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Abstract

We present a highly accurate method for classifying
web pages based on link percentage, which is the
percentage of text characters that are parts of links
normalized by the number of all text characters on
a web page. K -means clustering is used to create
unique thresholds to differentiate index pages and ar-
ticle pages on individual web sites. Index pages con-
tain mostly links to articles and other indices, while
article pages contain mostly text. We also present
a novel link grouping algorithm using agglomerative
hierarchical clustering that groups links in the same
spatial neighborhood together while preserving link
structure. Grouping allows users with severe disabil-
ities to use a scan-based mechanism to tab through
a web page and select items. In experiments, we saw
up to a 40-fold reduction in the number of commands
needed to click on a link with a scan-based interface,
which shows that we can vastly improve the rate of
communcation for users with disabilities. We used
web page classification and link grouping to alter web
page display on an accessible web browser that we de-
veloped to make a usable browsing interface for users
with disabilities. Our classification method consis-
tently outperformed a baseline classifier even when
using minimal data to generate article and index clus-
ters, and achieved classification accuracy of 94.0%
on web sites with well-formed or slightly malformed
HTML, compared with 80.1% accuracy for the base-
line classifier.

1 Introduction

People who cannot physically use a mouse, for exam-
ple because of quadriplegia, often rely on an assistive
device that moves the mouse pointer by tracking the
user’s head or eyes. Computer access with such de-
vices is difficult because they typically do not pro-
vide the same selection accuracy as a mouse pointer.
Moreover, since the user cannot type with a physi-
cal keyboard, text entry, for example of a web ad-
dress, requires the use of an onscreen keyboard. Se-
lection of a letter on this keyboard or a small text
link in a web page may be particularly difficult on

traditional browsers for users who experience tremors
or other unintentional movements that prevent them
from holding the mouse pointer still. One possible so-
lution is to change (1) the display of a web page and
(2) how the interface navigates the information based
on its content. A page can be rendered and navi-
gated differently depending on the “type” of page.
Such classification allows us to create a variety of
customizations to occur in interaction mode and dis-
play depending on the intended application and user.
We could also allow the user to select not just a sin-
gle link, but a group of links. This would allow the
web browser to either enlarge the single group of links
on the page or, for users who only have control of a
binary interface, allow them to scroll through indi-
vidual links within that group.

The principal technical contributions of this paper
are a clustering method to accurately determine the
type of a web page based on a technique that exam-
ines the text characters on a page and a link grouping
method that respects the structure of the web page
while providing groupings that substantially increase
the effectiveness of browsing.

The clustering method computes the link percent-
age, the percentage of text characters that are parts
of links as compared to all text characters on a web
page. We posit that there are only two types of pages
– articles and index pages – on web sites that deal
with news media: article pages contain mostly text
and index pages contain mostly links to articles and
other indices. This classification may be helpful to
allow people with disabilities to browse the web in
an effective and efficient fashion. After determining
the content of a web page as an index or article, our
method can render the page to meet the needs of
users with disabilities, for example, by increasing the
size of links on index pages. This makes the links
easier to read, but more importantly, it makes them
easier to select. All text on article pages is enlarged
to increase readability.

We also present a novel link grouping algorithm
that preserves link structure to enable disabled users
to browse web pages orders of magnitude faster than
current systems allow.1 Our link grouping method

1The link grouping algorithm is implemented in Javascript
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proceeds in two stages: first it builds a link tree. The
leaves of the link tree are the links on a web page.
The parents of these leaves are the first common par-
ent between different links in the HTML Document
Model (DOM) tree [1]. Our method then leverages
this structure by moving up from the leaves of the
link tree, attempting to group links at their parent
node. If all links could not be merged subject to the
constraint that the sum-of-squared differences (SSD)
error of the new grouping is less than a thresholding
function.

Our method for classifying web pages based on link
percentage is highly accurate. We used k -means clus-
tering [10] to automatically create unique thresholds
to differentiate index pages and article pages on in-
dividual web sites. We also used web page classifica-
tion to alter web page display on an accessible web
browser that we developed to make a usable browsing
interface for users with disabilities. Our method con-
sistently outperformed a baseline classifier even when
using minimal data to generate article and index clus-
ters, and achieved classification accuracy of 94.0% on
web sites with slightly malformed HTML, compared
with 80.1% accuracy for the baseline classifier.

The rest of this paper is organized as follows: sec-
tion 2 reviews related work in the area of web page
classification and point clustering, section 3 describes
our accessible web browser, section 4 describes our
methodology for detecting web context, while section
5 examines our link grouping algorithm. In section 6
we describe our experiments, section 7 analyzes our
results, and section 8 discusses possible avenues for
future work. Finally, section 9 summarizes our find-
ings.

2 Related Work

Previous work on classification of web pages into spe-
cific types has been limited. It is hoped that this pa-
per will spur interest in the use of web context and
computer context in general and to improve accessi-
bility in particular. In the research community, “con-
text” has too often referred to the physical context

and can run on any web browser that supports the Document

Object Model.

of the user, such as location. Little research has been
done on the context of the computer environment,
which is crucial to understand so that users with dis-
abilities and mobile users can effectively utilize ap-
plications. For example, references [25] and [33] dis-
cussed this notion of computer context.

