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Motivation

Actigraphy + Sleep
Diary

Polysomnography
(PSG)

Requires significant
effort of users to
maintain accurate
diaries, and of
researchers to check
the diary entries for

Impractical for
long-term home use

Sleep Diary

What time did you try to fall asleep? 02/09/2017 23-20) anomal ieS

What time did you finally wake up? 02/10/2017 13:00

There Is a need for tools to enable accurate long-term evaluation of sleep timing and duration
in daily life with less burden on users and researchers.
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Data
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Features

Source Modality Feature variables
Mean, SD, power within 0-0.1,
0.1-0.2, 0.2-0.3, 0.3-04, and 0.4-
, Skin conductance (SC) | 0.5Hz bands, the number of SC
Wrist responses, storm flag, elapsed
selinll fime since a storm started
Acceleration (ACC) Mean, SD
Skin temperature (ST) Mean, SD
S Screen was on, the time the
creen
screen was turned on
Phone SMS Sent a message
Call On a call, missed a call
T Mc_:w_emem index, connected to
WikF1, connected to cellular nets
Time Time Elapsed minutes since 12:00 AM

SC is more likely to have periods of high frequency activity called “storms” during NREM2 and SWS sleep
Movement index = (var(latitude) + var(longitude)) / 2
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Methods

Sleep detection:
Bidirectional long short-term memory
neural network model
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Methods
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Results

Sleep/wake classification accuracy: 96.5%
(Acceleration + Skin temperature + Time)

For each participant,

80% of days - ,
20% of days - test set
Sleep episode onset detection

F. scores: 0.86, mean errors: 5.0 min

Participant 1 Participant 2
Sleep episode offset detection ] [TTT11] [T1] [TT1]
F. scores: 0.84, mean errors: 3.5 min
Sleep detection accuracy Sleep episode on/offset detection
Feature combinations bl il bt e
Without time | With time | Sleep onset Sleep offset Sleep onset Sleep offset
I ME Fq ME I ME F ME
Wrist sensor 935.9 96.5 0.85 D 0.82 6.3 0.84 3.3 0.84 3.0
Phone 76.7 89.1 0.27 | 124 | 0.21 156 | 043 | 103 | 0.36 | 13.2
Wrist + Phone 96.0 96.3 0.84 33 0.82 6.0 | 0.84 3 1 0.82 6.5
ACC + EDA 95.6 96.3 0.84 3.3 0.83 6.4 0.84 5.1 0.83 6.0
ACC + 5T 96.2 96.5 0.86 [ 5.0 0.84 56 | 0.86 | 5.0 | 0.84 D
EDA + ST 925 94.5 0.74 | 6.9 .73 1.2 0.74 6.7 0.74 7.1
ACC 935.5 96.3 0.85 5.4 0.81 6.9 0.84 3. 0.81 6.5
EDA 90.8 93.7 0.71 8.0 | 0.68 B 0.70 | 6.4 0.70 | 7.1
ST 86.7 90.7 0.59 0.8 056 [ 11.5 | 052 | 103 | 0.60 | 11.0
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Generalized to different participants

80% of participants -
20% of participants - test set

Participant 1 Participant 2
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Real-time implementation
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Conclusion

We showed
Sleep/wake classification accuracy: 96.5% with features from Acceleration + Skin temperature + Time
Sleep episode onset detection (F, scores: 0.86, mean errors: 5.0 min)

Sleep episode offset detection (F, scores: 0.84, mean errors: 5.5 min)

Our results indicate that long-term ambulatory sleep/wake records from large populations can be measured unobtrusively and
accurately by exploiting the ubiquity of smartphones and wearable sensors and the power of deep learning.
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