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Abstract—Vital signs, cognitive load, and stress can be remotely
measured from human faces using video-capturing devices under
ambient light, which raises both wide applications and privacy
issues. To avoid immoral use of this technology, there is a need
for methods to eliminate physiological information from facial
videos without affecting their visual appearance. To meet the
need, we develop a novel algorithm based on motion component
magnification that inputs a video and outputs its replica with
physiological signals removed. Facial video data has been col-
lected from 18 participants in a study to assess the performance
of our algorithm in thwarting heart rate measurement based
on remote photoplethysmography. Our results show that the
mean absolute error of heart rate measurement averaged among
participants was increased from 0.254 beats per minute to above
17 beats per minute without causing visible artifact. This is the
first demonstration of an algorithm that can achieve this kind of
functionality.

I. INTRODUCTION

We are living in a world where we are surrounded by
so many intelligent video-capturing devices. These devices
capture data about how we live and what we do. Recent
research has also shown that they can be combined with com-
puter vision algorithms to realize non-contact measurement
of human physiology. For instance, as a new advance in the
remote photoplethysmography (rPPG) technique [1], heart rate
(HR), respiration rate (RR) and heart rate variability (HRV)
can be extracted from facial videos in ambient light based
on the subtle color changes of the skin caused by blood
circulation [2], [3], [4]. Besides skin color changes, blood
ejection into the vessels can also cause repetitive motions of
the human body, measured as ballistocardiograph (BCG). It
is also possible to estimate BCG from head motions in video
[5] to get HR readings remotely. The remote measurement
of these physiological responses has also been leveraged to
build systems for remotely capturing cognitive load and stress
during computer tasks [6], [7].

Meanwhile, these new technologies raise privacy issues.
Now whenever you are in front of a camera, people can
not only recognize your identity based on your appearance,
but also monitor some aspects of your health and affective
state. This information might be misused for manipulation in
marketing, negotiation, and other situations. Moreover, there
has been no way to eliminate this channel of information from
facial videos without affecting the visual appearance.

Though there are many algorithms measuring physiological
signals from facial videos, it is not trivial to develop a
new method for eliminating these signals. First, most of the
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measurement algorithms are irreversible, which means the
attenuation of their output signals can not be properly propa-
gated to their input videos. For example, many methods take
the average of multiple pixels in a region of interest to form
raw physiological traces, but not every pixel within the region
includes the needed physiological information. Therefore, to
uniformly remove the estimated traces from the whole region
would result in artifact on the non-relevant pixels. Second, the
target of most of the measurement methods is to synthesize a
single reading such as a heart rate from a video epoch instead
of recovering the temporal shape of the physiological signal
faithfully. Without the ability to estimate a signal faithfully, it
will be also hard to eliminate it cleanly.

Thus we propose a novel method for eliminating phys-
iological information from facial videos based on motion
component magnification [8], an algorithm good at estimating
and amplifying non-sinusoidal motions in videos. With any
facial video as input, our method outputs a video visually the
same but from which physiological signals such as rPPG can
no longer be measured accurately. To our knowledge, it is for
the first time this kind of functionality has been achieved.

In this paper, we review previous works on motion estima-
tion and elimination for video, introduce the framework of our
methodology, assess it on facial videos collected from an 18-
participant user study, and discuss its parameters, limitations,
and strengths.

II. PRIOR WORK

Motion estimation and elimination have long been used for
video denoising. For example, videos captured from hand-
held devices often have camera jitters. Several methods [9],
[10] have been proposed to stabilize the camera motion by
modeling the jitters using image-level transforms between
consecutive frames. However, these methods deal with motions
in a global manner, so they are unable to adaptively process
motions only on one object such as physiology-related motions
only on the human body.

To realize motion elimination at the object level, sev-
eral previous works have introduced different conditions for
selecting the motion of interest. Bai et al. have presented
a semi-automated technique called video de-animation [11],
in which motions are selectively processed based on their
scales. The technique requires its users to draw a small set
of strokes indicating the regions of the objects that should
be immobilized. Then their algorithm warps the video to
remove large-scale motion of these regions while leaving finer-
scale, relative motions intact. This scale-based condition is
not fit for selecting physiological information, as physiology-
related motions can appear at different scales, and removing978-1-5090-4023-0/17/$31.00 c©2017 IEEE



the largest-scale motions of the human body could result
in unnatural rigidity. Another way to select local motions
for elimination is by looking at the frequency domain. For
example, Rubinstein et al. [12] have successfully eliminated
short-term motion jitters in time-lapse videos by assuming
high-frequency changes are noise and low-frequency changes
are signals. Based upon the assumption, they are able to
recover a smoother version of the input video by reshuffling its
pixels spatiotemporally. Nevertheless, the assumption is also
not applicable to the estimation of physiological information,
because physiological signals are not necessarily high in
frequency relative to other motions.

