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Abstract. Non-contact video-based physiological measurement has
many applications in health care and human-computer interaction. Prac-
tical applications require measurements to be accurate even in the pres-
ence of large head rotations. We propose the first end-to-end system for
video-based measurement of heart and breathing rate using a deep convo-
lutional network. The system features a new motion representation based
on a skin reflection model and a new attention mechanism using appear-
ance information to guide motion estimation, both of which enable robust
measurement under heterogeneous lighting and major motions. Our app-
roach significantly outperforms all current state-of-the-art methods on
both RGB and infrared video datasets. Furthermore, it allows spatial-
temporal distributions of physiological signals to be visualized via the
attention mechanism.

1 Introduction

Subtle changes in the human body, “hidden” to the unaided eye, can reveal
important information about the health and wellbeing of an individual. Com-
puter analysis of videos and images can be used to recover these signals [3,24,30]
and magnify them [14,40]. Non-contact video-based physiological measurement
is a fast growing research domain as it offers the potential for unobtrusive, con-
comitant measurement and visualization of important vital signs using ubiqui-
tous sensors (e.g. low-cost webcams or smartphone cameras) [20].

Imaging Photoplethysmography (iPPG) is a set of techniques for recover-
ing the volumetric change in blood close to the surface of the skin, the resulting
signal is known as the blood volume pulse (BVP). The principle is based on mea-
surement of subtle changes in light reflected from the skin. In a similar fashion,
Imaging Ballistocardiography (iBCG) uses motion information extracted from
videos to recover the Ballistocardiogram [3]. These small motions of the body,
due to the mechanical flow of blood, provide complementary cardiac information
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Fig. 1. We present DeepPhys a novel approach to video-based physiological measure-
ment using convolutional attention networks that significantly outperforms the state-of-
the-art and allows spatial-temporal visualization of physiological information in video.
DeepPhys is an end-to-end network that can accurately recover heart rate and breath-
ing rate from RGB or infrared videos.

to the PPG signal. Respiratory signals (breathing) can also be recovered using
color [25] and motion-based [31] analyses. If the physiological parameters (i.e.,
heart and/or breathing rate) of an individual are known, magnification of the
color change and/or motion can be performed [14,40], which provides a very
intuitive visualization of the physiological changes.

Based on the techniques above, a number of algorithms have been proposed to
enable recovering vital signs from only a webcam video. However, early solutions
among them were either not amenable to computation [30,35] or lacked rigor-
ous evaluation across a range of motion and ambient lighting conditions [1,24].
Recent approaches that have presented improved results under such video con-
ditions are often complex multi-stage methods that are hard to tune and imple-
ment. Almost all methods require face tracking and registration, skin segmenta-
tion, color space transformation, signal decomposition and filtering steps.

In computer vision end-to-end deep neural models have out-performed tra-
ditional multi-stage methods that require hand-crafted feature manipulation.
An end-to-end learning framework for recovering physiological signals would be
desirable. However, to date convolution neural networks (CNNs) have only been
applied to skin segmentation in iPPG [5] and not for recovering vital signs. This
motivated our design of DeepPhys - a novel convolutional attention network
(CAN) for video-based physiological measurement, which significantly outper-
forms the state-of-the-art and allows spatial-temporal visualization of physiolog-
ical signal distributions (e.g., blood perfusion) from RGB videos. Figure 1 shows
how DeepPhys compares to traditional methods.

An end-to-end network for video-based physiological measurement should be
a model that reads motion information from video frames, discriminates different
motion sources and synthesizes a target motion signal. However, no existing deep
learning models are suited to this task. First, deep neural networks used in simi-
lar tasks commonly rely on motion representations such as optical flow or frame
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difference as input, but they are either contradictory to the principle of iPPG
or sensitive to different lighting conditions or skin contours. Thus, in DeepPhys,
we propose a new motion representation calculating normalized frame differ-
ence based on the skin reflection model, which can better capture physiological
motions under heterogeneous illumination. Second, the appearance information
in video such as the color and texture of the human skin can guide where and
how the physiological motions should be estimated, but there is currently no way
to jointly learn auxiliary appearance representations along with motion estima-
tors in neural networks. Therefore, we propose a new mechanism that acquires
attention from the human appearance to assist the motion learning.

To summarize, we present the first end-to-end method for recovering physi-
ological signals (HR, BR) from videos. DeepPhys is a novel convolutional atten-
tion network that simultaneously learns a spatial mask to detect the appropri-
ate regions of interest and recovers the BVP and respiration signals. Below we
describe the theoretical underpinning of our approach, the model, and valida-
tion on four datasets each recorded with different devices, of different subjects,
and under different lighting configurations. We perform a thorough compari-
son against the state-of-the-art approaches, the results of which illustrate the
benefits of our proposed model.