For mobile users, computer context may be as sim-
ple as the currently open applications, while for a per-
son with disabilities computer context includes their
disability, the human-computer interface system they
are using, the applications they normally use, and nu-
merous other factors. Harnessing the power of con-
text in the web, when we have detailed information
on the current state of the application, is a good place
to start the investigation of this concept.

We define web context as the type of web page the
user is currently viewing. Extending this concept to
include pages that the user previously browsed in
the current session is beyond the scope of this pa-
per, but was examined by Milic-Frayling et al. [21].
Methods for determining context or content of web
pages vary widely. Cimiano et al. [7, 8] proposed a
system called PANKOW (pattern-based annotation
through knowledge on the Web) and its derivative
C-PANKOW (context-driven PANKOW). Plessers et
al. [26] examined web semantics by proposing a web
design method combined with the Dante approach to
aid visually impaired users through web annotation.
The HearSay system of Ramakrishnan et al. [27],
in contrast, uses semantic and structural analysis to
provide an audio-based web browser to users with vi-
sual impairments. Larson and Gips [19] created a web
browser for people with quadriplegia that reads web
page text and provides other accessibility options for
people with disabilities. Gupta et al. [13] determined
web site context (in their case genre, such as news or
shopping) in order to facilitate content extraction.

Kim et al. [18] described a method for segment-
ing topics in discussion boards in order to help blind
users more effectively browse the web. Particularly
important is that the authors also identified naviga-
tional context as an important cue for web browsing,
especially for users with disabilities. Milic-Frayling
et al. [21] also explored the notion of context by uti-
lizing page importance to implement a web browsing
feature called SmartBack. SmartBack functions sim-
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Figure 1: Left: The rendering of an index page in our web browser. Notice that the link text is englarged
relative to the plain text to address the problem of mouse clicks generated by dwell time in mouse substitution
devices. Right: The rendering of the same page in Internet Explorer.

Figure 2: Left: The rendering of an article page in our web browser. All text has been enlarged to enhance
readability. Right: The rendering of the same page in Internet Explorer.
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ilarly to the common “Back” button on traditional
web browsers except that it attempts to skip to pages
of high importance in the browsing history rather
than simply the previously visited web page.

Mobile devices usually have small screens and
therefore have difficulty fully displaying traditional
web pages. Classification of web pages could assist
methods that use text summarization to facilitate
web browsing on these devices ([4] and [24]) or aid
text summarization methods that drive user inter-
faces for people with disabilities [24]. Index pages,
for example, typically display text snippets that are
summaries of larger articles, and thus further sum-
marizing these snippets is probably unnecessary. In
addition, for text extraction and news delivery pur-
poses knowing the type of page is necessary and an
accurate classification method would further enhance
the accuracy of these systems. Reis et al. [28] clus-
tered pages by layout features to attempt to distin-
guish between “section pages” and article pages to
facilitate news extraction. Henzinger et al. [16] de-
scribed a system that suggests news articles on the
web based on broadcast news. It is evident that clas-
sification of a web page as an article would aid this
methodology.

While the web page modification methods that we
present here preserve all web page content, Gupta
and Kaiser [12] extracted content from web pages in
order to render them more accessible. Clearly, our
methods could be combined with this extraction to
allow for even simpler browsing for users with dis-
abilities.

Various previous work has been performed in reren-
dering web pages for mobile devices. Buyukkokten
et al. [4] presented a number of text summariza-
tion methods for display on personal data assistants
(PDAs) or mobile phones. The web pages are broken
into segments of text that can be displayed or hidden.
Summaries are constructed from keyword extraction
or a determination of significant sentences.

Chen et al. [5] detect and organize a web page into
a two-level hierarchy. Each section of a page is dis-
played as a thumbnail that the user can zoom in to
view more closely. For pages that are not able to
be split, an intelligent block scrolling method is used
to present the web page. In a similar fashion, Rob-

bins et al. [30] presented a method for navigating a
map interface on Smartphone devices by segmenting
a map into nine squares corresponding to keys on the
phone. Hornbæk et al. [17] analyzed the effectiveness
of these zoomable interfaces for the user’s navigation
experience. While this work shows results for nav-
igating a map interface, similar conclusions may be
drawn for navigating a zoomable web page display
interface. This result supports the technique that we
chose to alter web page display. Our method essen-
tially also “zooms-in” on a web page.

Many alternative user interfaces limit the number
of ways the user can interact with a computer. Var-
ious mouse substitution devices, for example, have
been developed both for people with disabilities and
for other purposes. The EagleEyes [9] project uses
electrodes placed around a user’s eyes to detect eye
movements and translate them into mouse pointer
movements on a screen. The Camera Mouse [2] tracks
a user’s face or other body part to control the mouse
based on the user’s movements. These interfaces have
proven very successful with many users with severe
disabilities, however fine “pinpoint” control of the
mouse is difficult. Generating a mouse click requires
the user to dwell the mouse pointer over the item to
be selected for a short period of time. Given the small
size of a link in a regular web page, users may have
difficulty navigating web sites as they are normally
presented.

