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Abstract—Animated GIFs are widely used on the Internet
to express emotions, but their automatic analysis is largely
unexplored before. To help with the search and recommendation
of GIFs, we aim to predict their emotions perceived by humans
based on their contents. Since previous solutions to this problem
only utilize image-based features and lose all the motion informa-
tion, we propose to use 3D convolutional neural networks (CNNs)
to extract spatiotemporal features from GIFs. We evaluate our
methodology on a crowd-sourcing platform called GIFGIF with
more than 6000 animated GIFs, and achieve a better accuracy
then any previous approach in predicting crowd-sourced intensity
scores of 17 emotions. It is also found that our trained model can
be used to distinguish and cluster emotions in terms of valence
and risk perception.

Index Terms—emotion detection; animated GIFs; perceived
emotion; 3D convolutional neural network.

I. INTRODUCTION

The Graphics Interchange Format (GIF) is a bitmap image
format widespread on the Internet due to its wide compatibility
and portability. Different from other popular image formats,
GIF supports animations, which makes it a special media
form between videos and still images. As a powerful tool
for visually expressing emotions online, animated GIFs play
an important role in popular culture. People usually make
animated GIFs from scenes of movies and TV shows, and
use them on social media, digital forums, message boards and
even in emails as an enhanced version of emoticons. Despite
the format’s popularity, its information processing and retrieval
have been rarely explored in multimedia and computer vision
research. Though similar to videos as spatiotemporal volumes,
animated GIFs have a number of unique characteristics such as
briefness, looping, silence as well as emotional expressiveness,
which bring about particular challenges in their analysis.
We believe it is worthwhile to develop artificial intelligence
systems specifically for understanding animated GIFs, as this
would help the Internet users search, use and recommend them
more efficiently, and assist researchers to better understand
how humans perceive them.

This paper will focus on predicting perceived emotions in
animated GIFs. When a media sample is presented to human
subjects, their perceived emotion is the emotion that they think
the sample expresses instead of the emotion they feel, which
is otherwise called their induced emotion. According to Jou

et al. [1], perceived emotions are more concrete and objective
than induced emotions, where labels are less reliable due to
their subjectivity. Specific to animated GIFs, it is also their
perceived emotions rather than induced emotions that usually
determines how you use the GIFs, because normally you post
a GIF to express your current emotion instead of to induce
a certain emotion from the readers. There are many previous
works about emotion detection from videos. However, most
of them are based on human subjects’ emotional responses
to videos, i.e. induced emotions [2]–[7]. Pang et al. [8] have
realized prediction of perceived emotions from user-generated
content including videos, but their emphasis is on multi-modal
learning from not only visual but also auditory and textual
modalities. There are also several works not mentioning which
kind of emotion labels they use [9], [10].

To our knowledge, the only previous study on predicting
perceived emotions in animated GIFs is from Jou et al. [1].
On a dataset of over 3800 animated GIFs, they calculated
four different feature representations: color histograms, facial
expressions recognized by a CNN [11], image-based aesthetics
[12], and a mid-level visual representation composed of visual
sentiment detectors called SentiBank [13]. After testing three
different regression methods, they report a highest prediction
accuracy on 17 categories of emotions using the facial expres-
sion features. However, a large proportion of GIFs are made
from cartoons or anime, in which facial expression recognition
can barely work. Hence Jou et al. have to assign average labels
to GIFs without a detected face. Moreover, all the features
they use are image-based, where all the temporal information
related to motion is neglected .

To address these problems, we adopt a 3D CNN for GIF
analysis so that spatiotemporal instead of only spatial features
can be extracted. It has been shown by Tran et al. [14] that for
video analysis volume-based features are superior to image-
based ones due to their capability of modeling motions. They
develop a video feature representation based on 3D CNN
and Sport1M dataset called C3D. It yields good performance
on various video analysis tasks (action recognition, scene
classification, and object recognition) without requiring to
finetune the model for each task. Thus we believe it is also
promising to adapt it to the prediction of perceived emotions.

Our contributions in this paper include: (1) We analyze the



file structure of GIFs and discuss the main differences from
videos; (2) We use 3D CNN features and a Lasso regression to
predict perceived emotion intensities of GIFs on a large-scale
dataset more accurately then any previous method; (3) We
discover that the model we trained reveals useful information
for understanding human emotions.

II. METHODS

A. Dataset

We collected our data from the GIFGIF website [15], a
crowd-sourcing platform enabling users to vote on animated
GIFs with their perceived emotions. The GIFs on the platform
are imported from a large-scale GIF database called Giphy
[16], and cover a wide variety of sources including movies, TV
shows, advertisements, sports, cartoons, anime, video games,
user-generated content, and user-edited content. As a result,
the GIFs span a broad range of resolutions, camera angles,
zooming, illumination, grayscale/color, humans/non-humans,
numbers of objects, and special effects.

Fig. 1. GIFGIF homepage.

