

Multimodal Ambulatory Sleep Detection Using Recurrent Neural Networks

Chen, W.^{1*}, Sano, A.^{1*}, Lopez, D.^{1,2}, Taylor, S.¹, McHIII, A. W.^{3,4}, Phillips, A. J.^{3,4}, Barger, L.K.^{3,4}, Czeisler, C. A.^{3,4}, Picard, R. W.¹ (*equal contribution)

¹Media Lab, Massachusetts Institute of Technology, Cambridge, MA,

²Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA,

³Sleep Health Institute and Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA,

⁴Division of Sleep Medicine, Harvard Medical School, Boston, MA.

Conflict of Interest Disclosures for Speakers

X	1. I do not have any relationships with arby, or used on, patients, OR	ny entities producing , marketing, re-selling, or distributing health care goods or services consumed
	2. I have the following relationships with or used on, patients.	entities producing, marketing, re-selling, or distributing health care goods or services consumed by,
	Type of Potential Conflict	Details of Potential Conflict
	Grant/Research Support	
	Consultant	
	Speakers' Bureaus	
	Financial support	
	Other	
	3. The material presented in this lecture	has no relationship with any of these potential conflicts, OR
	4. This talk presents material that is rela as support for this lecture:	ted to one or more of these potential conflicts, and the following objective references are provided
	1.	
	2.	

Motivation

Polysomnography (PSG)

Impractical for long-term home use

Actigraphy + Sleep Diary

Requires significant effort of users to maintain accurate diaries, and of researchers to check the diary entries for anomalies

There is a need for tools to enable accurate long-term evaluation of sleep timing and duration in daily life with less burden on users and researchers.

Data

- 5580 days of multimodal data from a wrist sensor and an Android phone
- 186 undergraduate students, 30 days each
- Wrist Sensor Skin conductance (SC) Acceleration (ACC)

 - Skin temperature (ST)

- Phone
 - Call
 - SMS
 - Location
 - Screen

- Time
- Labels of sleep/wake:

Human scored actigraphy with sleep diaries based on a previously established method (Barger et al., 2014) Resolution: 1 min -> 1 day = 1440 labels

Features

Source	Modality	Feature variables					
Wrist	Skin conductance (SC)	Mean, SD, power within 0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, and 0.4-0.5Hz bands, the number of SC responses, storm flag, elapsed time since a storm started					
	Acceleration (ACC)	Mean, SD					
	Skin temperature (ST)	Mean, SD					
	Screen	Screen was on, the time the screen was turned on					
Phone	SMS	Sent a message					
	Call	On a call, missed a call					
	Location	Movement index, connected to WiFi, connected to cellular nets					
Time	Time	Elapsed minutes since 12:00 AM					

SC is more likely to have periods of high frequency activity called "storms" during NREM2 and SWS sleep Movement index = (var(latitude) + var(longitude)) / 2

Methods

Sleep detection:

Bidirectional long short-term memory neural network model

Methods

Sleep episode onset/offset detection:

Bidirectional long short-term memory neural network model

+ Peak detection

Results

Sleep/wake classification accuracy: 96.5% (Acceleration + Skin temperature + Time)

Sleep episode onset detection

F₁ scores: **0.86**, mean errors: **5.0** min

Sleep episode offset detection

F₁ scores: **0.84**, mean errors: **5.5** min

For each participant, 80% of days - training set, 20% of days - test set

Participant 1

Participant 2

	Sleep detection accuracy		Sleep episode on/offset detection							
Feature combinations		With time	Without time				With time			
Teature combinations	Without time		Sleep onset		Sleep offset		Sleep onset		Sleep offset	
			F_1	ME	F_1	ME	F_1	ME	F_1	ME
Wrist sensor	95.9	96.5	0.85	5.3	0.82	6.3	0.84	5.3	0.84	5.5
Phone	76.7	89.1	0.27	12.4	0.21	15.6	0.43	10.3	0.36	13.2
Wrist + Phone	96.0	96.3	0.84	5.3	0.82	6.0	0.84	5.1	0.82	6.3
ACC + EDA	95.6	96.3	0.84	5.3	0.83	6.4	0.84	5.1	0.83	6.0
ACC + ST	96.2	96.5	0.86	5.0	0.84	5.6	0.86	5.0	0.84	5.5
EDA + ST	92.5	94.5	0.74	6.9	0.73	7.2	0.74	6.7	0.74	7.1
ACC	95.5	96.3	0.85	5.4	0.81	6.9	0.84	5.1	0.81	6.5
EDA	90.8	93.7	0.71	8.0	0.68	7.7	0.70	6.4	0.70	7.1
ST	86.7	90.7	0.59	9.8	0.56	11.5	0.52	10.3	0.60	11.0

Generalized to different participants

80% of participants - training set 20% of participants - test set

Real-time implementation

Conclusion

We showed

Sleep/wake classification accuracy: 96.5% with features from Acceleration + Skin temperature + Time

Sleep episode onset detection (F₁ scores: **0.86**, mean errors: **5.0 min)**

Sleep episode offset detection (F₁ scores: **0.84**, mean errors: **5.5 min)**

Our results indicate that long-term ambulatory sleep/wake records from large populations can be measured unobtrusively and accurately by exploiting the ubiquity of smartphones and wearable sensors and the power of deep learning.