2 Related Work

2.1 Remote Physiological Measurement

Minute variations in light reflected from the skin can be used to extract human
physiological signals (e.g., heart rate (HR) [30] and breathing rate (BR) [25]).
A digital single reflex camera (DSLR) is sufficient to measure the subtle blood
volume pulse signal (BVP) [30,35]. The simplest method involves spatially aver-
aging the image color values for each frame within a time window, this is highly
susceptible to noise from motion, lighting and sensor artifacts. Recent advance-
ments have led to significant improvements in measurement under increasingly
challenging conditions. Figure 1 shows a traditional approach to remote physio-
logical measurement that involves skin segmentation, color space transformation
and signal decomposition.

Color Space Transforms: The optical properties of the skin under ambient
illumination mean that the green color channel tends to give the strongest PPG
signal and this was used in initial work [17,35]. However, the color channels can
be weighted and combined to yield better results. The CHROM [13] method uses
a linear combination of the chrominance signals by assuming a standardized skin
color profile to white-balance the video frames. The Pulse Blood Vector (PBV)
method [12] leverages the characteristic blood volume changes in different parts
of the frequency spectrum to weight the color channels.

Signal Decomposition: It has been demonstrated that blind-source separation
can be used to improve the signal-to-noise ratio of the PPG signal from webcam
videos [24]. Leveraging information from all three color channels and multiple
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spatial locations makes the approach more robust to changes in illumination with
head motion. More rigorous evaluation demonstrated it was possible to recover
heart rate variability (HRV) and breathing rate (BR) estimates [25]. A majority
of the work on video-based physiological measurement has relied on unsuper-
vised learning. Independent component analysis (ICA) [19,24,25] and principal
component analysis (PCA) [37] are two common approaches for combining mul-
tiple color or location channels. More advanced signal decomposition methods
have resulted in improved heart rate measurement, even in the presence of large
head motions and lighting variation [16,34,38,39].

Supervised Learning Approaches: Few approaches have made use of super-
vised learning for video-based physiological measurement. Formulating the prob-
lem is not trivial. Template matching and Support Vector approaches [23] have
obtained modest results. Linear regression and Nearest Neighbor (NN) tech-
niques have been combined with signal decomposition methods [21] to solve
the problem of selecting the appropriate source signal. However, these are still
limited by the performance of the decomposition method (e.g., ICA or PCA).

2.2 Deep Learning

Motion Analysis plays a significant role in deep-learning-based video pro-
cessing. First, deep learning has achieved remarkable successes in explicit
motion analysis tasks, such as optical flow estimation [9,15] and motion predic-
tion [11,43]. Different from images, videos have both spatial information (appear-
ance) and temporal dynamics (motion). Therefore, solving any video-related
problem using machine learning should benefit from implicit motion modeling.
In contemporary techniques, both appearance and motion representations can be
learned in parallel (two-stream methods [27]), in cascade (CNN connected with
RNN [4,8]) or in a mixed way (3D CNN [33]). Commonly, for more efficient
learning, several motion representations are manually calculated from videos to
serve as the input of learning models, including optical flow [22,27] and frame
difference [43].

Attention Mechanisms in neural networks are inspired by the human
visual system, which can focus on a certain region of an image with high resolu-
tion while perceiving the surrounding image in low resolution. To put it simply,
they confer more weight on a subset of features. As one of the latest advance-
ments in deep learning, attention mechanisms have been widely used in machine
translation [2], image captioning [41] and many other tasks. In learning-based
video analytics, attention mechanisms also show great power, either by tem-
porally focusing on different frames of a video [44] or by spatially focusing on
different parts of a frame [26]. It has been shown that attention can be derived
from motions to guide appearance representation learning [18,32]. In this work,
we do exactly the opposite, acquiring attention from appearance to guide motion
representation learning, which has never been done before to our knowledge.
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3 Skin Reflection Model

Video-based physiological measurement involves capturing both subtle color
changes (iPPG) and small motions (iBCG and respiratory movement) of the
human body using a camera. For modeling lighting, imagers and physiology,
previous works used the Lambert-Beer law (LBL) [16,42] or Shafer’s dichro-
matic reflection model (DRM) [38]. We build our learning model on top of the
DRM as it provides a better framework for modeling both color changes and
motions. Assume the light source has a constant spectral composition but vary-
ing intensity. We can define the RGB values of the k-th skin pixel in an image
sequence by a time-varying function:

CCCk(t) = I(t) · (vvvs(t) + vvvd(t)) + vvvn(t) (1)

where CCCk(t) denotes a vector of the RGB values; I(t) is the luminance intensity
level, which changes with the light source as well as the distance between the
light source, skin tissue and camera; I(t) is modulated by two components in the
DRM: specular reflection vvvs(t), mirror-like light reflection from the skin surface,
and diffuse reflection vvvd(t), the absorption and scattering of light in skin-tissues;
vvvn(t) denotes the quantization noise of the camera sensor. I(t), vvvs(t) and vvvd(t)
can all be decomposed into a stationary and a time-dependent part through a
linear transformation [38]:

vvvd(t) = uuud · d0 + uuup · p(t) (2)

where uuud denotes the unit color vector of the skin-tissue; d0 denotes the sta-
tionary reflection strength; uuup denotes the relative pulsatile strengths caused by
hemoglobin and melanin absorption; p(t) denotes the BVP.

vvvs(t) = uuus · (s0 + Φ(m(t), p(t))) (3)

where uuus denotes the unit color vector of the light source spectrum; s0 and
Φ(m(t), p(t)) denote the stationary and varying parts of specular reflections;
m(t) denotes all the non-physiological variations such as flickering of the light
source, head rotation and facial expressions.