When users enter the homepage of GIFGIF, a pair of random
GIFs will be presented with a question ”which better expresses
X”, as shown in Fig. 1, where X is one of 17 emotions:
amusement, anger, contempt, contentment, disgust, embar-
rassment, excitement, fear, guilt, happiness, pleasure, pride,
relief, sadness, satisfaction, shame, and surprise. The users can
answer the question by pressing on the GIF that matches the
emotion or select ”neither”. The developers of GIFGIF chose

the 17 emotion categories based on Paul Ekman’s selection
of universal emotions in the 1990s [17]. With all the answers
from millions of users, the website is capable of ranking each
GIF by its emotion intensities for all the 17 categories. The
website API annotates every animated GIF with a 17 x 2
matrix, containing scores between 0 and 50 for each emotion
where 25 is neutral and every score’s uncertainty. According
to GIFGIF, these scores and uncertainties are generated from
users’ votes using the TrueSkill rating algorithm [18]. The
[0,50] range is heuristically given by a prior µ0 = 25 and
σ0 = 25/3. As soft labels are applied, a GIF can have low
emotion intensities in all the 17 categories if it is relatively
neutral. Therefore, predicting these labels is better defined as
a regression problem rather than a classification problem.

Until May 22, 2016, the GIFGIF platform had indexed 6119
animated GIFs with 3,130,780 crowd-sourced annotations.
Skipping 6 GIFs with broken links, we downloaded 6113 files
with their corresponding labels as our dataset.

B. Preprocessing
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Fig. 2. Histograms of frame numbers and average frame delays in our dataset.

Feature extraction from videos for machine learning usually
requires a preprocessing to normalize the widths, heights and
lengths of videos to be the same. However, different from
most videos, animated GIFs not only have varied lengths but
also have varied frame rates. Table I shows the structure of an
exemplary GIF (#989 on GIFGIF) with 6 frames. As illustrated
in the table, every frame has an assigned delay time, and
different frames within a file can even have different delays.
We read the information from all the GIFs in our dataset, and
drew the histograms of their frame numbers and average frame
delays (Fig. 2).

As shown in Fig. 2, the longest GIF has 347 frames, while
the shortest has only 2 frames. For too short GIFs, we looped
all their frames to imitate the way they were usually presented
on the Internet and perceived by human eyes. For too long

TABLE I
STRUCTURE OF AN EXEMPLARY GIF FILE

Frames
Frame
Size

Format
Version

Left /
Pixels

Top /
Pixels

Width /
Pixels

Height /
Pixels

Bit
Depth

Background
Color

Aspect
Ratio

Delay
Time / s

Transparent
Color

1 31400 89a 1 1 500 492 7 128 0 0.5 128
2 31400 89a 165 178 306 33 7 128 0 0.5 128
3 31400 89a 141 176 325 48 7 128 0 0.2 128
4 31400 89a 136 214 303 69 7 128 0 0.2 128
5 31400 89a 134 274 325 50 7 128 0 0.5 128
6 31400 89a 156 121 331 89 7 128 0 2.0 128
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Fig. 3. C3D architecture [14].

GIFs, Jou et al. [1] subsampled ten equally spaced frames
within each GIF, because their image-based method does not
consider the relationship between frames. On the contrary,
in our method using 3D representations, sampling a single
frame from tens of frames would destroy the dynamics of any
continuous action. Therefore, we chose to always maintain the
continuity of consecutive frames by splitting long GIFs into
multiple equal-length clips and extracting features from each
of them.

Since GIFs have extremely diverse frame rates (Fig. 2), the
length of a clip can be defined in two different ways: frame-
based or time-based. The frame-based way would directly
put the same number of frames into each clip regardless
of different frame rates, while the time-based way would
interpolate all GIFs to the same frame rate and then do the
splitting so that every clip has the same duration. For GIFs, the
optimal solution is the latter, because the speed information
of actions (e.g. how fast an athlete raise his/her hands) will
be maintained, which is possibly useful for distinguishing
between emotions. However, as the highest frame rate is about
40 times the lowest in our dataset, it is difficult to realize
40-time motion interpolation without causing visual artifact.
Furthermore, some web browsers ignore very short frame
delays of GIFs and replace them with a default delay, as
a result of which the delay parameters inside a GIF may
not necessarily reflect its real playback speed. Therefore, we
finally chose the frame-based way to split the raw frames
directly.

C. Feature Representations

We used the C3D video descriptor as our feature representa-
tion. Fig. 3 shows the architecture of the C3D neural network.
It has 8 convolution, 5 max-pooling, and 2 fully connected
layers, followed by a softmax output layer. The 3D convolution
layers have 3 x 3 x 3 kernels with stride 1 in both spatial and
temporal dimensions, and numbers of filters denoted in each
box in the figure. The kernels of all the 3D pooling layers are
2 x 2 x 2, except for Pool1 is 1 x 2 x 2. Every fully connected
layer has 4096 output units.