The accessibility problem for web pages comes with
the openness of the web. Web designers are generally
free to present their information in whatever layout
they find appealing. Drop down menu bars or click-
able image maps may aid in the navigation of a web
site with the traditional user interface of a mouse, but
may hinder the usefulness of the web site for alterna-
tive accessibility interfaces. Sullivan and Matson [32]
surveyed accessibility on some of the web’s most pop-
ular sites, while Chi et al. [6] presented a method that
automatically generates a web site usability report.

Richards and Hanson [29] examined web accessibil-
ity and how user interfaces should be built to facil-
itate interaction for users with disabilities and the
elderly. Harper et al. [14, 15] developed mobility
heuristics for visually impaired web surfers and in-
corporate this into a web browser plug-in to aid nav-
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igation. They also investigated the notion of web
context as it applies to link anchor text, which is of-
ten misleading. They posited that in order for web
browsing to be more efficient, some notion of preview
and context of the linked page is necessary.

Link analysis has been employed in many different
contexts. Lu et al. [20] leverage the structure of the
web graph to remove web pages of low in-degree from
consideration in the PageRank algorithm and achieve
high speed up with low decrease in accuracy. Foga-
ras and Rácz [11], in contrast, use links to facilitate
searches of the web graph using graph analysis meth-
ods. Bharat et. al [3] similarly use the web graph to
study the evolving structure of the web.

Duda et al. [10] summarize a number of point clus-
tering algorithms and implementation techniques.
Particularly relevant to this work is their description
of agglomerative hierarchical clustering and cluster-
ing in the presence of unkown data structure. Ag-
glomerative hierarchical clustering creates clusters by
merging the closest clusters together until the desired
number of clusters is reached, thus giving the result a
minimum variance flavor. They also describe meth-
ods for evaluating the validity of cluster splitting by
examining the behavior of a fitness function as the
number of clusters are increased, stopping splitting
only if the split results in a fitness function increase
that falls below that found by a thresholding func-
tion.

3 Web Browser

In our IWeb Explorer web browser [23], we addressed
seven problems that users with disabilities had with
traditional web browsers such as Microsoft Internet
Explorer and on-screen keyboards:

1. The buttons in the toolbar and scrollbar are too
small.

2. There is no way to type in the URL address with-
out using the keyboard.

3. The links are all very close together in each of
the pages.

Figure 3: Interface window to confirm that the user
wanted to select a link.

4. It is easy to unintentionally end up following the
wrong link since there is no check to make sure
that the user has not mistakenly selected a link.

5. Each user has different abilities and preferences
and so the button sizes and colors in the key-
board and interface windows should not be fixed.

6. The favorites menu is not easily accessible and
the links again are small and are difficult to select
for people with disabilities.

7. It is difficult to reach keys and links on the far
corners of the computer screen. Therefore a
scrolling device is needed to scroll around the
web browser interface.

Screenshots of our browser for both an article and
index page compared to the rendering provided by In-
ternet Explorer are shown in figures 1 and 2. The link
text clearly stands out on index pages much more in
our browser since it is enlarged to address the prob-
lem of mouse clicks generated by dwell time in mouse
substitution devices, while article text is enlarged to
enhance readability. This is done automatically us-
ing our web context recognition method, which is de-
scribed below.
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Perhaps the most glaring problem of conventional
web browsers is the lack of an opportunity for the
user to confirm that a link was selected correctly. Our
confirmation window, shown in figure 3, has yielded
a positive response in preliminary tests with users
with disabilities, and we hope to further improve
this browser by allowing users and their caretakers
to change the way that different pages are displayed
to suit their individual needs.

When people with disabilities used this web
browser without our web context component, effec-
tive web browsing was not attainable [23]. It there-
fore became clear that to make web browsing appli-
cations viable for all users, web context needed to be
leveraged.

4 Web Context Recognition

4.1 Page Classification

The key observation of our technique is that by ex-
amining link percentage we can accurately determine
the “type” of a web page. The link percentage is the
percentage of text characters that are parts of links
as compared to all text characters on a web page.
We posit that on sites dealing with news media that
there are only two types of pages: articles and in-
dices, where articles contain mostly text and indices
contain mostly links to articles and other indices. Be-
low we refer to pages as “dynamic” if their contents
change from day to day.

While the idea to classify web pages based on link
percentage seems intuitive, the question is, is it actu-
ally feasible to break down pages into categories by
this one-dimensional characteristic? Figure 4 gives
an example where a dynamic index page and multi-
ple article pages are clearly separable over time. Does
this mean that a single threshold on link percentage
will be an accurate classifier for all web sites? From
the graphs of the link percentage of article and index
pages drawn from four popular web sites over a pe-
riod of two weeks shown in figure 5, it is clear that a
single threshold does not suffice. Index pages have a
higher link percentage than articles in most cases, but
a single threshold cannot separate these two types of

pages across the web.

Figure 4: The link percentage the BBC web site over
a period of 8 days. The index page that was cho-
sen was the same, but different articles were chosen
at random every day. Observe that there is a clear
distinction in link percentage between the index page
and the article pages.

For the 50 web sites that we tested, the average
ratio of link percentage in index pages to link per-
centage in article pages was approximately 3, includ-
ing malformed HTML characters (for the interested
reader, the web site that had the highest link percent-
age ratio in our corpus was that of the Real Madrid
football team, with an average index page link per-
centage of 95.3% and an average article page link
percentage of 0.001%). Some examples from our web
site corpus are shown in figure 6.