Recently, a more sophisticated method called Eulerian mo-
tion magnification (EMM) [13] has been proposed, which
adaptively extracts subtle motions using a linear band-pass
filter. The method takes a standard video sequence as input,
applies spatial decomposition using a Gaussian or Laplacian
pyramid, and performs temporal linear filtering of the frames
based on manually selected frequency parameters. The re-
sulting signal is then amplified to reveal hidden temporal
variations in videos that are difficult or impossible to see
with the naked eye. Since the invention of Eulerian motion
magnification, a series of improvements have also been made.
To support larger magnification factors at high spatial frequen-
cies, Wadhwa et al. [14] proposed a new Eulerian approach
to motion processing, based on complex-valued steerable
pyramids. Phase variations of the coefficients of a complex-
valued steerable pyramid over time correspond to motion,
and increasing the phase variations by a multiplicative factor
can amplify subtle motions. Thus, the method computes the
local phase variations, then a person picks a desired temporal
frequency band to amplify using a linear filter, and finally
reconstructs the modified video. In general, the linear EMM
technique is better at magnifying small color changes, while
the phase-based pipeline is better at magnifying subtle motions
[15]. On top of the two core methods, a new image pyramid
representation, the Riesz pyramid, was developed to accelerate
the phase-based pipeline[16], and a layer-based approach was
proposed to amplify small motions combined with larger ones
using matting [17]. The EMM methods can naturally lend
themselves to attenuation of motions in videos by setting their
amplification factors to negative values. Based on this idea,
success has been achieved in motion attenuation for turbulence
removal and color amplification [14].

All of the EMM methods apply a temporal filter to the
intensity or phase variations to select motions of interest within
a specific frequency band, which is appropriate for sinusoidal
motions. However, most physiological signals such as heart
pulse and respiration are not pure sinusoidal motions, nor are
they simple combinations of sinusoids from a narrow band
of frequencies. If the filtering band of the EMM algorithms
is selected to cover all the frequencies they contain, then a
great deal of noise within the wide band will also remain
to bury the motion of interest [8]. To better estimate non-
sinusoidal motions in videos, a new Eulerian approach called
“motion component magnification (MCM)” has been proposed

[8]. Instead of applying linear filtering, the new approach
uses principal component analysis (PCA) [18] to detect and
amplify subtle motions from multiple pixels of a video, so
that the estimated motions are more faithful to the original
ones. The new method also yields fewer artifacts even for
sinusoidal motions in some cases. In this paper we show
a new capability: Replacing component magnification with
component elimination, the MCM algorithm is promising for
eliminating physiological information, such as pulse rate, from
facial videos.

III. METHODS

The proposed methodology for eliminating physiological
information from facial videos is depicted in Fig. 1, and
introduced as follows.

A. Laplacian Pyramid

A subtle motion in facial videos related to physiology can
appear at different scales. For example, for rPPG measurement,
with different perspectives and different camera distances, skin
regions on the face will have various sizes. Also, different
spatial frequency bands might exhibit different signal-to-noise
ratios, which should be treated separately. In order to estimate
motions of interest across multiple scales, we compute an L-
level Laplacian pyramid [19] for each channel of each video
frame in the RGB color space. This process generates a set
of band-pass filtered images at L levels, in which lower levels
exhibit more fine-grain detail. If all the pixels within an image
are processed together, a subtle motion taking up only a few
pixels would be likely to be buried in noise. Thus every image
is further split into 8 x 8 pixel blocks. We choose this size
to be the same used in JPEG image compression. A block
smaller than 8 x 8 does not include enough information about
the motion we want to extract, while a larger size might
incorporate too many objects and introduce noise. To make
sure even the highest level of the pyramid covers an area larger
than 8 x 8, L is selected as

L = blog2
min(H,W )

8
c+1 (1)

in which H and W are the height and width of the original
video frame. When the image size is not exactly divisible by
the block size, the image boundaries are padded with mirror
reflections of themselves.

B. Principal Component Analysis

The intensity change of every pixel within a block forms
a time series of length N, which can be considered as a
channel of sensor recording. Therefore, all the 8 x 8 time series
compose a data matrix XN×P, P = 64. To detect the greatest
motion among the 64 channels, we apply PCA to X . As the
first step of PCA, the column-wise means are subtracted from
X and stored:

Y (n, p) = X(n, p)− 1
N

N

∑
n=1

X(n, p) (2)
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Fig. 1. Flow charts of our methodology. The red patch in the power spectral density (PSD) figures indicates the frequency band of interest: 0.8258 Hz -
0.9133 Hz. All the temporal signals have been normalized to the same amplitude for better visualization.

Then the principal component decomposition of Y is calculated
as

T = YW (3)

where W is a P×P matrix whose columns are the eigenvectors
of YTY , and T consists of N row vectors t(n), n = 1, · · · ,N,
each of which corresponds to a principal component score in
the transformed co-ordinates in descending order of variance.
For example, the first row of T with the highest variance is
denoted as t(1).