I(t) = I0 · (1 + Ψ(m(t), p(t))) (4)

where I0 is the stationary part of the luminance intensity, and I0 · Ψ(m(t), p(t))
is the intensity variation observed by the camera. The interaction between phys-
iological and non-physiological motions, Φ(·) and Ψ(·), are usually complex non-
linear functions. The stationary components from the specular and diffuse reflec-
tions can be combined into a single component representing the stationary skin
reflection:

uuuc · c0 = uuus · s0 + uuud · d0 (5)

where uuuc denotes the unit color vector of the skin reflection and c0 denotes the
reflection strength. Substituting (2), (3), (4) and (5) into (1), produces:

CCCk(t) = I0 · (1 + Ψ(m(t), p(t))) ·
(uuuc · c0 + uuus · Φ(m(t), p(t)) + uuup · p(t)) + vvvn(t) (6)
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As the time-varying components are much smaller (i.e., orders of magnitude)
than the stationary components in (6), we can neglect any product between
varying terms and approximate CCCk(t) as:

CCCk(t) ≈ uuuc · I0 · c0 + uuuc · I0 · c0 · Ψ(m(t), p(t)) +
uuus · I0 · Φ(m(t), p(t)) + uuup · I0 · p(t) + vvvn(t) (7)

For any of the video-based physiological measurement methods, the task is
to extract p(t) from CCCk(t). To date, all iPPG works have ignored p(t) inside
Φ(·) and Ψ(·), and assumed a linear relationship between CCCk(t) and p(t). This
assumption generally holds when m(t) is small (i.e., the skin ROI is stationary
under constant lighting conditions). However, m(t) is not small in most realistic
situations. Thus, a linear assumption will harm measurement performance. This
motivates our use of a machine learning model to capture the more general and
complex relationship between CCCk(t) and p(t) in (7).

4 Approach

4.1 Motion Representation

We developed a new type of normalized frame difference as our input motion rep-
resentation. Optical flow, though commonly used, does not fit our task, because it
is based on the brightness constancy constraint, which requires the light absorp-
tion of objects to be constant. This obviously contradicts the existence of a
varying physiological signal p(t) in (2). The first step of computing our motion
representation is spatial averaging of pixels, which has been widely used for
reducing the camera quantization error vvvn(t) in (7). We implemented this by
downsampling every frame to L pixels by L pixels using bicubic interpolation.
Selecting L is a trade-off between suppressing camera noise and retaining spatial
resolution ([37] found that L = 36 was a good choice for face videos.) The down-
sampled pixel values will still obey the DRM model only without the camera
quantization error:

CCCl(t) ≈ uuuc · I0 · c0 + uuuc · I0 · c0 · Ψ(m(t), p(t)) +
uuus · I0 · Φ(m(t), p(t)) + uuup · I0 · p(t)(8)

where l = 1, · · · , L2 is the new pixel index in every frame.
Then we need to reduce the dependency of CCCl(t) on the stationary skin

reflection color uuuc · I0 · c0, resulting from the light source and subject’s skin tone.
In unsupervised learning approaches, the frames processed usually come from a
short time window, in which the term uuuc · I0 · c0 is relatively constant. However,
in a supervised learning data cohort, the term will vary between subjects and
lighting conditions, which will explain the majority of the variance in CCCl(t). This
will not only make it harder to learn to discriminate the real variance of interest
p(t), but also depend the learned model on specific skin tones and lamp spectra
in the training data. In (8) uuuc · I0 · c0 appears twice. It is impossible to eliminate
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Fig. 2. The architecture of our end-to-end convolutional attention network. The current
video frame at time t and the normalized difference between frames at t+1 and t
are given as inputs to the appearance and motion models respectively. The network
learns spatial masks, that are shared between the models, and features important for
recovering the BVP and respiration signals.

the second term as it interacts with Ψ(·). However, the first time-invariant term,
which is usually dominant, can be removed by taking the first order derivative
of both sides of (8) with respect to time:

CCC ′
l(t) ≈ uuuc · I0 · c0 · (

∂Ψ

∂m
m′(t) +

∂Ψ

∂p
p′(t)) +

uuus · I0 · (
∂Φ

∂m
m′(t) +

∂Φ

∂p
p′(t)) + uuup · I0 · p′(t) (9)

One problem with this frame difference representation is that the stationary
luminance intensity level I0 is spatially heterogeneous due to different distances
to the light source and uneven skin contours. The spatial distribution of I0 has
nothing to do with physiology, but is different in every video recording setup.
Thus, CCC ′

l(t) was normalized by dividing it by the temporal mean of CCCl(t) to
remove I0:

