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- Electrodermal Activity N Motion Artifact in EDA

e Electrodermal activity (EDA) refers to the changes of the electrical e Analysis of EDA is hampered by its sensitivity to motion artifacts,
properties of the skin in response to sudomotor innervation [3], even when subjects are asked to avoid gross body movements.
which can be recorded as skin conductance (SC) [7]. e As ambulatory EDA sensors are adopted in more and more studies
e Because SC provides a fine measure of the sympathetic nervous related to affective phenomena [9, 10], sleep [17], epilepsy

system (SNS) activity, it is widely used in psychophysiology as an [16] and stress [8, 11], removing motion artifacts before further
indication of psychological or physiological arousal. statistical treatment becomes even more essential.

e One of the most common artifacts in EDA is unusual steep rises

(see Fig. 2), stemming from pressure exerted on the electrodes [5].
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" Previous Methods

e There are a few methods previously taken to correct motion
artifacts, such as exponential smoothing [11] and other low-pass
filters [12, 15, 16].

e However, these non-adaptive methods are unable to compensate
for artifacts abruptly appearing with much larger intensity than EDA,
and the whole time series are filtered indiscriminately, which may
distort SC signals without artifacts.
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\ Figure 1. An ambulatory EDA sensor (Q sensor, Affectiva, Inc.). /

Our Method

A. Stationary wavelet transform C. Inverse wavelet transform
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B. Adaptive thresholding
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Figure 5. A typical histogram of the wavelet coefficients of an SC signal with Figure 6. Q-Q plot of sample wavelet coefficients
a fitted model of two mixed Gaussians superimposed. The two blue vertical after thresholding versus a fitted Gaussian mixture
lines represent the minimum and maximum values of the histogram. distribution.
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