C. Component Selection and Elimination

When there are multiple motions in the video and we are
only interested in one of them, frequency-domain features
can be exploited to separate them. For the four principal
component scores with the highest variances t(n), n = 1, · · · ,4,

we compute their power spectral density (PSD) estimates
pn( f ), n = 1, · · · ,4, f ∈ (0, fNyq) ( fNyq is the Nyquist fre-
quency) using the Lomb-Scargle method [20], [21], which is
good at finding weak periodic signals in otherwise random
unevenly sampled data. The method is chosen over other PSD
estimation methods, mainly because many video-capturing
devices have non-constant sampling rates.

Assume the fundamental frequency of our motion of interest
lies in the band [ fL, fH ]. To evaluate its distinction in a PSD
estimate, the normalized band power Q is calculated as the
power within the interest frequency band divided by the full
spectrum power:

Q(pn) =
∑

fH
f= fL

pn( f )

∑
fNyq
f=0 pn( f )

, n = 1, · · · ,4 (4)



The component among t(n) whose PSD estimate has the largest
normalized band power Qmax is selected to represent the
motion of interest, and denoted as t(i), i ∈ {1, · · · ,4}. To
eliminate the motion, we can simply multiply t(i) by zero.
However, this can not guarantee a thorough elimination of
the motion, because other components t(n) might also contain
minute power of the band. Thus a softer elimination factor A
was applied to t(i) as formulated below

t(i) = A · t(i), A≤ 0 (5)

in which A can be set slightly negative to compensate for the
residual power of the motion of interest in other components.

D. Reconstruction

After the targeted information is eliminated in (5), we
rewrite the manipulated T as T ′. In order to reconstruct the
video, first, an inverse transform of (3) is applied to T ′:

Y ′ = T ′WT (6)

Then the subtracted column-wise means are added back:

X ′(n, p) = Y ′(n, p)+
1
N

N

∑
n=1

X(n, p) (7)

After that, all X ′(n, p) are concatenated to recover the L levels
of the Laplacian pyramid. Finally, the video is reconstructed
from the pyramid levels in the usual way.

IV. USER STUDY

We run a user study to test the methodology on the elimina-
tion of rPPG. 18 participants (16 males, 2 females) between the
ages of 23-50 years were recruited for this study, which was
pre-approved by the Massachusetts Institute of Technology
Committee On the Use of Humans as Experimental Subjects
(COUHES). The participants have varying skin colors, with
some of them wearing thick facial hair and/or glasses. In-
formed consent was obtained from all the participants prior to
each study session.

In each experiment, a participant was seated still at a desk
under ambient light for 30 s. An Intel RealSense Camera
VF0800 was set up on the desk at a distance of approximately
0.5-1.0 m from the participant to capture facial videos. All
videos were recorded in color (24-bit RGB with 3 channels
8 bits/channel) at a floating frame rate around 24 frames per
second (fps) with pixel resolution of 1920 x 1080 and saved
in MP4 format. Ground truth physiology was also measured
with an FDA-cleared sensor (FlexComp Infiniti by Thought
Technologies Ltd.) that recorded Blood Volume Pulse (BVP)
from a finger probe at a constant sampling frequency of 256
Hz. The sensor data were synchronized with the video frames
via timestamps. All the experiments were conducted in real
work environments, in which many other people passed behind
the participants very often.

To assess the extent to which the measurement accuracy of
rPPG can be diminished by our methodology, an rPPG-based
heart rate measurement algorithm needs to be implemented.

Since major head motion is rare in our dataset, a simple but ro-
bust algorithm based on blind source separation (BSS) [3] was
applied. The algorithm spatially averages all pixels in the facial
region to form three color traces (RGB), decomposes the traces
into three independent source components using Independent
Component Analysis (ICA) [22], and always selects the second
component (for the sake of simplicity) as the desired pulse
signal. While implementing the algorithm on our dataset,
we observed that sometimes the second component was not
necessarily the best component corresponding to the pulse
wave, so we slightly tweaked the algorithm by introducing
a component selection step. In the step, a metric called pulse
significance [23], which is the product of the normalized pulse
band power and the power spectrum kurtosis, was calculated
on each of the three independent source components, and the
component with the highest pulse significance was chosen as
the pulse representation for heart rate measurement.

As shown in Fig. 3, the videos we collected are in high
resolution, but the facial regions of the participants only take
a small area. Though our methodology is capable of processing
the original full-resolution videos, it would consume a lot of
computation power and time. Also, there are usually multiple
human faces in our videos, as a result of which selective elim-
ination of physiological information from a single face might
be useful in some cases. Therefore, a face detection algorithm
using OpenCV’s Haar-like cascades [24] was applied to the
first frame of each input video first. Among all the detected
faces, we selected the largest one (always corresponding to the
participants’ faces), and defined the center 60% width and full
height of its bounding box as the region of interest (ROI). Our
rPPG elimination algorithm would be only employed within
the ROIs of each video.

