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Abstract— Recently, wearable devices have allowed for
long term, ambulatory measurement of electrodermal activity
(EDA). Despite the fact that ambulatory recording can be
noisy, and recording artifacts can easily be mistaken for a
physiological response during analysis, to date there is no auto-
matic method for detecting artifacts. This paper describes the
development of a machine learning algorithm for automatically
detecting EDA artifacts, and provides an empirical evaluation
of classification performance. We have encoded our results into
a freely available web-based tool for artifact and peak detection.

I. INTRODUCTION

Electrodermal Activity (EDA) refers to the electrical po-
tential on the surface of the skin [1]. When the body responds
to stress, temperature, or exertion, the sympathetic nervous
system (SNS) increases sudomotor innervation, causing EDA
to increase and perspiration to occur. Because the SNS
is influenced by the hypothalamus and limbic system —
structures in the brain that deal with emotion — EDA
has frequently been used in studies related to affective
phenomena and stress (e.g. [5], [6], [7], [8], [10], [12], [14]).

Despite its popularity, little research has been done into
detecting noise and artifacts in an EDA signal. This is
especially problematic given the increasing number of studies
that are collecting ambulatory EDA data over long time
periods using wearable devices (e.g. [2] [5] [7] [11] [14]).
While these studies may provide profound insight into how
affect and stress interact with other factors in daily life,
continuous and unobtrusive measurement of EDA using
wearable devices makes the signal collected vulnerable to
several types of noise. Artifacts can be generated from
electronic noise or variation in the contact between the skin
and the recording electrode caused by pressure, excessive
movement, or adjustment of the device. If these artifacts
remain in the signal when it is analyzed they can easily
be misinterpreted and skew the analysis; for example, they
may be mistaken for a skin conductance response (SCR) (a
physiological reaction that may indicate increased stress).

Consequently, many researchers are forced to manually
inspect the data in order to decide which portions are too
noisy to retain (e.g. [3]). This approach cannot scale to
the type of large-scale EDA studies that are currently being
proposed [7], which may involve data collected from hun-
dreds of participants over weeks or months. In order to make
collecting EDA viable in these types of studies, an automated
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method for detecting and removing noise and artifacts must
be developed. In this paper we describe the development of
both a classification algorithm for automatically detecting
artifacts, and an online system hosted at eda-explorer.
media.mit.edu that will apply the algorithm to users’
uploaded EDA files in order to provide them with an analysis
of which portions contain artifacts.

II. RELATED WORK

Through extensive research into the physiological pro-
cesses underlying EDA, as well as the electrical properties of
the recording equipment used in measurement, Boucsein [1]
is able to provide a complete description of the characteristic
shape of an SCR: the response typically lasts between 1-5
seconds, has a steep onset and an exponential decay, and
reaches an amplitude of at least .01µS (see Fig. 1 for an
example of a typical SCR). However, despite the availability
of this knowledge, no accepted technique for removing signal
artifacts has been developed.
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Fig. 1. Shape of a typical SCR

Currently, many researchers deal with signal artifacts and
noise by simply applying exponential smoothing (e.g. [6]) or
a low-pass filter (e.g. [8] [9] [12]). While these techniques
are able to smooth small variations in the signal, they are
not able to compensate for large-magnitude artifacts that
can result from pressure or movement of the device during
ambulatory recording. Fig. 2 shows a portion of signal that
contains three obvious artifacts, in which the sharp decreases
could not possibly be produced by human physiology. As is
evident from comparing the raw and filtered versions of the
signal, the low-pass filter has not removed the artifacts, and
any subsequent analysis based on the filtered signal is likely
to mistake the artifacts as genuine physiological responses.

Other researchers have used Boucsein’s analysis to de-
velop heuristic techniques for removing atypical portions
of the EDA signal. Kocielnik and colleagues [8] chose to
discard portions of their data where the signal increased
more than 20% per second or decreased more than 10% per
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Fig. 2. A portion of the signal containing artifacts. The raw signal is shown
on the left; a 1Hz low-pass filter has been applied to the signal on the right.

second. They verified that this approach removed artifacts
based on visual inspection. Using a similar approach, Storm
and colleagues manually set thresholds for the maximum and
minimum amplitude, maximum slope, and minimum width
of an SCR, and discarded responses that did not fit these
criteria [13]. In another case, a study which collected EDA
from two sensors (on both the ankle and the wrist) was able
to detect artifacts by looking for epochs when only one of
the two sensors had an abnormally low signal, or showed an
unusually rapid increase or decrease [5].

These heuristic thresholds were developed for particular
studies and participants, and verified only through visual
inspection by the researchers conducting them; they may
not generalize beyond those contexts. We seek to develop
an empirically validated automatic technique for removing
artifacts in EDA signals.

