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Figure 4. Denoised SC signal with motion artifacts 
labels; Actigraph in three axes.

Figure 5. A typical histogram of the wavelet coefficients of an SC signal with 
a fitted model of two mixed Gaussians superimposed. The two blue vertical 
lines represent the minimum and maximum values of the histogram.

● EDA data containing motion artifacts was obtained from a 
previous study [6], in which 32 subjects completed physical, 
cognitive and emotional tasks while wearing Q sensors on 
both wrists.
● During each trial, the Q sensors recorded SC, actigraphs 
(acceleration) and body temperature at a sampling 
frequency of 8 Hz for approximately 80 minutes.
● Two expert EDA researchers reviewed in total 61 records 
of data to manually label portions of the SC signals as 
containing motion artifacts.
● To quantitatively evaluate and compare the performance 
of all the methods, we used artifact power attenuation 
(APA) and normalized mean-squared error (NMSE) [14] as 
criteria:

Figure 7. Original EDA (blue lines) and denoised signals (red lines) processed 
by (a) wavelet thresholding (Haar wavelet [18], artifact proportion δ = 0.01, 
time window length L = 400 seconds), (b) 1024-point low-pass Hamming 
filtering (cutoff frequency = 3 Hz) [15, 16], (c) Hanning filtering with a 1 
second window [12] and (d) exponential smoothing (a = 0:8) [11].

Table I. Median of NMSE and APA (in dB) for the 
evaluated methods.

Figure 6. Q-Q plot of sample wavelet coefficients 
after thresholding versus a fitted Gaussian mixture 
distribution. 
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Figure 1. An ambulatory EDA sensor (Q sensor, Affectiva, Inc.).

● Electrodermal activity (EDA) refers to the changes of the electrical 
properties of the skin in response to sudomotor innervation [3], 
which can be recorded as skin conductance (SC) [7].
● Because SC provides a fine measure of the sympathetic nervous 
system (SNS) activity, it is widely used in psychophysiology as an 
indication of psychological or physiological arousal.

● SWT decomposition of a signal y(t) results in the 
scaling (approximation) and wavelet (detail) 
coefficients:

Here we chose j = 1, ..., 8, which means EDA data 
were decomposed into 8 levels.
● Distribution of wavelet coefficients can be 
modeled as a mixture of two Gaussians [1], [4]. 
This model fits the characteristics of SC signals 
well. Time series of SC can be characterized by a 
slowly varying tonic activity (i.e., skin conductance 
level; SCL) and a fast varying phasic activity(i.e., 
skin conductance responses; SCRs) [2]. In 
summary, the wavelet coefficients of an observed 
SC signal y(t) can be written as

Assuming ε takes up a very small proportion, from 
the wavelet coefficients of the original signal d, γj, 
σj and cj can be estimated for each level j using an 
Expectation Maximization (EM) algorithm [13].
● Assume the proportion of ε in d is δ (the artifact 
proportion). For any given wavelet coefficient, if 
the probability of observing values smaller or 
larger than it is less than δ/2, we can conclude 
that the coefficient does not belong to the valid SC 
and should be a result of motion artifacts. 
Therefore,

● Finally, motion artifacts can be removed from 
the wavelet coefficients using the following 
scheme:

WAVELET-BASED MOTION ARTIFACT REMOVAL FOR 
ELECTRODERMAL ACTIVITY

B. Adaptive thresholding

Figure 3. 8 levels of wavelet coefficients
with adaptive thresholds.

Figure 2. SC signal with motion artifacts labeled by two 
expert EDA researchers; Actigraph in three axes.

● Analysis of EDA is hampered by its sensitivity to motion artifacts, 
even when subjects are asked to avoid gross body movements.
● As ambulatory EDA sensors are adopted in more and more studies 
related to affective phenomena [9, 10], sleep [17], epilepsy
[16] and stress [8, 11], removing motion artifacts before further 
statistical treatment becomes even more essential.
● One of the most common artifacts in EDA is unusual steep rises 
(see Fig. 2), stemming from pressure exerted on the electrodes [5].

Previous Methods

● There are a few methods previously taken to correct motion 
artifacts, such as exponential smoothing [11] and other low-pass 
filters [12, 15, 16].
● However, these non-adaptive methods are unable to compensate 
for artifacts abruptly appearing with much larger intensity than EDA, 
and the whole time series are filtered indiscriminately, which may 
distort SC signals without artifacts.