In the implementation of our methodology, there are two
parameters to be selected: the frequency band of the physiolog-
ical signal of interest [ fL, fH ] and the elimination factor A. For
the frequency band [ fL, fH ], we tested a fine estimate, a 0.05-
Hz-wide band around each participant’s heart rate detected
by the BSS-based method, and a coarse estimate, [0.75 Hz,
2.5 Hz] for every participant (corresponding to 45 and 150
beats per minute). As for the elimination factor A, we observed
visible artifact in most of the processed videos when A<−1.5,
so we tested a span of values between 0 and -1.5. Using these
different combinations of parameters, all the 18 videos were
processed by our algorithm. The tweaked BSS-based rPPG
measurement method was then applied to both the input and
the output videos to generate a heart rate reading as well as a
power spectrum of the estimated pulse signal for each video.

The heart rate readings and the power spectra were com-
pared with the ground truth using three metrics: mean absolute
error (MAE) of the heart rate, spectrum power at the heart
rate normalized by the full spectrum power (normalized pulse
power 1, shortened as NPP1), and spectrum power at the
heart rate normalized by the band power within [0.75 Hz,
2.5 Hz] (normalized pulse power 2, shortened as NPP2).
The metric NPP1 reflects the extent to which the pulse
power is diminished among all frequencies, and the metric



NPP2 indicates the significance of the ground truth heart rate
within the common heart rate band, which is more related
to measurement accuracy. Among 18 input videos, 3 gave an
MAE higher than 2 beats per minute (BPM). This suggests
that their measurement accuracies for heart pulse were already
low without any processing, so we will not report their results
in the following sections. To further show the superiority of
our methods over previous motion magnification methods in
eliminating physiological information, we also implemented
the linear Eulerian motion magnification algorithm [13], pre-
viously shown to be good at magnifying small color changes
[15], using the fine estimate of frequency bands and equivalent
elimination factors.

V. RESULTS

Table I lists the three metrics MAE, NPP1, and NPP2
corresponding to each input or output video of each subject
using the fine estimate of the heart rate frequency band. The
same metrics for videos processed by our algorithm using the
coarse frequency band and the EMM algorithm are attached
in Appendix I. As shown in Table I, the average MAE of
heart rate measurement is 0.254 BPM for the original videos,
which is very accurate. After the videos were processed by our
algorithm, the average errors increased nicely to 5.499 BPM
(A = 0), 17.321 BPM (A = −0.5), 17.787 BPM (A = −1.0),
and 17.977 BPM (A=−1.5). A heart rate reading with an error
as high as 17 BPM is not meaningful; thus, our algorithm
effectively eliminated heart beat information from the facial
videos. For 13 of the videos, the MAE showed an increase
after being processed by our algorithm using the fine frequency
band. Meanwhile, the NPP1 and NPP2 metrics of all the
participants decreased. To assess whether the changes are
significant, a paired t-test was conducted between each output
metric and its corresponding input metric. The resulting t-
values and p-values are shown in Table I, Table III and Table
IV. For the fine frequency band results in Table I, the MAEs
were increased significantly at a 0.05 significance level when
A ≤ −0.5, and the normalized pulse powers were decreased
significantly for all choices of A.

To more intuitively compare our method versus EMM,
and the different selections of the elimination factor and the
frequency band, we summarize Table I, Table III and Table
IV in Fig. 2. There is a clear trend in all the three subplots
that a larger A leads to bigger MAEs and lower NPP1s and
NPP2s using our algorithm, while the EMM method can barely
change any of the metrics. Furthermore, the changes of all the
three metrics are always more significant when using the fine
frequency band compared with using the coarse one.

Our algorithm is able to eliminate physiological information
while preserving the visual appearance of videos. Fig. 3 shows
the same frames from an input video and its processed output
videos using different elimination factors. There is nearly no
visual difference between the input and output videos. Only
when the elimination factor A is as small as -1.5 in Fig. 3 (e)
does a slight artifact become observable on the participants’
eyes after zooming in. The power spectra of the pulse signals

estimated from each video are also drawn in Fig. 3, in which
attenuation of the pulse power along with the increase of A
is apparent. To quantitatively assess how much distortion our
algorithm caused to the videos, we computed two metrics: the
root mean square error (RMSE) and the structural similarity
(SSIM) index [25] between each input and output video within
the ROI. The SSIM index is a method for measuring the
perceived similarity between two images or videos. Its value is
always between -1 and 1, and value 1 is only reachable in the
case of two identical sets of data. Table II lists the RMSEs and
SSIMs of our output videos using the fine frequency band. The
same metrics for the coarse frequency band videos are attached
in Appendix I. As shown in Table II, for every participant,
RMSE increased and SSIM decreased as the elimination factor
A was set to be smaller. Even when A =−1.5, all the videos’
SSIMs remain much higher than 0.9, a common threshold for
indicating high visual similarity.
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Fig. 4. Scatter plots show the relationships between the physiological
elimination indicators (MAE = mean absolute error of heart rate measurement,
NPP1 = normalized pulse power 1, NPP2 = normalized pulse power 2) and
the video appearance distortion indicators (RMSE = root mean square error,
SSIM = structural similarity index). MAE, NPP1 and NPP2 were converted
into multiples by dividing them by their corresponding input values. Least-
squares lines were also fit and superimposed in each subplot.