To find these link percentages, we use an HTML
parsing mechanism that works on most web pages
with well-formed HTML. HTML is often not well-
formed, however, so we perform some further pro-
cessing after the link text and plain text has been ex-
tracted from the HTML code by removing as many
extraneous tags as possible. Extra spaces are also
collapsed to a single character to better represent the
actual amount of text that is within a page.

An important issue for our algorithm is the notion
of character codes. In particular, for characters such
as ’& ’ and ’<’, the character codes used will be longer
than the actual single character value. Thus we re-
place these codes in our extracted text strings with
their character value.

6



Figure 6: Two web pages included in our corpus as rendered in Microsoft Internet Explorer. Left: The
index page for the Looksmart FindArticles site (link percentage: 60.2). Right: An article on the Looksmart
FindArtilces site (link percentage: 11.5).

The substitution does not apply to pages in lan-
guages with different character sets that use charac-
ter codes to represent text. As long as the language
is consistent across a page the link percentage dis-
tinction remains intact. This is demonstrated by our
results from some Japanese news web sites, shown in
figure 7. The index and article pages are still separa-
ble, implying that our methodology works correctly
here as well.

Once we have parsed a web page’s HTML code and
determined the link percentage, the issue of deter-
mining a proper threshold arises. If the user has not
visited other web pages from this site, then we can
only use generic thresholds to determine the type of
a page. An initial threshold of 0.4 was used in exper-
iments and found to perform reasonably well. After
the user has visited at least one page of each type,
however, we can begin to discover how the link per-
centage values of index pages and article pages are
clustered. Using the k -means clustering algorithm
for each web site, with k = 2, one cluster for article
pages and one cluster for index pages, we can accu-

rately classify future web pages from this site. We
use as the initial mean points of the cluster the pages
with the lowest and highest link percentage for the
article and index clusters, respectively. We then run
the k-means algorithm to determine the final clus-
ters. Using these clusters, we choose as our decision
threshold the value midway between the link percent-
age of the page with the highest link percentage in
the article cluster and the link percentage of the page
with the lowest link percentage in the index cluster.
An example where clusters are separated by a thresh-
old computed in this way is given in figure 8. The
k-means algorithm can be viewed as a method to ap-
proximate the maximum-likelihood estimates for the
means of the clusters.

We observed that even dynamic web pages’ link
percentages do not fluctuate very much over short
periods of time. We studied four popular websites
over the course of seven months and found that the
link percentages for the same index pages had a to-
tal range of less than eight percent. Therefore, once
a page is visited its link percentage is stored in a
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Figure 5: The link percentage for various sites over a
period of 8 days. The examined index pages are dy-
namic and typically change every day. Different arti-
cles at these sites were chosen at random every day.
While it is apparent that index pages have higher link
percentages than articles, there is not one threshold
that can separate these two types of pages for all web
sites, as shown by the MSN article link percentage
rising above the link percentage for the BBC index
page. It is also important to notice that, except for
the Yahoo index page, the dynamic index pages’ link
percentages do not change by more than 3%. The
behavior of the Yahoo index page’s link percentage is
due to malformed HTML.

database and is retrieved if the page is visited again
and no HTML parsing is performed. This saves com-
putational effort and can easily be overridden by the
user if the classification results falter because of a
change in the web site structure.

Figure 7: The classification accuracy of our method
on three Japanese web sites. Six pages, three indices
and three articles, were used for testing, while a single
index page and a single article page were used to
create the two clusters.

Figure 8: The optimal threshold for link percentage
on the Yahoo Sports web site given the link percent-
ages of three index pages and three article pages.

4.1.1 Database Storage

Each user’s database of visited web pages and web
sites is stored on the user’s computer in a hash table
which is processed by the web context program prior
to browsing. We could, alternatively, have stored the
link percentages of pages and web site thresholds in
an online database. In this scheme, users would first
query an online database system with the URL of the
page that they will download. The database would
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either respond with that page’s classification or state
that the page is not in the database. If the page was
not in the database, the user could then upload the
web page’s link percentage after the page is loaded.

Clearly, there are problems with this approach.
Privacy concerns rank chief among these, since the
user would be informing the database of their brows-
ing behavior at all times. In addition, user-defined
behavior, such as changing the classification of a cer-
tain web page for individual reasons, played a factor
in our decision to keep the database on the local ma-
chine. Finally, an online database would introduce
wasted computational effort employed in searching
such a large database since most users visit a nar-
row band of web sites during the course of normal
browsing [22].

Clusters for individual web sites are also stored lo-
cally for similar reasons, and since clusters are com-
puted extremely quickly and only when the user ends
their browsing session this imposes a minimal com-
putational burden on the user’s system.

