breaths per minute).

Table 1.  Heart rate measurement.

Statistic Overall Bright Dark

No. of measurement pairs  744 372 372

Mean absolute error (bpm) 0.36 0.31 0.41

Mean error (bpm) −0.11 0.01 −0.23

SD of error (bpm) 0.96 0.86 1.04

Root-mean-square error 0.97 0.86 1.06

Correlation coefficient 1.00 1.00 1.00

Figure 14.  An exemplary 30 s window in BR measurement. (a) Breathing waveform measured by the respiration belt. (b) Breathing 
movement estimated from the NIR video. (c) Lomb–Scargle periodogram of the breathing waveform within the prospective BR 
frequency band. (d) Lomb–Scargle periodogram of the estimated breathing movement within the prospective BR frequency band.
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9.  Discussion

This work demonstrates that low-cost NIR imaging devices can be used to provide accurate heart rate and 
breathing rate estimations from neck motions in well-lit and dark settings. While the results are encouraging for 
the data we collected, there are several factors that need to be considered when assessing the generalization of our 
findings.

Table 3 shows a significant positive point-biserial correlation between gender and MAEHR values 
(r = 0.59, p = 0.003), leading to lower accuracy for female participants. This difference may be partly due to 
the smaller size of carotid arteries of females (Krejza et al 2006) which causes the carotid pulse to be subtler 
too. Table 3 also shows a significant negative point-biserial correlation between the ROI sizes and their MAEHR 
values (r = −0.58, p = 0.003), leading to lower accuracy for smaller ROI sizes. This difference was partly due 
to the different heights and/or tendency for some people to naturally bury their heads when working at their 
desk. In contrast, no significant correlations were observed when considering the relationship between MAEBR 
values and gender (r = −0.37, p = 0.070) and ROI size (r = −0.02, p = 0.922). These findings are partly to be 

Table 2.  Breathing rate measurement.

Statistic Overall Bright Dark

No. of measurement pairs 744 372 372

Mean absolute error (bpm) 0.24 0.22 0.26

Mean error (bpm) 0.02 0.09 −0.05

SD of error (bpm) 0.70 0.77 0.60

Root-mean-square error 0.70 0.78 0.60

Correlation coefficient 0.99 0.98 0.99

Table 3.  Statistics with respect to each videoa.