To sum up, by decreasing the elimination factor A within
the range [-1.5, 0], both physiological attenuation and video
distortion intensify. To show the relationship between them
directly, we drew scatter plots of MAE/NPP1/NPP2 versus
RMSE/SSIM for all participants and all elimination factor
choices with least-squares lines superimposed in Fig. 4. The
slopes of the least-squares lines suggest that with the same
level of sacrifice in RMSE and SSIM, our method using the
fine frequency band always achieves a greater improvement
in physiological elimination compared with using the coarse
frequency band.

VI. DISCUSSION AND FUTURE WORK

One of the key parameters of our algorithm is the frequency
band of the physiological signal of interest. We compared two
different estimates of it: a fine version and a coarse version.



TABLE I
MEAN ABSOLUTE ERROR OF HEART RATE MEASUREMENT (MAE, IN THE UNIT OF BEATS PER MINUTE), NORMALIZED PULSE POWER 1 (NPP1), AND

NORMALIZED PULSE POWER 2 (NPP2) FOR EACH VIDEO. THE PARAMETER A REPRESENTS THE ELIMINATION FACTOR. ALL THE OUTPUT VIDEOS WERE
PROCESSED BY OUR ALGORITHM USING THE FINE ESTIMATE OF THE HEART RATE FREQUENCY BAND. THE LAST TWO ROWS SHOW THE T-TEST RESULTS

BETWEEN EACH OUTPUT METRIC AND ITS CORRESPONDING INPUT METRIC.

#
Input video Output video (A = 0) Output video (A =−0.5) Output video (A =−1.0) Output video (A =−1.5)

MAE NPP1 NPP2 MAE NPP1 NPP2 MAE NPP1 NPP2 MAE NPP1 NPP2 MAE NPP1 NPP2
1 0.084 0.166 0.013 0.084 0.154 0.013 0.084 0.151 0.012 0.084 0.142 0.011 22.566 0.010 0.002
2 0.379 0.121 0.029 0.113 0.087 0.019 2.577 0.021 0.004 7.769 0.012 0.004 15.878 0.003 0.001
3 0.416 0.034 0.002 14.595 0.018 0.001 14.595 0.018 0.001 14.595 0.020 0.002 0.917 0.024 0.001
4 0.104 0.031 0.005 0.104 0.032 0.005 0.104 0.042 0.004 0.104 0.038 0.005 0.104 0.031 0.005
5 0.681 0.039 0.005 25.176 0.002 0.000 45.317 0.002 0.000 45.317 0.001 0.000 45.317 0.000 0.000
6 0.083 0.108 0.019 0.083 0.087 0.009 0.083 0.081 0.013 0.434 0.021 0.004 28.343 0.000 0.000
9 0.084 0.119 0.023 0.401 0.105 0.020 0.401 0.095 0.012 0.401 0.076 0.006 0.886 0.040 0.003
10 0.600 0.036 0.006 0.100 0.060 0.005 22.570 0.000 0.000 22.570 0.000 0.000 22.071 0.006 0.001
12 0.088 0.055 0.010 0.088 0.030 0.003 35.466 0.017 0.001 36.920 0.009 0.001 36.920 0.006 0.000
13 0.491 0.060 0.009 0.491 0.034 0.006 21.793 0.018 0.004 21.793 0.009 0.002 35.801 0.003 0.001
14 0.110 0.097 0.006 0.110 0.058 0.004 23.216 0.031 0.003 23.216 0.018 0.002 23.216 0.011 0.001
15 0.094 0.040 0.006 32.516 0.011 0.001 29.021 0.001 0.000 29.021 0.002 0.000 29.021 0.002 0.000
16 0.065 0.064 0.008 8.095 0.004 0.001 8.095 0.005 0.001 8.095 0.016 0.004 8.095 0.022 0.004
17 0.422 0.096 0.015 0.422 0.122 0.010 56.388 0.006 0.001 56.388 0.009 0.001 0.422 0.081 0.011
18 0.103 0.098 0.005 0.103 0.082 0.003 0.103 0.071 0.002 0.103 0.054 0.002 0.103 0.030 0.001

Mean 0.254 0.078 0.011 5.499 0.059 0.007 17.321 0.037 0.004 17.787 0.028 0.003 17.977 0.018 0.002
t(15) -1.960 3.184 4.550 -3.653 5.435 4.225 -3.789 6.338 4.396 -4.454 5.301 4.256

p 0.070 0.007 0.001 0.003 0.000 0.001 0.002 0.000 0.001 0.001 0.000 0.001
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Fig. 2. (a) Mean absolute error of heart rate measurement, (b) normalized pulse power 1, and (c) normalized pulse power 2, averaged among all input
videos and all output videos using different methods and different elimination factors. An asterisk indicates a significant difference from the input at a 0.05
significance level.
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Fig. 3. Exemplary frames and power spectra of the estimated pulse signal from an input video (a) and output videos processed by different elimination
factors: (b) A = 0, (c) A =−0.5, (d) A =−1.0, and (e) A =−1.5. The yellow bounding box indicates the region of interest we applied our algorithm to, and
the red vertical lines mark the ground truth heart rate in each power spectrum.