CCC ′
l(t)

CCCl(t)
≈ 111 · (

∂Ψ

∂m
m′(t) +

∂Ψ

∂p
p′(t)) + diag−1(uuuc)uuup · 1

c0
· p′(t) +

diag−1(uuuc)uuus · 1
c0

· (
∂Φ

∂m
m′(t) +

∂Φ

∂p
p′(t))(10)

where 111 = [1 1 1]T . In (10), CCCl(t) needs to be computed pixel-by-pixel over a
short time window to minimize occlusion problems and prevent the propagation
of errors. We found it was feasible to compute it over two consecutive frames so
that (10) can be expressed discretely as:

DDDl(t) =
CCC ′

l(t)
CCCl(t)

∼ CCCl(t + Δt) − CCCl(t)
CCCl(t + Δt) + CCCl(t)

(11)
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which is the normalized frame difference we used as motion representation (Δt is
the sampling interval). In the computed DDDl(t), outliers are usually due to large
m′(t) or occlusion. To diminish these outliers, we clipped DDDl(t) by three standard
deviations over each video and all color channels. To summarize, the clipped
DDDl(t) will be the input of our learning model, and the first order derivative of a
gold-standard physiological signal p′(t) = p(t + Δt) − p(t) will be the training
label. To align DDDl(t) and p′(t), the physiological signals were interpolated to the
video sampling rate beforehand using piecewise cubic Hermite interpolation. For
higher convergence speed of stochastic gradient descent, DDDl(t) and p′(t) were
also scaled to unit standard deviation over each video.

4.2 Convolutional Neural Network

The foundation of our learning model is a VGG-style CNN for estimating the
physiological signal derivative from the motion representation, as shown in Fig. 2
(motion model). The last layer has linear activation units and a mean square
error (MSE) loss, so the outputs will form a continuous signal ˜p′(t). Since most
physiological signals are frequency-bounded, the output was band-pass filtered to
remove noise outside the frequency range of interest. Finally, the power spectrum
was computed from the filtered signal with the location of the highest peak taken
as the estimated HR or BR.

Different from classical CNN models deigned for object recognition, we used
average pooling layers instead of max pooling. The reasoning was that for phys-
iological measurement, combining an important feature with a less important
feature can often produce a higher signal-to-noise ratio than using the more
important feature alone. We also compared multiple activation functions and
found the symmetry seemed to help with performance. Thus, we used hyper-
bolic tangent (tanh) instead of rectified linear units (ReLU) as hidden layer
activation functions. Besides, our attention mechanism uses gating schemes sim-
ilar to those in long short-term memory (LSTM) networks, which help prevent
the main problem with tanh, vanishing gradients.

The loss function of our model is the MSE between the estimated and gold-
standard physiological signal derivative, but our final goal is to compute the
dominant frequency of the estimated signal (i.e., HR or BR). Though the tem-
poral error and frequency error generally have high correlation, a small temporal
error does not guarantee a small frequency error. It is also hard to directly use
the frequency error as the loss function of a CNN, because the calculation of
the dominant frequency involves a non-differentiable operation argmax. Thus
we adopted ensemble learning over training checkpoints. Specifically, we trained
CNN models for an extra 16 epochs after convergence. These models were applied
to the training data with frequency errors computed, and the model with the
smallest error was chosen. We found that this strategy consistently achieved
smaller frequency errors than simply using the last checkpoint model.
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4.3 Attention Mechanism

Naively our motion representation in (10) and (11) assumes every pixel l is part
of a body, and more specifically skin. Using normalized frame difference helps
reduce the impact of background pixels; however, any movement will add noise.
To reduce this effect, previous methods usually reply on preprocessing such as
skin segmentation to select a region of interest (ROI). In our end-to-end model,
a new attention mechanism can be added to achieve similar functionality. Also,
the distribution of physiological signals is not uniform on the human body, so
learning soft-attention masks and assigning higher weights to skin areas with
stronger signals should improve the measurement accuracy.

Whether a pixel patch belongs to the skin and exhibits strong physiological
signals can be partly inferred from its visual appearance. However, the deriva-
tion and normalization operations in (10) removed appearance information. To
provide a basis for learning attention, we created a separate appearance model
(see Fig. 2). This model has the same architecture as the motion model without
the last three layers, and has the raw frames (centered to zero mean and scaled
to unit standard deviation) as input. Soft-attention masks were estimated using
a 1 × 1 convolution filter right before every pooling layer so that masks were
synthesized from different levels of appearance features. Let xj

m ∈ R
Cj×Hj×Wj

and xj
a ∈ R

Cj×Hj×Wj be the feature maps of convolution layer j right before
pooling in the motion model and the appearance model respectively, with Cj ,
Hj and Wj being the number of channels, height and width. The attention mask
qj ∈ R

1×Hj×Wj can be computed as:

qj =
HjWj · σ(wwwjTxj

a + bj)

2‖σ(wwwjTxj
a + bj)‖1

(12)

where wwwj ∈ R
Cj is the 1 × 1 convolution kernel, bj is the bias, and σ(·) is a

sigmoid function. Different from softmax functions commonly used for generating
soft-attention probability maps, we used a sigmoid activation followed by l1
normalization, which is even softer than softmax and produces less extreme
masks. Finally, the mask was multiplied with the motion model feature map to
output:

zjm = (111 · qj) � xj
m (13)

where zjm ∈ R
Cj×Hj×Wj is the masked feature map passed on to the next layer,

111 ∈ R
Cj is a vector with all ones, and � is element-wise multiplication. The

motion model and the appearance model were learned jointly to find the best
motion estimator and the best ROI detector simultaneously.