Participant # Gender ROI size c0% c1% c2% MAEHR MAEBR

1 (Bright) M 81 × 19 0.00 22.58 77.42 0.02 1.15

1 (Dark) M 81 × 19 0.00 96.77 3.23 0.09 0.13

2 (Bright) F 65 × 16 0.00 29.03 70.97 1.36 0.11

2 (Dark) F 65 × 16 0.00 54.84 45.16 2.01 0.52

3 (Bright) M 65 × 16 12.90 6.45 80.65 0.07 0.02

3 (Dark) M 65 × 16 93.55 0.00 6.45 0.37 0.08

4 (Bright) F 81 × 19 54.84 6.45 38.71 0.65 0.59

4 (Dark) F 81 × 19 16.13 67.74 16.13 0.09 0.39

5 (Bright) M 65 × 16 0.00 32.26 67.74 0.06 0.10

5 (Dark) M 65 × 16 0.00 45.16 54.84 0.50 0.05

6 (Bright) F 65 × 16 100.00 0.00 0.00 0.44 0.07

6 (Dark) F 65 × 16 80.65 0.00 19.35 1.41 1.05

7 (Bright) M 81 × 19 0.00 80.65 19.35 0.11 0.03

7 (Dark) M 81 × 19 0.00 16.13 83.87 0.12 0.18

8 (Bright) M 81 × 19 0.00 22.58 77.42 0.03 0.08

8 (Dark) M 81 × 19 0.00 9.68 90.32 0.09 0.15

9 (Bright) M 81 × 19 0.00 0.00 100.00 0.04 0.04

9 (Dark) M 81 × 19 0.00 9.68 90.32 0.01 0.13

10 (Bright) M 81 × 19 9.68 0.00 90.32 0.14 0.03

10 (Dark) M 81 × 19 0.00 0.00 100.00 0.07 0.02

11 (Bright) F 81 × 19 35.48 0.00 64.52 0.24 0.25

11 (Dark) F 81 × 19 3.23 0.00 96.77 0.06 0.20

12 (Bright) M 81 × 19 67.74 12.90 19.35 0.54 0.15

12 (Dark) M 81 × 19 74.19 0.00 25.81 0.10 0.26

r with MAEHR 0.59 −0.58 0.21 0.09 −0.28

p-value 0.003 0.003 0.322 0.689 0.180

r with MAEBR 0.37 −0.02

p-value 0.070 0.922

a ROI: region-of-interest, MAE: mean absolute error, HR: heart rate, BR: breathing rate, M: male, F: female.

Physiol. Meas. 39 (2018) 10NT01 (15pp)



14

W Chen et al

expected as breathing movement has no gender-related distinctions, and the ROI size for BR was five times larger 
than the size of the ROI size for HR, making BR accuracy less sensitive to the variation of pixel numbers. Finally, 
no significant correlations were observed when considering the selected principal components (i.e. c0, c1, and c2) 
and the MAEHR.

An obvious limiting factor of our proposed methodology is neck occlusions. While we do not expect our 
methods to work when the neck is not visible or fully covered (e.g. when wearing a scarf), our dataset contains 
several instances of partial neck occlusions. In particular, participants 3, 5 and 7 wore high collar shirts (e.g. fig-
ure 15), and participant 12 wore a turtleneck sweater. As shown in table 3, the maximum MAE values for these 
participants were 0.54 beats per minute and 0.26 breaths per minute, which demonstrates the effectiveness of the 
methods even with partial neck occlusions.

Another factor that may affect the generalization ability of our approach is the time length of the measure-
ment windows. In our experiments, all the participants were under natural resting state, so we did not expect 
their heart rates to change abruptly. As a result, we followed previous similar studies (Poh et al 2010) to use a 
measurement window of 30 s. In theory, the window length can be reduced at the cost of a lower signal-to-noise 
ratio. For any future study in which the participants are under more intense physical or cognitive load, a 30 s 
window might be too long to capture the fast changes of physiological parameters, and a shorter window length 
should be considered.

Finally, our study considered stationary conditions in which participants remained relatively still for few 
seconds. In particular, our approach makes two assumptions: (1) the rigid motions of the neck are small enough 
so that the approximation in (9) will hold, and (2) the non-rigid motions are mainly due to the skin deformation 
caused by carotid pulse. While these assumptions may not hold in certain real-life scenarios (e.g. talking, eating), 
more robust approaches can be considered to capture and compensate those motion sources. Similarly, our study 
showed promising results in a pool of 12 healthy individuals. While the performance was fairly consistent across 
participants, more studies will need to be performed including a larger and more varied pool of participants. It 
has been shown that video-based physiological measurement is especially fit for screening cardiovascular dis-
eases (Chan et al 2016), and capturing cognitive load and stress (McDuff et al 2016). Therefore, populations 
susceptible to cardiovascular conditions such as elderly people and patients with hypertension, and populations 
susceptible to cognitive stress such as drivers would be potential participants of our future studies.

10.  Conclusion

We have described, implemented and evaluated a novel methodology for measuring HR and BR from NIR video 
recordings of the human neck, and demonstrated its accuracy under different lighting conditions. While this 
paper only addressed the recovery of HR and BR, other physiological parameters such as heart rate variability 
(HRV) could be captured using a similar system and a few extra steps counting inter-beat intervals (IBIs). As 
more and more devices with NIR cameras become available, this technology offers new opportunities to provide 
comfortable physiological measurements and long-term health monitoring.
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