TABLE II
ROOT MEAN SQUARE ERROR (RMSE) AND STRUCTURAL SIMILARITY (SSIM) BETWEEN EACH OUTPUT VIDEO AND ITS CORRESPONDING INPUT VIDEO
WITHIN THE REGIONS OF INTEREST. THE PARAMETER A REPRESENTS THE ELIMINATION FACTOR. ALL THE OUTPUT VIDEOS WERE PROCESSED BY OUR

ALGORITHM USING THE FINE ESTIMATE OF THE HEART RATE FREQUENCY BAND.

#
Input video Output video (A = 0) Output video (A =−0.5) Output video (A =−1.0) Output video (A =−1.5)

RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM
1 0.000 1.000 3.105 0.995 4.654 0.990 6.082 0.984 7.342 0.977
2 0.000 1.000 2.303 0.994 3.433 0.987 4.540 0.978 5.636 0.968
3 0.000 1.000 2.908 0.992 4.331 0.984 5.737 0.974 7.125 0.963
4 0.000 1.000 3.174 0.994 4.772 0.989 6.329 0.983 7.678 0.976
5 0.000 1.000 3.012 0.992 4.461 0.983 5.902 0.972 7.339 0.960
6 0.000 1.000 1.270 0.997 1.955 0.993 2.592 0.988 3.199 0.982
9 0.000 1.000 1.713 0.996 2.566 0.991 3.382 0.985 4.173 0.979

10 0.000 1.000 1.780 0.995 2.659 0.989 3.516 0.981 4.358 0.972
12 0.000 1.000 2.964 0.991 4.402 0.981 5.824 0.968 7.237 0.954
13 0.000 1.000 1.685 0.994 2.515 0.988 3.321 0.979 4.114 0.969
14 0.000 1.000 2.684 0.991 3.987 0.983 5.280 0.972 6.565 0.959
15 0.000 1.000 1.875 0.995 2.817 0.990 3.727 0.983 4.607 0.975
16 0.000 1.000 1.264 0.997 1.951 0.994 2.590 0.989 3.203 0.984
17 0.000 1.000 0.980 0.998 1.534 0.996 2.026 0.993 2.488 0.989
18 0.000 1.000 2.459 0.992 3.650 0.985 4.820 0.975 5.982 0.963

Mean 0.000 1.000 2.212 0.994 3.312 0.988 4.378 0.980 5.403 0.971

The fine version requires a non-contact physiological measure-
ment method to be applied to the input video first, while the
coarse version uses a general frequency band covering all com-
mon values of a physiological signal, which is much cheaper
in terms of computation load. Our results showed that the fine
version always outperforms the coarse version in physiological
elimination using the same elimination factor. Thus the fine
version is always recommended when computation power and
speed are not under consideration.

In Table I and Table III, the decrease of the elimination
factor A and the decrease of the heart rate measurement accu-
racy are generally correlated, but in theory their relationship
should not be monotonic. As shown, A tends to work well
when set slightly negative. However, if A was set to be too
negative for a video, it would over-compensate the residual
power and start to magnify the estimated physiological signal.
This phenomenon can be observed in Table I on Participants
3 and 17, whose MAEs start to decrease when A ≤ −1.0.
Theoretically, there is an optimal A for each video, which can
eliminate physiological information most cleanly. We have not
yet found a way to estimate this optimal value, which is future
work.

There are several other limitations in this study. First, the
implementation of our algorithm is not yet fast enough to run
in real time. As a result, it is not yet fit for online processing
of live streams. We believe by optimizing the program it will
be possible to achieve online analysis. Second, all the videos
collected in our user study are 30s in length, which does
not allow us to probe the feasibility of our method in the
long run. In theory, all the vital signs of the human body
change gradually under resting states. Consequentially, if the
fine estimate of the frequency band is used in our algorithm,

it needs to be updated once in a while. Finally, it would be
also interesting to assess our algorithm on the elimination
of facial BCG signals as well as physiological information
measured from rPPG other than HR, such as RR and HRV.
These limitations can be addressed in future work.

VII. CONCLUSIONS

We have shown that it is possible to eliminate physiological
information from facial videos without affecting their visual
appearance. We demonstrated a new algorithm for this elim-
ination, which is based on motion component magnification.
The new algorithm successfully increased the average error
of HR measurement on 15 facial videos by 70 times. The
success is attributed to the use of the new motion component
representation, which was shown to work better than a previ-
ous EMM approach for representing the motion as sinusoids.
Compared with using a coarse frequency band between 45
BPM and 150 BPM to extract the signal of interest, the method
of using a fine frequency band estimated by a BSS-based rPPG
measurement method was shown to achieve better performance
at the cost of some extra computation. Finally, we showed that
while tuning the elimination factor, there is a trade-off between
physiological attenuation and video appearance distortion.
Overall, a range of values of the main parameters was explored
and shown to give significant attenuation of the physiological
heart pulse signal, while maintaining suitably low root-mean-
square error and significantly high visual similarity to the
original.
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TABLE III