4.1.2 URL Analysis Feature

We initially attempted to use analysis of the web page
URL as a fast, effective indicator of page type. This
method evaluates a series of conditions to classify a
web page (a more sophisticated URL analysis method
is presented in [31]). If the page URL satisfies any of
the conditions, then it is classified as an index. Oth-
erwise, it is classified as an article. The conditions
are:

1. The web page has the same URL as the
root of the URL (for example, the root of
www.cnn.com/WORLD/ is www.cnn.com).

2. The URL ends with a “/”, indicating that it is
the index of some subdirectory.

3. The URL ends with “index.*”, where “*” is a
valid file name extension (such as .html, .jsp,
.psp).

This approach yields fairly good results in certain
cases, but it fails in a number of situations, since URL
naming conventions appear to differ widely across the

web. Particularly troublesome are articles where the
URL satisfied the third constraint since the web page
represented a summary of all news pertaining to a
certain event, such as the URL for an article on a
political story on CNN.com: http://www.cnn.com/
... /delay.indiantribes.ap/index.html. Even if we re-
move step 3, however, numerous index pages were
still falsely classified. Thus it was determined that
the far more accurate link percentage analysis was
preferable, since the pages that the URL analysis
method faltered on were the very pages that often
presented trouble for the k -means clustering method.

4.2 Customized Page Display

Our web browser enlarged link text on index pages to
support mouse substitution interfaces that use dwell
time to generate mouse clicks. The browser also en-
larged plain text on article pages to enhance read-
ability. This is just one possible display modifica-
tion, and for certain web pages this may or may not
be useful. The user can undo these display modifi-
cations if they wish, putting the ultimate decision of
the page’s display in their hands (see figures 1 and 2
for a comparison of our browser’s rendering of a web
page using web context to that of Internet Explorer).

We could further enhance the user’s interaction ex-
perience by changing the way that keyboard or mouse
commands are issued depending on the type of web
page that the user is viewing in order to facilitate
navigation. Moreover, we could provide the user with
tools to create their own rules for modifying web page
display based on page type. This kind of control is
extremely crucial for people with disabilities. With
many of the currently available assistive interface sys-
tems web browsing is still difficult. For example, us-
ing an interface system such as the Camera Mouse [2]
to select links or scroll down a page is hard even for
users without disabilities. With our method, these
users could scroll down an article web page merely
by moving the mouse pointer to the left half of the
screen, or iteratively cycle through links by perform-
ing the same action on an index page. It is our hope
that this method can alleviate some of the accessibil-
ity problems that people with disabilities have with
current interface systems. We also hope that future
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work will place more emphasis on the context of their
actions to enrich the interactive experience and make
it more effective and efficient.

Another aspect of customized page display is the
use of manual corrections if a user has a preference for
a different display than provided by our method or
if the web page was misclassified, which occurs when
pages were created with malformed HTML (see be-
low). We decided that the best course of action is to
simply omit the page in question from the clustering
algorithm altogether.

5 Link Grouping

Link grouping allows users with severe disabilities to
use a scan-based mechanism to tab through a web
page and select item. This can substantially im-
prove the user’s rate of communication, and could
be applied to mouse substitution interfaces by allow-
ing users to click on a group of links so they can more
easily select the desired single link.

5.1 Link Tree Creation

The link tree creation step of our link grouping al-
gorithm creates the framework under which we can
cluster points according to their location on the web
page as well as their location in the HTML code. Es-
sentially our method leverages the structure of the
HTML code, which can be quite nicely represented
in tree form by allowing an element to be a node in
a tree and the elements that it encapsulates to be
its children. An example link tree along with the
HTML code that it was created from is picture in
figure 9. The tree representation allows us to employ
a divide-and-conquer method from grouping as de-
scribed below. Our method can also use this tree to
constrain link grouping so that groups do not span
inappropriately across the web page. Note that it is
not that such across-page grouping is incorrect per se,
rather that it would create a very unnatural grouping
consisting of circles of links that did not respect the
structure of the web page. In addition, this would
leave us with a very unconstrained clustering prob-
lem, and we certainly prefer an approach that can ap-

ply the divide-and-conquer paradigm to the grouping
problem.

The pseudocode for link tree creation is shown in
algorithm 1. Our algorithm, CreateLinkTree, takes
as input an HTML DOM tree and outputs the link
tree. The algorithm starts at the links of the DOM
tree and traverses it until it reaches the root node of
the document, marking every node that it visits along
the traversal (line 9). If, however, it comes across
an already marked node, our algorithm converts that
node into an internal node in the link tree, connected
to the link nodes that already marked it (lines 5 and
6). If that link node has already been incorporated
into a subtree of the link tree, that subtree becomes
the current node’s child. Traversal of the DOM tree
then stops. The last case that can occur is that a
link traversal will arrive at a node that is already
an internal node in the link tree. Here the link will
simply add itself as another child to that node and
stop traversal.

In the worst case, the links do not intersect until
the “<BODY>” node of the DOM tree (since this
node must encapsulate all links). Then, if there are
n links, and the height of the DOM tree from the
link nodes is log(q), where q is the number of ele-
ments in the DOM tree, it is clear that the link tree
creation algorithm is bounded by O(nlog(q)), since
our method must make n traversals of length log(q).
Note that typically n � q.

5.2 Link Group Creation

The previous step of our algorithm, that of link tree
creation, has now given our method the machinery
to perform link grouping. For all of the clustering
steps below, our algorithm, GroupLinks, uses a set
of points defined by the position of the links on the
rendered web page in cartesian coordinates. In gen-
eral, our algorithm traverses the link tree from the
top down and attempts to merge the clusters of link
points of one of its child nodes with those of another
child node if each child has only one link cluster. The
optimal number of clusters is chosen by the crite-
rion function defined below. Pseudocode for the link
grouping algorithm is given in algorithm 2.