5 Datasets

We tested our method on four datasets, each featuring participants of both gen-
ders, different ages, a wide range of skin tones (Asians, Africans and Caucasians)
and some had thick facial hair and/or glasses.
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RGB Video I [10]. Videos were recorded with a Scout scA640-120gc GigE-
standard, color camera, capturing 8-bit, 658× 492 pixel images, 120 fps. The
camera was equipped with 16 mm fixed focal length lenses. Twenty-five par-
ticipants (17 males) were recruited to participate for the study. Gold-standard
physiological signals were measured using a research-grade biopotential acquisi-
tion unit.

Each participant completed six (each against two background screens) 5-
minute tasks. The tasks were designed to capture different levels of head motion.

Task 1: Participants placed their chin on a chin rest (normal to the camera)
in order to limit head motion.
Task 2: Participants repeated Task 1 without the aid of the chin rest, allowing
for small natural motions.
Task 3: Participants performed a 120-degree sweep centered about the cam-
era at a speed of 10 degrees/sec.
Task 4: As Task 3 but with a speed of 20◦/s.
Task 5: As Task 3 but with a speed of 30◦/s.
Task 6: Participants were asked to reorient their head position once per
second to a randomly chosen imager in the array. Thus simulating random
head motion.

Fig. 3. Example frames from the four datasets: (a) RGB Video I, (b) RGB Video II,
(c) MAHNOB-HCI, (d) Infrared Video. The yellow bounding boxes indicate the areas
cropped as the input of our models. (e) shows exemplary attention weights of the left
frame in (a) for HR measurement, and of the right frame in (a) for BR measurement.
(Color figure online)

RGB Video II [7]. Videos were recorded with an Intel RealSense Camera
VF0800 and 18 participants (16 males, 2 females, 23–50 years) were recruited
(data from 3 participants were eliminated due to high collection error). Partic-
ipant was seated still at a desk under ambient light for 30 s. All videos were
recorded in color (24-bit RGB with 3 channels × 8 bits/channel) at a floating
frame rate around 24 fps with pixel resolution of 1920× 1080. Gold-standard
physiological signals were measured with a FlexComp Infiniti that recorded
Blood Volume Pulse (BVP) from a finger probe at a constant sampling fre-
quency of 256 Hz. Respiration was not recorded in this study.
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MAHNOB-HCI [28]. A multimodal dataset with videos of subjects partic-
ipating in two experiments: (i) emotion elicitation and (ii) implicit tagging. It
contains 27 subjects (12 males and 15 females) in total, and all videos are in 61 fps
with a 780× 580 resolution. Following [17], we used a 30-second clip (frames from
306 through 2135) of 527 sequences. To compute the ground truth heart rate we
used the second channel (EXG2) of the corresponding ECG waveforms.

Infrared Video [6]. To show that our approach generalizes to other datasets
collected using different imagers we performed similar analysis on a dataset of
IR videos. Twelve participants (8 males, 4 females) between the ages of 23–34
years were recruited for this study. Participants were seated at a desk and a
Leap Motion controller was placed on the edge of the desk, parallel with it, and
facing upward. 640× 240 pixel near-IR frames were recorded at a floating frame
rate around 62 fps. Gold-standard physiological signals were measured with a
FlexComp Infiniti that simultaneously recorded BVP from a finger probe and
respiration from a chest belt at a constant sampling frequency of 256 Hz. Each
experiment consisted of two 1 min recordings: (1) in a well-lit room (184 lux at
the camera), (2) in a completely dark room (1 lux at the camera).

6 Results and Discussion

For our experiments, we used Adadelta [45] to optimize the models across a
computing cluster. All the optimizer parameters were copied from [45], and a
batch size of 128 examples was used. To overcome overfitting, three dropout
layers [29] were inserted between layers 3 and 4, layers 6 and 7, and layers 8
and 9 in Fig. 2 with dropout rates d1, d2 and d3 respectively. Along with n8 the
number of hidden units in layer 8 and Ne the number of training epochs, the
five parameters were chosen differently to adapt to different model complexities
and different generalization challenges (values can be found in Supplemental
Materials).