MEAN ABSOLUTE ERROR OF HEART RATE MEASUREMENT (MAE, IN THE UNIT OF BEATS PER MINUTE), NORMALIZED PULSE POWER 1 (NPP1), AND

NORMALIZED PULSE POWER 2 (NPP2) FOR EACH VIDEO. THE PARAMETER A REPRESENTS THE ELIMINATION FACTOR. ALL THE OUTPUT VIDEOS

WERE PROCESSED BY OUR ALGORITHM USING THE COARSE ESTIMATE OF THE HEART RATE FREQUENCY BAND. THE LAST TWO ROWS SHOW THE

T-TEST RESULTS BETWEEN EACH OUTPUT METRIC AND ITS CORRESPONDING INPUT METRIC.

#
Input video Output video (A= 0) Output video (A= 0.5) Output video (A= 1.0) Output video (A= 1.5)

MAE NPP1 NPP2 MAE NPP1 NPP2 MAE NPP1 NPP2 MAE NPP1 NPP2 MAE NPP1 NPP2

1 0.084 0.166 0.013 0.084 0.167 0.013 0.084 0.167 0.013 0.084 0.134 0.011 6.425 0.014 0.003

2 0.379 0.121 0.029 0.379 0.128 0.026 0.379 0.116 0.021 0.113 0.099 0.016 0.379 0.116 0.021

3 0.416 0.034 0.002 0.416 0.030 0.002 0.416 0.027 0.002 0.917 0.018 0.002 0.917 0.018 0.002

4 0.104 0.031 0.005 0.104 0.034 0.005 0.104 0.031 0.005 0.367 0.026 0.004 0.104 0.030 0.004

5 0.681 0.039 0.005 1.226 0.033 0.005 31.164 0.020 0.002 31.164 0.016 0.002 31.164 0.013 0.002

6 0.083 0.108 0.019 0.083 0.091 0.016 0.434 0.064 0.010 3.018 0.026 0.005 3.535 0.015 0.002

9 0.084 0.119 0.023 0.084 0.117 0.024 0.084 0.118 0.023 0.401 0.118 0.021 0.401 0.109 0.019

10 0.600 0.036 0.006 0.600 0.038 0.005 0.600 0.048 0.005 0.100 0.034 0.004 0.600 0.044 0.003

12 0.088 0.055 0.010 22.866 0.029 0.003 8.636 0.016 0.001 8.151 0.006 0.001 36.435 0.004 0.000

13 0.491 0.060 0.009 0.491 0.035 0.007 21.793 0.024 0.005 21.793 0.021 0.006 25.614 0.019 0.006

14 0.110 0.097 0.006 0.110 0.079 0.007 0.110 0.053 0.007 0.110 0.051 0.007 0.110 0.056 0.005

15 0.094 0.040 0.006 0.094 0.075 0.007 0.094 0.070 0.007 0.094 0.043 0.005 37.437 0.014 0.002

16 0.065 0.064 0.008 11.842 0.007 0.001 3.683 0.004 0.001 0.471 0.059 0.007 0.065 0.106 0.008

17 0.422 0.096 0.015 0.422 0.105 0.015 0.422 0.018 0.003 20.066 0.005 0.001 20.066 0.003 0.001

18 0.103 0.098 0.005 0.103 0.061 0.006 0.103 0.092 0.004 0.103 0.054 0.005 8.755 0.022 0.002

Mean 0.254 0.078 0.011 2.594 0.069 0.009 4.540 0.058 0.007 5.797 0.047 0.006 11.467 0.039 0.005

t(15) -1.413 1.590 1.735 -1.798 2.591 3.190 -2.160 4.079 3.210 -3.016 3.088 4.173

p 0.179 0.134 0.105 0.094 0.021 0.007 0.049 0.001 0.006 0.009 0.008 0.001

TABLE IV

MEAN ABSOLUTE ERROR OF HEART RATE MEASUREMENT (MAE, IN THE UNIT OF BEATS PER MINUTE), NORMALIZED PULSE POWER 1 (NPP1), AND

NORMALIZED PULSE POWER 2 (NPP2) FOR EACH VIDEO. THE PARAMETER A REPRESENTS THE ELIMINATION FACTOR. ALL THE OUTPUT VIDEOS

WERE PROCESSED BY THE EULERIAN MOTION MAGNIFICATION ALGORITHM. THE LAST TWO ROWS SHOW THE T-TEST RESULTS BETWEEN EACH

OUTPUT METRIC AND ITS CORRESPONDING INPUT METRIC.