More specifically, using the link tree as a struc-
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Figure 9: The left figure represents the link tree for the HTML code on the right. At the leaves are the link
nodes, and the internal nodes are the first common parent of its children in the DOM tree. The parents of
each node in the DOM tree that are not represented as internal nodes of the link tree are shown in blue.
This example can best be understood by examining the HTML code and viewing the structure of the DOM
tree. Observe that the first common parent of the link to “bar.html” and the link to “boo.html” is the
“<P>” node. Therefore this is their parent in the link tree. Next, note that the first common parent of the
link to “foo.html” and the “<P>” node is the “<BODY>” element, which is the root of the tree.
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Algorithm 1 CreateLinkTree

Input: HTML DOM Tree T
Output: Root of the Link tree

1: for each link a in T
2: traverser = a
3: while traverser.parent != root
4: traverser.parent.child = a
5: if marked(traverser.parent)
6: make node(traverser.parent)
7: break

8: end if

9: mark(traverser.parent)
10: traverser = traverser.parent
11: end while

12: end for

13: return root

tural guide, the algorithm recursively breaks down
the clustering problem into that of merging the link
point clusters of children nodes together, starting at
the root node, by a criterion function. If our method
cannot merge all of the children of some internal node
together, then, intuitively, these link groups should
be excluded from merging with other groups at higher
levels in the tree. As stated earlier, doing so would
violate our constraint of respecting the structure of
the web page.

At the current node, call it node i, the method first
runs the link grouping algorithm on all of its children
(line 4). If node i has no children, it is a link and
thus simply returns its position to its parent as a sin-
gle cluster (line 2). Otherwise, the algorithm checks
which of node i’s children can be merged (line 7),
which is the case if each child returned only a sin-
gle cluster of points. For all of node i’s children that
can be merged, our method runs the agglomerative
hierarchical clustering algorithm on the mean points
of each of its children’s clusters (line 8). This algo-
rithm essentially merges the closest clusters at every
step. As stated above it is for this reason that we
can expect the clusters to have low variance. Assum-
ing that there are c children of node i, this gives our
algorithm a total of c clusters before i is processed.

The next step is to determine the optimal num-

ber of clusters. We do this using the equations (due
to [10]):

J(k + 1)

J(k)
< 1− 2

dπ
− α

√

2(1 − 8/π2d)

nd
(1)

where J(k) is the SSD error for k clusters, d is the
distance between the means of the clusters that were
split to create b + 1 clusters from b clusters, and n is
the number of points in all clusters. The parameter
α is determined by solving the equation:

α =
√

2 × erf−1(1 − p

2
) (2)

where erf is the Gauss error function, defined by the
equation:

erf(x) =
2√
π

x
∫

0

e−t
2

dt (3)

Here, p is the significance level at which we believe
that we have at least k + 1 clusters. Our algorithm
starts with k = 1, stopping once the inequality in
equation 1 is violated. It then returns the resulting
clusters.

Naturally, having k + 1 clusters will yield a lower
SSD error than k clusters. Essentially, what equa-
tion 1 does is model the clusters as k different normal
distributions and check that the error reduction that
we see is not due to chance at the p significance level,
since if there actually were only k clusters we would
expect any other clusters that formed to be formed
by chance.

Once the final clusters have been returned to the
root node, we can modify the web page to make it
more accessible to users with disabilities. While this
modification mechanism can be accomplished by var-
ious parameterized functions, in our implementation
we choose to use color to identify links in the same
group, using different colors for different groups. This
is shown in figures 10 and 11. Other options include
link enlargement when the mouse cursor hovers over
a link group, making all links in a group lead to a
page where the links are made very large for easy
navigation, and many other possitibilities which we
will explore further in the Future Work section.
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Figure 10: A Wikipedia (http://www.wikipedia.org) web page that has been processed by our link grouping
algorithm. Note that the different link groups are in different colors so that the user can easily pick out
different groups. In this page, shown only partially here, 66 clusters were found.

Figure 11: Left: The link tree for the web page on the right. The links in the tree have the color that they
were given in the web page after they were processed by our link grouping algorithm. Right: An example
web page processed by the link grouping algorithm.
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Algorithm 2 GroupLinks

Input: Link Tree Node R,
Significance p
Output: Link Groupings for Tree
Rooted at R

1: if isLeaf(R)
2: return R.position
3: end if

4: for each child c of R
5: groups(c) = GroupLinks(c)
6: end for

7: mergeGroups = { group(c) } s.t.
8: num clusters(group(c)) = 1
9: create hierarchical clusters(mergeGroups)

10: current clusters = 1
11: while equation 1 is not satisfied
12: current clusters++
13: end while

14: return clusters(current clusters) +
Σ (num clusters(group(c)) |
num clusters(group(c)) 6= 1) ]