Apart from the proposed CAN model, we also implemented a standalone
CNN motion model (top portion of Fig. 2) to verify the effectiveness of the
attention mechanism. The input of the model was either the normalized frame
difference (Motion-only CNN) or the normalized frame difference stacked with
the raw frame (Stacked CNN). A 6th-order Butterworth filter was applied to
the model outputs (cut-off frequencies of 0.7 and 2.5 Hz for HR, and 0.08 and
0.5 Hz for BR). The filtered signals were divided into 30-second windows with
1-second stride and four standard metrics were computed over all windows of all
the test videos in a dataset: mean absolute error (MAE), root mean square error
(RMSE), Pearson’s correlation coefficient (r) between the estimated HR/BR
and the ground truth HR/BR, and signal-to-noise ratio (SNR) of the estimated
physiological signals [13] averaged among all windows. The SNR is calculated
in the frequency domain as the ratio between the energy around the first two
harmonics (0.2 Hz frequency bins around the gold-standard HR, and 0.05 Hz
frequency bins around the gold-standard BR) and remaining frequencies within
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Table 1. Performance of heart rate and breathing rate measurement for RGB Video
I. Participant dependent (p.-dep.) and participant independent results are shown, as
are task independent results for the six tasks with varying levels of head rotation

Heart Rate Mean Absolute Error/BPM Signal-To-Noise Ratio/dB

Methods 1 2 3 4 5 6 Avg. 1 2 3 4 5 6 Avg.

Estepp et al. [10] 3.48 3.95 3.80 6.55 11.8 13.4 7.16 6.06 4.82 3.77 −0.10 −4.72 −9.63 0.03

McDuff et al. [19] 1.17 1.70 1.70 4.00 5.22 11.8 4.29 10.9 9.55 6.69 3.08 0.08 −6.93 3.90

Balakrishnan et al. [3] 4.99 5.16 12.7 17.4 18.7 14.2 12.2 −1.08 −0.34 −8.83 −12.6 −14.2 −12.1 −8.19

De Haan et al. [13] 4.53 4.59 4.35 4.84 6.89 10.3 5.92 1.72 1.38 3.97 3.63 2.02 −2.47 1.71

Wang et al. [38] 1.50 1.53 1.50 1.84 2.05 6.11 2.42 6.84 6.21 4.80 2.97 0.77 −4.33 2.88

Tulyakov et al. [34] 1.76 2.14 14.9 19.0 15.7 22.0 12.6 4.32 2.29 −11.8 −14.3 −12.3 −15.3 −7.85

Ours: Part. Dep.

Motion-only CNN 1.17 1.29 1.29 1.66 2.04 2.95 1.73 10.2 9.28 7.02 4.18 1.95 −1.00 5.28

Stacked CNN 1.18 1.30 1.26 1.51 1.82 2.62 1.61 10.7 9.60 8.28 5.59 2.84 0.29 6.22

CAN 1.17 1.26 1.16 1.61 2.04 1.78 1.50 10.9 9.66 8.20 5.69 3.57 1.33 6.55

Ours: Part. Ind.

Motion-only CNN 1.17 1.41 1.33 1.91 3.57 6.41 2.63 9.60 8.62 6.25 2.73 −0.15 −4.02 3.84

Stacked CNN 1.12 1.66 1.30 1.65 2.33 6.25 2.38 9.26 8.18 7.27 3.81 1.14 −2.84 4.47

CAN 1.16 1.45 1.23 1.72 2.42 5.59 2.26 9.52 8.82 7.36 3.90 1.10 −2.72 4.66

CAN (task 1) 1.16 3.01 3.43 4.85 7.92 13.9 5.70 9.52 5.74 2.01 −2.13 −5.77 −9.70 −0.06

CAN (task 2) 1.12 1.45 1.67 3.35 7.51 12.9 4.66 10.1 8.82 4.25 −0.90 −5.33 −8.96 1.33

CAN (task 3) 1.18 1.41 1.23 1.78 2.73 9.23 2.93 9.75 8.79 7.36 4.33 0.55 −5.88 4.15

CAN (task 4) 1.13 1.57 1.24 1.72 2.79 8.98 2.91 9.95 8.72 7.06 3.90 0.37 −5.68 4.05

CAN (task 5) 1.16 1.38 1.30 1.54 2.42 7.05 2.48 9.86 8.98 7.68 4.40 1.10 −4.15 4.65

CAN (task 6) 1.14 1.32 1.22 1.47 2.17 5.59 2.15 10.4 9.62 8.21 5.15 1.83 −2.72 5.41

CAN (all tasks) 1.13 1.34 2.45 1.64 1.83 6.32 2.45 9.88 7.21 1.46 8.48 4.11 −3.23 4.65

Breath. Rate Mean Absolute Error/BPM Signal-To-Noise Ratio/dB

Methods 1 2 3 4 5 6 Avg. 1 2 3 4 5 6 Avg.

Tarassenko et al. [31] 2.51 2.53 3.19 4.85 4.22 4.78 3.68 −1.29 −1.82 −6.32 −8.55 −8.79 −10.6 −6.22

Ours: Part. Dep.