III. METHODS

In order to validate our automatic artifact detection
method, we needed to establish a ground truth for what
portions of an EDA signal are considered clean, and what
portions contain artifacts. To do this we had two expert EDA
researchers label 5-second epochs of EDA data collected
from a previous experiment [3]. The labeled data was used
as input to our machine learning classifier.

A. Data Collection

The data used in this analysis were collected during a
study in which 32 participants completed physical, cognitive
and emotional tasks while wearing Affectiva Q EDA sensors
on both wrists [3]. The Q sensor collects EDA data by
measuring skin conductance (SC) in microSiemens (µS) at
a frequency of 8Hz. All experimental procedures were ap-
proved by the Institutional Review Board for human subjects
research at MIT.

B. Expert Labeling

We created a data set of 1560 non-overlapping 5-second
epochs of EDA data, sampled from portions of data that were
identified as possibly containing artifacts, true SCRs, or static
skin conductance level (SCL). As part of our website, we
built an interface to allow our two experts to review these
epochs and assign a label of either ‘artifact’ or ‘clean’. Both
experts agreed on a set of criteria that defines an artifact in
the signal, which is as follows:

• A peak which does not show exponential decay, de-
pending on the context (e.g. if two SCRs occur close
together in time, the first response may not decay before
the second begins, yet this is not considered an artifact)

• Quantization error with ≥ 5% of signal amplitude
• A sudden change in EDA correlated with motion
• A SCL ≤ 0

Although our classification labels were created using these
criteria, our website provides the ability for other researchers
to agree to label their own data according to their individual
application needs. The site allowed the experts to view both
the raw signal and a filtered signal (to which a standard 1Hz
low-pass filter had been applied), as well as the accelerometer
data, which is simultaneously collected by the Q sensor.
We felt that viewing the accelerometer data might help the
experts to identify motion artifacts. However, we do not
provide acceleration data to our classification algorithm, for
two reasons. Firstly, by training the classifier using only EDA
data, we enable it to be applied to EDA signal collected from
devices other than the Q that do not collect accelerometer
data. Secondly, while it would be simple to discard por-
tions of the signal with high power in the corresponding
accelerometer data, this is not always desirable; for example,
in applications such as detecting epileptic seizures, strong
accelerometer signal occurs simultaneously with high EDA,
but the EDA signal is both clean and valuable to the analysis
[9]. Because we allowed the raters to skip epochs if they did
not wish to label them, we eventually obtained 1301 data
points that were labeled by both experts. The percentage
agreement was 80.71%, and the Cohen’s κ = 0.55.

There are multiple ways to deal with epochs for which
the raters’ labels did not agree. The first is to discard them,
which is reasonable in the sense that we cannot establish a
ground truth value for those epochs, meaning we have no
way to train or assess the performance of the classifier. The
second technique is to treat disagreements as a third class
in which we are unsure whether the signal is clean or an
artifact. We will present results from both approaches. Table
I gives the datasets for both.

TABLE I
NUMBER OF EPOCHS IN EACH CLASSIFIER

Classifier # Clean
Epochs

# Questionable
Epochs

# Artifact
Epochs

Binary 798 NA 252
Multiclass 798 251 252



C. Feature Extraction

We extracted several features for each five second epoch.
Given the importance of the shape of an SCR, we began
by including statistics related to the amplitude and first and
second derivative of the EDA signal (see Table II). These
features were computed for both the raw and filtered signal;
we are not concerned about including too many features
at this stage, because we later apply a feature selection
procedure to reduce the chance of overfitting.

TABLE II
COMPUTED FEATURES

Category Specific Feature

Raw SC
Filtered SC

amplitude: mean
1st derivative, 2nd derivative: max, min,
max of absolute value, mean absolute value

Wavelet coefficients max, mean, standard deviation,
median, number aboveZero

We then used a Discrete Haar Wavelet Transform to
compute additional features that may be indicative of sudden
changes in the EDA signal. Wavelet Transforms have been
successfully used in several noise reduction applications; be-
cause of their good time-frequency localization, they can be
considered a spatially aware noise filtration technique [15].
A wavelet transform decomposes a signal into coefficients at
multiple scales; in our case, we obtain coefficients at 4Hz,
2Hz, and 1Hz. Because the Haar wavelet transform involves
computing the degree of relatedness between subsequent
points in the original signal, it is excellent for detecting
edges and sharp changes [15]. Using this technique applied
to the participant’s full EDA signal, the 3 levels of detail
coefficients were computed, and statistics were computed on
the coefficients over each 5-second epoch.