The link grouping creation algorithm is bounded
by O(n3) in the worst case, where n is the number of
links, since our method must find the closest group at
every step of hierarchical clustering, for n steps. Note
that this worst case is only realized if every link has
only one common parent at the root of the link tree,
which does not happen in practice since that would
require essentially no other content on the web page.
Since the link tree exhibits the structure of a tree
with branching factor b in the average, the algorithm
is bounded by O(b2logb(n)), since the height of the
link tree is logb(n) and the algorithm needs to cre-
ate b clusters at each level of the tree. If no links
can be merged, the algorithm stops at the leaves of
the link tree and is bounded by O(b2). In practice,
we measured a runtime that falls somewhere in be-
tween the last two bounds that we derived, since typ-
ically we can merge only some of the link point clus-
ters at each node. Note that the runtime depends
heavily upon the p used in equation 2, since p essen-
tially bounds the size of a cluster in 2D space. The
complete algorithm, including the creation of the link

tree, then, for the bound on the link grouping algo-
rithm of O(b2logb(n)), is simply O(nlog(q)), as long
as we have b � n, which is again normally the case.

Suppose that our user is using a simple tab inter-
face which requires the user to press the tab button
once to move to the next link and enter to click on
the link. Using our grouping algorithm, this user
could select a specific group and then an individual
link. Assuming that there are c final clusters and
that each group has an average of s links, the aver-
age number of tabs required to click on a link would
be c+s

2
. In comparison, the tab-based interface that

is currently employed on commercial web browsers
has an average number of tabs of n

2
. Therefore, our

method improves the communication rate of users by
a factor of:

n

c + s
(4)

Note that if s is too large, we could simply split each
cluster into subgroups in order to minimize the num-
ber of tabs required and maximize equation 4, but
that is left to future work. As a precaution, if only
one cluster is created then the grouping is not used,
since this would result in requiring the user to press
the tab button once just to be able to perform the
original selection task. Clearly, in the worst case,
where the number of clusters equals the number of
links, our method performs as well as the current tab-
based implementations on web browsers, and due to
the trivial computational cost of our grouping algo-
rithm (the highest number of links in our web corpus
of 300 pages was 125, and the link grouping program
ran nearly instantaneously), our method could be an
integral component for an accessible web browser, or
any web browser in general.

6 Experiments

To test our web context method we used it to clas-
sify web pages from a corpus of the top 25 news and
top 25 sports web sites as rated by Alexa Web Search
(URL: www.alexa.com). For each web site, three in-
dex pages and three article pages, as categorized by
a human observer, were used for testing for a total of
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300 web pages. One index page and one article page
from each web site were randomly chosen to create
an index cluster and an article cluster in the web con-
text program, and these pages were not included in
the test set.

We compared our method to a static threshold
technique, which used a predetermined global thresh-
old (a link percentage of 0.4) to differentiate between
index pages and articles. We treat this classifier as
the baseline in our discussion of results, since it is
the simplest solution to the classification problem.
We also compared our method to an “optimal” clas-
sifier, which chooses the best possible classification
threshold for each web site. This is merely a theoret-
ical classifier; given complete knowledge of what the
correct classifications are, it finds the optimal classi-
fication threshold.

There were many web pages that contained
severely malformed HTML, as evidenced by the fact
that even the optimal classifier did not generate 100%
accuracy on every web site. The results are shown in
figures 12, 13, and 14, broken down by site category
(news or sports) and combined. The average classifi-
cation accuracy for each method is shown in table 1,
and a graph comparing the static threshold method
and the clustering method is shown in figure 15. In
figures 12, 13, 14, and 16 accuracy of 100% implies
that all pages in the test set for a particular web site
were classified correctly, while 83% implies that five
out of the six pages in the test set were classified
correctly, and so on.

To evaluate our link grouping method, we tested
it on a number of web pages from our original cor-
pus using a signifigance level p = 0.001, which kept
the link groups to a reasonable size. We discuss the
results of these experiments below.

Figure 12: The classification accuracies for the three
different classifiers on 25 news web sites, containing
a total of 150 web pages.

Figure 13: The classification accuracies for the three
different classifiers on 25 sports web sites, containing
a total of 150 web pages.
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Table 1: Classification accuracy of three classifiers as the fraction of the number of correctly labeled web
pages out of 300 test web pages.

Static Threshold Clustering Optimal Classifier
News Pages 0.734 0.840 0.946
Sports Pages 0.700 0.760 0.866
All Pages 0.717 0.800 0.906

Figure 14: The classification accuracies for the three
different classifiers on all 50 web sites containing a
total of 300 web pages.

Figure 15: A comparison of the static threshold clas-
sifier and the clustering method. As the HTML pars-
ing improves, evidenced by the higher accuracy of the
optimal classifier for the news web site data set, so
does the performance of our clustering method.

7 Results and Discussion

7.1 Web Context

In our experiments, the clustering method gave
higher performance than the static threshold method,
correctly classifying 80.0% of the test pages compared
to the static threshold’s 71.7%. Our method’s accu-
racy, however, is clearly not equivalent to the opti-
mal classifier, which classified 90.6% of the pages cor-
rectly. The other 9.4% of pages had highly malformed
HTML code, since when the experimenter hand la-
beled the link and plain text, these pages were found
to cluster in the expected fashion and often the hand
labeled link percentages differed from those given by
the parsing program by over 40%.