Motion-only CNN 2.03 2.47 3.21 3.04 3.11 4.27 3.02 −0.33 −1.91 −5.28 −4.83 −5.33 −9.64 −4.55

Stacked CNN 1.74 2.27 2.98 2.79 3.03 5.33 3.02 1.84 −0.93 −6.31 −5.18 −5.70 −11.2 −4.58

CAN 1.70 2.19 3.24 3.05 3.06 3.96 2.86 2.73 −0.02 −4.39 −4.47 −4.36 −7.97 −3.08

Ours: Part. Ind.

Motion-only CNN 1.70 2.31 4.09 4.85 4.60 4.06 3.60 0.75 −0.17 −6.03 −9.19 −9.05 −9.06 −5.46

Stacked CNN 2.00 2.10 5.67 5.55 6.34 5.76 4.57 0.19 −0.25 −12.0 −11.5 −12.7 −13.0 −8.20

CAN 1.28 1.64 4.15 4.37 3.77 4.37 3.26 4.45 2.96 −5.05 −6.72 −6.70 −8.93 −3.33

CAN (task 1) 1.28 1.72 6.34 7.28 6.28 4.01 4.48 4.45 2.37 −10.0 −13.5 −13.9 −9.02 −6.60

CAN (task 2) 1.21 1.64 5.73 5.65 4.92 3.82 3.83 4.39 2.96 −7.97 −12.3 −11.7 −8.54 −5.52

CAN (task 3) 1.62 1.71 4.15 4.57 4.16 3.56 3.30 3.38 2.74 −5.05 −7.05 −6.71 −6.23 −3.15

CAN (task 4) 1.74 1.85 3.80 4.37 4.60 3.42 3.30 2.69 2.56 −5.10 −6.72 −7.86 −6.63 −3.51

CAN (task 5) 1.65 1.74 4.37 4.45 3.77 3.37 3.22 2.90 3.18 −6.20 −7.02 −6.70 −5.69 −3.25

CAN (task 6) 2.06 1.76 5.89 5.92 5.21 4.37 4.20 1.11 1.54 −9.72 −11.9 −10.1 −8.93 −6.33

CAN (all tasks) 1.54 4.69 3.71 2.14 5.27 3.33 3.45 3.09 −6.45 −7.09 0.21 −10.7 −7.36 −4.71



368 W. Chen and D. McDuff

a range of [0.5 4] Hz for HR, and a range of [0.05 1] Hz for BR. Due to limited
space, the metrics RMSE and r are shown in Supplemental Materials.

6.1 RGB Video I

Every video frame was center-cropped to 492× 492 pixels to remove the lateral
blank areas before being fed into our processing pipeline. We compare our pro-
posed approach to six other methods [3,10,13,19,34,37] for recovering the blood
volume pulse. For recovering the respiration, we compare to the approach pro-
posed by Tarassenko et al. [31]. The details about the implementation of these
methods are included in Supplemental Materials.

Participant-Dependent Performance. Each five-minute video was divided
into five folds of one minute duration. We trained and tested via cross-validation
on the concatenated five folds within each task, in which case every participant
appeared in both the training set and the test set. The evaluation metrics MAE
and SNR are averaged over five folds and shown in Table 1. Table 1 shows that our
motion-only CNN, stacked CNN and CAN all outperform the prior methods for
HR measurement over task two to task six, both in terms of MAE and SNR. The
benefit is particularly strong for the tasks involving high velocity head motions.
On task one, our MAE and SNR are very close to the best results achieved
by previous methods using hand-crafted features, probably because task one
simulates an ideal situation and there is nearly no space for improvement. Within
each of our three approaches, CAN shows superior performance on average and
obvious advantages for task six, which can be explained by the effectiveness
of the attention mechanism in dealing with the frequently changing ROI. The
breathing rate results (Table 1) follow a similar pattern.

Participant-Independent Performance. All the 25 participants were ran-
domly divided into five folds of five participants each. The learning models were
trained and tested via five-fold cross-validation within each task to evaluate
how our models can be generalized to new participants. The evaluation metrics
MAE and SNR are also averaged over five folds and shown in Table 1. Compared
with the participant-dependent results, the participant-independent results have
lower performance to varying degrees. However, for heart rate measurement the
Stacked CNN and CAN still outperform all the previous methods. For breathing
rate measurement, though motion-only CNN and the stacked CNN have accura-
cies similar or inferior to Tarassenko et al. [31], the CAN still shows improvement
in five tasks and overall.

Task-Independent Performance. Both the participant-dependent and
participant-independent results are from training and testing models within
tasks. Next, we present task-independent performance where the CAN model
was trained on a specific task and then tested on other tasks. The training set
and test set were again participant-independent. In the HR results shown in
Table 1, there is a clear pattern that a model trained on tasks with less motion
performs badly on tasks with greater motion. Models trained on tasks with
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greater motion generalize very well across all tasks. The CAN model trained on
task six even has lower MAE and higher SNR than the model trained and tested
within each single task. This also explains why the model trained on all the
tasks achieves moderate performance, slightly better than the task five model
but much worse than the task six model. On the other hand, for breathing rate
measurement, a model trained on one task usually performs best on the same
task, and does not generalize well to different tasks. As a result, the distributions
of the average MAE and SNR in Table 1 exhibit a symmetric pattern from the
task one model to the task six model.