Using the same preprocessing parameters as C3D, every
GIF was split into 16-frame-long clips with a 8-frame overlap
between two consecutive ones. GIFs shorter than 16 frames
or not integer multiples of 8 frames were padded via looping
first. The clips were then resized to have a frame size of 128
pixels x 171 pixels, and center cropped into 16 frames x 112
pixels x 112 pixels. After all the normalizations, they were
passed to the C3D network. As introduced before, the neural
network was pre-trained on the Sport1M dataset, and had
shown good generalization capability across various datasets.

Its fc6 activations formed a 4096-dim vector for each clip,
which was finally saved as our feature representation.

D. Lasso Regression

For every GIF clip, our feature representation exhibits 4096
features, which are comparable to the size of our dataset.
Consequentially, an ordinary linear regression without regular-
ization would likely give poor results because of over-fitting.
To address the problem, we trained parsimonious models using
a Lasso regression [19] so that variable selection can be done
automatically.

Consider a sample consisting of N observations, each of
which consists of p features and a single outcome. Let yi
be the outcome and xi = (x1, x2, · · · , xp)T be the feature
vector for the i-th observation. A Lasso regression solves the
problem:

min
β0,β

(
1

2N

N∑
i=1

(yi − β0 − xTi β)2 + λ

p∑
j=1

|βj |) (1)

where β and β0 are fitted coefficients and intercept, and λ
is a nonnegative regularization parameter optimized via cross-
validation.

III. RESULTS

TABLE II
THE NORMALIZED MEAN SQUARED ERRORS (NMSE) FOR EMOTION

PREDICTION ON GIFGIF. LOWER NMSE INDICATES BETTER
PERFORMANCE.

Methods nMSE
3858 GIFs

Color histograms + Trace-norm
regularized multi-task regression

1.4641± 0.1935

Face expression + Ordinary least squares
linear regression

0.8925± 0.0036

Image-based aesthetics + Trace-norm
regularized multi-task regression

1.0361± 0.0093

SentiBank + Logistic regression 1.4944± 0.0593

C3D + Lasso regression 0.6652± 0.0545

6113 GIFs
C3D + Lasso regression 0.7161± 0.0519

To compare with previous methods, we used the same
approach as Jou et al. [1] to train and test our model. The
emotion intensity scores from the TrueSkill rating algorithm
were normalized to [-1,1], and applied to each GIF clip as
weakly supervised labels. Since Jou et al. only tested 3858
GIFs on GIFGIF up to April 29, 2014, we assessed our
method on two different set sizes: the first 3858 GIFs and the
whole 6113 GIFs. For either size, a 5-fold cross-validation
was employed with regression results reported by averaging
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Fig. 4. First and second principal components of our regression coefficients
and intercepts.

clip-level scores over each GIF within the test sets. A metric
called normalized mean squared error (nMSE) commonly used
before [20], [21] was applied to our predicted scores and the
ground truth to evaluate the prediction accuracy. It is defined
as the mean squared error (MSE) divided by the variance of
the target vector to assure that the error is not over-weighted
by those high-variance emotions.

Table II lists our final results and the best nMSEs reported
before using other feature representations. The mean and
standard deviation values in the table were calculated across
17 emotions over five test sets of each. On the small set with
3858 GIFs, our method achieved a performance better than
all the previous. On the whole dataset with 6113 GIFs, the
nMSE becomes a little higher, which is probably because the
later a GIF was posted on GIFGIF the fewer votes it would
usually get. The number of votes a GIF received affects the
reliability of its emotion intensities, partially quantified as the
uncertainties of the scores. In our dataset, the first 3858 GIFs
had an average TrueSkill uncertainty of 1.0286, while the latter
2255 GIFs’ was 1.1259.

To further verify the effectiveness of our method, we
analyzed the 85 sets (17 emotions x 5 test repetitions) of
regression coefficients and intercepts β and β0 learned from
GIFGIF to probe the relationships among emotions. Each pair
of β and β0 was concatenated into a 4097-dim vector, and
fed into principal component analysis (PCA). The first and
second principal components of all the sets were visualized in
Fig. 4. According to the figure, the first principal component
clearly indicates the valence of emotions, as positive emotions
including happiness, pleasure, amusement and contentment
are clustered at high values, and negative feelings such as
disgust, sadness and shame appeared on the far left of the

figure. On the other hand, the second principal component
appears to reflect the risk perception of emotions [22], on
which fear and anger have opposite effects. According to
Lerner and Keltner, emotions like fear and surprise relate
to pessimistic risk estimates, while emotions like anger and
contempt exhibit optimistic risk estimates. This discrimination
perfectly matches our y-axis in Fig. 4.

IV. CONCLUSION

We have described, implemented and evaluated a novel
methodology for predicting perceived emotions from animated
GIFs using 3D CNNs. Our method not only predicts emo-
tion intensities of GIFs more accurately than any previous
approach, but also proves to be a promising tool for emotion
taxonomy. One potential future direction of this work will
be considering both the emotion intensity scores and their
uncertainties as the training labels.
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