D. Feature Selection

Because we computed a large number of potentially redun-
dant features, we used wrapper feature selection to ensure
that our classifier did not overfit the training data. Unlike
simple filtering techniques that merely rank features based on
their relationship to the classification label, Wrapper feature
selection (WFS) repeatedly tests subsets of features using a
specific classifier1 in order to select an independent subset of
features that work well in combination with each other [4].
Since this is computationally expensive, we used a greedy
search process, which can quickly search the space of all
subsets and is robust to overfitting [4].

E. Classification

In order to perform feature and model selection, we
partitioned the data set into training, validation, and testing
sets, using a randomized 60/20/20% split. Feature selection
was performed using only the training data. In order to find
a suitable machine learning technique for this problem, we
tested a variety of algorithms including neural networks,

1WFS was used with SVM after it was found to be the most effective
algorithm

random forests, naı̈ve Bayes, nearest neighbour, logistic re-
gression, and support vector machines (SVM). The algorithm
that produced the best accuracy on the validation data set
was SVM, so we focus on SVM for the remainder of the
paper. In order to perform model selection we tested a range
of settings for the parameters of SVM, including both a
Radial Basis Function (RBF), polynomial, and linear kernel,
and selected the settings that produced the highest accuracy
on the validation set. The held-out test set was not used in
feature or model selection.

IV. RESULTS

A. Classification results

Table III shows the classification results obtained for both
the binary and multiclass classifiers on the validation and
test sets, as well as the optimal SVM parameters. Although
the accuracy for the multiclass classifier is lower (three-
class classification is a more difficult problem), the output
may prove more useful for real users. Fig. 3 shows both
algorithms applied the same portion of EDA signal. As is
evident from the figure, portions of the signal containing
artifacts are detected (in red), while normal SCRs are labeled
clean. Fig. 4 shows the performance of the algorithms on
another sample containing a greater number of artifacts,
which are also detected by both algorithms. The multiclass
algorithm is able to label questionable parts of the data that
are not clear artifacts in grey. Note that the binary classifier
labels some epochs as artifacts that the multiclass one does
not. The level of stringency needed in the classifier may
depend on the researchers’ application; computing aggregate
measures like area under the curve may be less sensitive to
artifacts than SCR detection.

TABLE III
CLASSIFIER SETTINGS AND ACCURACY RESULTS

Classifier Parameter settings Baseline
Accuracy

Validation
Accuracy

Test
Accuracy

Binary RBF, β=0.1, C=1000 76.0% 96.95% 95.67%
Multiclass RBF, β=0.1, C=100 61.33% 88.38% 78.93%

B. Features selected

The feature selection process only led to a marginal
improvement in classification on the validation set: 1.3% and
1.4% for the binary and multiclass classifiers, respectively.
However the features selected provide valuable insight into
the signal characteristics that best distinguish between nor-
mal EDA and an artifact. Table IV shows the features se-
lected by the binary classifier; the multiclass version selected
extremely similar features. The selected features confirm
the theoretical assumption that shape, including first and
second derivative, are important in detecting artifacts. The
wavelet features also proved valuable, especially the standard
deviation of the coefficients. This is intuitive, because these
values indicate whether there is a change in the wavelet
domain, which may be indicative of an edge or sharp change
in the original signal.



4 5 6 7 8

3

4

5

6

7
µ
S

Binary

4 5 6 7 8
Time (min)

3

4

5

6

7

µ
S

Multiclass

Fig. 3. A subset of a single participant’s data which includes true SCRs and artifacts. The red and grey shading shows epochs labeled as artifact and
unsure, respectively. We note that both classifiers label true SCRs as clean signal.
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Fig. 4. An example of a typical artifact similar to Fig. 2 when the
participant removed the sensor. Red and grey shading show where the
classifiers labeled the SC data as artifact and questionable, as respectively.

TABLE IV
FEATURES SELECTED FOR BINARY CLASSIFICATION

Category Specific Feature

Raw SC
amplitude: mean
1st derivative: max absolute value
2nd derivative: max, mean absolute value

Filtered SC amplitude: mean
2nd derivative: min, max absolute value

Wavelet
Mean: 1st coefficient
St. Dev: 1st, 2nd, 3rd coefficients
Median: 3rd coefficient

V. CONCLUSION

In summary, we have developed algorithms that can au-
tomatically and accurately distinguish artifacts in an EDA
signal from normal physiological responses. The code we
have written to develop these algorithms is freely available
on our website, and we are currently extending the site so that
anyone will be able to upload their raw EDA signal and re-
ceive an output indicating which portions contain noise. This
tool could be enormously time-saving to researchers dealing
with large data sets involving many participants measured
over long periods of time. In the future we hope to extend

our approach using active, semi-supervised learning, which
will allow the machine learning algorithm to interactively
ask the user to label specific epochs based on its level of
uncertainty. This way, human raters will be required to label
fewer epochs that are highly similar, and instead will only
label novel data for which the classifier has little information.
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