Table 2. RGB Video II, MAHNOB-HCI and Infrared Video dataset results. (MAE =
Mean Absolute Error, SNR = Signal-To-Noise Ratio)

DATASET RGB VIDEO II MANHOB-HCI
Heart Rate Heart Rate

Methods MAE SNR MAE SNR
/BPM /dB /BPM /dB

Estepp et al. [10] 14.7 -13.2 - -
McDuff et al. [19] 0.25 -4.48 10.5 -10.4
Balakrishnan et al. [3] 11.3 -9.17 17.7 -12.9
De Haan et al. [13] 0.30 -2.30 5.09 -9.12
Wang et al. [38] 0.26 1.50 - -
Tulyakov et al. [34] 2.27 -0.20 4.96 -8.93
Ours (transfer learning):
CAN 0.14 0.03 4.57 -8.98

DATASET IR Video
Heart Rate Breath. Rate

Methods MAE SNR MAE SNR
/BPM /dB /BPM /dB

Chen et al. [6] 0.65 3.15 0.27 5.71
Ours (part. ind.):
Motion-only CNN 1.44 9.55 0.49 8.95
Stacked CNN 0.87 10.9 0.14 10.4
CAN 0.55 13.2 0.14 10.8

6.2 RGB Video II and MAHNOB-HCI

As shown in Fig. 3, the video frames in the two datasets have complicated back-
grounds, and the facial ROI only occupies a small area. To ensure a sufficient
number of physiology-related pixels after downsampling, a face detector based
on OpenCV’s Haar-like cascades [36] was applied to the first frame of each video,
and a square region with 160% width and height of the detected bounding box
was cropped as the input to our approach.

Transfer Learning. To test whether our model can be generalized to videos
with a different resolution, background, lighting condition and sampling fre-
quency, we tried transfer learning without any fine-tuning. We trained the mod-
els on Task 2 of RGB Video I (the most similar task to RGB Video II and
MAHNOB-HCI) and applied them directly to these datasets. Since RGB Video
II only has blood volume pulse ground truth, we compare our approach with
only the HR measurement methods. For MAHNOB-HCI, as it is public, we eval-
uated our approach against only those methods reported in previous studies on
the dataset. The results are presented in Table 2. Without any prior knowledge
about the two datasets, our CAN model still attains the lowest MAE compared
with any previous method, and its SNR is only second to Wang et al. [37] on
RGB Video II and Tulyakov et al. [34] on MAHNOB-HCI.

6.3 Infrared Video

For these videos we cropped a fixed 130× 130 pixels bounding box against the
lower boundary of the frame as our model input (see Fig. 3d). Since the frames
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in the dataset are monochromatic, all the previous methods we implemented for
the RGB datasets are not applicable. We compare our approach with a PCA-
based algorithm [6], which has achieved the highest accuracy on the dataset, for
both HR and BR measurement.

Participant-independent Performance. In the dataset, each video is
one minute in length, which is too short to be split into multiple folds
for participant-dependent evaluation. Thus we only ran experiments in a
participant-independent way: The 13 participants were randomly divided into
five folds, and the learning models were trained and tested via five-fold cross-
validation. The results are averaged over five folds and shown in Table 2. For both
heart rate and breathing rate measurement, the CAN model not only beats the
previous best results but also beats the other learning-based methods without
an attention mechanism.

6.4 Visualization of Attention Weights

An advantage of utilizing the proposed attention mechanism is that the spatial-
temporal distributions of physiological signals can be revealed by visualizing the
attention weights. As shown in Fig. 3e, the attention of the heart rate model is
commonly focused on the forehead, the earlobe and the carotid arteries. The
earlobe has a large blood supply and the carotid arteries have the most sig-
nificant pulse-induced motions. For BR measurement, the attention maps are
more scattered, because respiration movement can transmit to any body part
even including the hair. We also found high attention weights around the nose
on many subjects, which suggests our CAN model uses subtle nasal flaring as a
feature for respiratory tracking (see Supplemental Materials).

7 Conclusions

We have proposed the first end-to-end network for non-contact measurement of
HR and BR. Our convolutional attention network allows spatial-temporal visu-
alization of physiological distributions whilst learning color and motion informa-
tion for recovering the physiological signals. We evaluated our method on three
datasets of RGB videos and a dataset of IR videos. Our method outperformed
all the prior state-of-the-art approaches that we compared against. The perfor-
mance improvements were especially good for the tasks with increasing range
and angular velocities of head rotation. We attribute this improvement to the
end-to-end nature of the model which is able to learn an improved mapping
between the video color and motion information. The participant dependent
vs. independent performance as well as the transfer learning results shows that
our supervised method does indeed generalize to other people, skin types and
illumination conditions.
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