#
Input video Output video (A= 0) Output video (A= 0.5) Output video (A= 1.0) Output video (A= 1.5)

MAE NPP1 NPP2 MAE NPP1 NPP2 MAE NPP1 NPP2 MAE NPP1 NPP2 MAE NPP1 NPP2

1 0.084 0.166 0.013 0.084 0.168 0.013 0.084 0.168 0.013 0.084 0.168 0.013 0.084 0.168 0.012

2 0.379 0.121 0.029 0.379 0.124 0.030 0.379 0.124 0.030 0.379 0.123 0.030 0.379 0.122 0.030

3 0.416 0.034 0.002 0.416 0.034 0.002 0.416 0.034 0.002 0.416 0.034 0.002 0.416 0.035 0.002

4 0.104 0.031 0.005 0.104 0.036 0.006 0.104 0.036 0.006 0.104 0.036 0.006 0.104 0.031 0.005

5 0.681 0.039 0.005 0.681 0.038 0.005 0.681 0.040 0.006 1.226 0.039 0.005 1.226 0.034 0.005

6 0.083 0.108 0.019 0.083 0.110 0.020 0.083 0.112 0.021 0.083 0.113 0.021 0.083 0.112 0.020

9 0.084 0.119 0.023 0.084 0.119 0.023 0.084 0.118 0.023 0.084 0.124 0.023 0.084 0.106 0.019

10 0.600 0.036 0.006 0.600 0.036 0.006 0.600 0.035 0.006 0.600 0.036 0.006 0.600 0.039 0.007

12 0.088 0.055 0.010 0.088 0.054 0.010 0.088 0.056 0.011 0.088 0.061 0.012 0.088 0.064 0.012

13 0.491 0.060 0.009 0.491 0.060 0.010 0.491 0.057 0.009 0.491 0.054 0.009 0.491 0.054 0.009

14 0.110 0.097 0.006 0.110 0.098 0.006 0.110 0.098 0.006 0.110 0.098 0.006 0.110 0.097 0.006

15 0.094 0.040 0.006 0.094 0.041 0.006 0.094 0.041 0.006 0.094 0.041 0.006 0.094 0.042 0.006

16 0.065 0.064 0.008 0.065 0.065 0.008 0.065 0.065 0.008 0.065 0.064 0.008 0.065 0.062 0.008

17 0.422 0.096 0.015 0.422 0.085 0.014 0.422 0.085 0.014 0.422 0.091 0.014 0.422 0.093 0.014

18 0.103 0.098 0.005 0.103 0.066 0.006 0.103 0.060 0.005 0.103 0.050 0.004 8.274 0.013 0.001

Mean 0.254 0.078 0.011 0.254 0.075 0.011 0.254 0.075 0.011 0.290 0.075 0.011 0.835 0.071 0.010

t(15) NaN 0.926 -1.948 NaN 0.845 -2.034 -1.000 0.617 -1.501 -1.069 1.071 0.806

p NaN 0.370 0.072 NaN 0.412 0.061 0.334 0.547 0.156 0.303 0.302 0.434

TABLE V

ROOT MEAN SQUARE ERROR (RMSE) AND STRUCTURAL SIMILARITY (SSIM) BETWEEN EACH OUTPUT VIDEO AND ITS CORRESPONDING INPUT

VIDEO WITHIN THE REGIONS OF INTEREST. THE PARAMETER A REPRESENTS THE ELIMINATION FACTOR. ALL THE OUTPUT VIDEOS WERE

PROCESSED BY OUR ALGORITHM USING THE COARSE ESTIMATE OF THE HEART RATE FREQUENCY BAND.

#
Input video Output video (A= 0) Output video (A= 0.5) Output video (A= 1.0) Output video (A= 1.5)

RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM

1 0.000 1.000 2.772 0.996 4.172 0.992 5.435 0.987 6.500 0.981

2 0.000 1.000 2.499 0.995 3.743 0.989 4.960 0.981 6.122 0.973

3 0.000 1.000 3.396 0.994 5.084 0.987 6.736 0.980 8.242 0.971

4 0.000 1.000 3.087 0.995 4.645 0.990 6.167 0.985 7.485 0.978

5 0.000 1.000 2.451 0.993 3.645 0.987 4.827 0.978 5.999 0.968

6 0.000 1.000 1.229 0.997 1.895 0.994 2.514 0.989 3.101 0.984

9 0.000 1.000 1.467 0.997 2.229 0.993 2.945 0.988 3.626 0.982

10 0.000 1.000 1.473 0.996 2.238 0.991 2.975 0.985 3.696 0.977

12 0.000 1.000 2.717 0.992 4.048 0.984 5.361 0.973 6.662 0.961

13 0.000 1.000 1.460 0.995 2.211 0.990 2.934 0.983 3.639 0.974

14 0.000 1.000 2.204 0.994 3.290 0.988 4.357 0.980 5.396 0.972

15 0.000 1.000 1.913 0.996 2.895 0.991 3.829 0.985 4.690 0.978

16 0.000 1.000 1.014 0.998 1.608 0.995 2.138 0.992 2.640 0.988

17 0.000 1.000 0.974 0.998 1.528 0.996 2.019 0.993 2.481 0.989

18 0.000 1.000 1.787 0.995 2.683 0.989 3.546 0.982 4.385 0.974

Mean 0.000 1.000 2.029 0.995 3.061 0.990 4.050 0.984 4.978 0.977

APPENDIX I