It is also interesting that our method achieved bet-
ter results than the static threshold 38% of the time,
while only having poorer performance in 14% of our
experiments. This result is encouraging because it
shows that we are consistently outperforming the
baseline classifier and reaching a level of performance
that is close to that of the optimal classifier.

It also makes sense to ask how the static thresh-
old and clustering methods compare when all web
sites where the optimal classifier did not achieve
100% accuracy are removed. Then we see the clus-
tering method achieved 94.0% accuracy, while the
static threshold technique rose to only 80.1% accu-
racy. These results are shown in figure 16. The
clustering method performed better than the static
threshold on 47% of the web sites, and the static
threshold method performed better on only 9.4% of
sites. This indicates that as HTML parsing accuracy
increases, our clustering method gets closer to 100%
accuracy. Indeed, there are still some parsing errors
left over in this group of sites, only less of them and
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of smaller magnitude. It seems clear that combin-
ing our method with an “HTML cleaning technique”
such as that introduced in [34] would yield extremely
high levels of accuracy.

Figure 16: The classification accuracy for the static
threshold and clustering methods on sites for which
the optimal classifier achieved 100% accuracy. Our
clustering method correctly classified 94% of web
pages, while the static threshold method only clas-
sified 80% correctly.

The strength of our method is that it finds the
proper threshold between index and article pages in
a web site given little data. The fact that we do not
know a priori which web pages are indices and which
are articles poses a problem if the user visits only
pages of a single type. The algorithm will then as-
sume that one of the pages is in fact an index and thus
erroneous clusters will emerge until the user visits a
page of the other type. This is not a problem if the
user can turn off our web page classification method
for certain sites that do not have different kinds of
pages. It is important to make the user aware of this
caveat, lest they prematurely turn off the algorithm
for sites where it would work appropriately if it had
more information.

With regards to our clustering algorithm, it may
be desirable for manual corrections to force the ini-
tial mean points to be the mean of the web pages
that were previously classified as articles. This comes
with the danger of an initial poor classification that
was not corrected corrupting future classification at-

tempts, so we decided against this modification.

Note that, in general, users will collect more data
from each site over the course of normal browsing,
so we would expect even better results than those
reported here. Our experiments are meant to show
merely the bare minimum of what our method is ca-
pable of.

We acknowledge that we could have used other
features such as periods, punctuation character per-
centage, or word rather than character link percent-
age. But these do not capture the page type data
as accurately as link percentage. Period and punc-
tuation percentages perform poorly because they are
often used as delimiters within a page, and occasion-
ally index pages have many small text snippets, such
as when small summaries for different articles are
present, giving these pages more punctuation char-
acters than an article page. Word link percentage,
or the percentage of words that were part of links
divided by the total number of words, on the other
hand, treats words such as “a” and “interestingly” as
equally weighted words, when clearly “interestingly”
takes up more space than “a” on the rendered page
and so contributes more to its type. The two page
types appeared less separable using this feature, so
we opted in favor of the (character) link percentage
cue, although admittedly using word link percentage
may blunt the influence of malformed HTML.

It also may be unsettling that we ignore images,
display markup, and position information. While we
realize that these are important parts of a page’s con-
tent, it is difficult to develop rules that would gener-
alize to the entire web, since some articles have many
images while index pages have very few (see, for ex-
ample, figure 17). Some images, however, are used
as links in place of text. It is unclear exactly how
influence should be computed for these images, but
these images may prove useful as an additional cue in
a future extension of our system, although currently
they are ignored during processing.

In addition, text markup is used in many different
ways with rather loose rules governing their use, and
given that our classification performance is extremely
high, it does not seem that the extra processing re-
quired would generate large gains in accuracy.
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Figure 17: Left: The index page for the BBC News site. Right: An article on the BBC News site. Both web
pages have three images, so a classification algorithm based solely on number of images would not work in
this case.

7.2 Link Grouping

The results for link grouping varied widely, with the
reduction in tabbing according to equation 4 span-
ning from a factor of 40 to an improvement of only
1.5, with a mean of 12. In addition, our algorithm
on average took 0.2 seconds to run, with the longest
time at 0.8 seconds. Thus our method clearly runs
in real time and provides real performance gains for
the user.

Our link grouping algorithm has shown itself to
be quite versatile and effective, working across web
pages in multiple languages with a myriad of lay-
outs. While is difficult to state what the “correct”
link grouping would be in an objective manner, per-
sonal experience with the algorithm has shown that
it does indeed respect the layout of the page and
provides very intuitive groupings on most pages. As
a bonus, our method is easy to plug in to any web
browser, since it was built entirely in code that can
be inserted directly into a web page by a browser.

Actual modification of web page display, however,
did not receive as much attention as the algorithm
itself. There are innumerable possibilities for modifi-
cations, and these vary drastically with the intended

audience. We will explore some of these possibilites
below.

8 Future Work

Extracted HTML text characters can clearly be used
to form a very accurate classification algorithm, but
in order to push accuracy higher we may need to use
other cues. Using rendering data to weight text ac-
cording to its centrality in the displayed page (i.e.
weighting text that is closer to the top and middle
higher than text that is more towards the sides and
bottom) appears to be an attractive extension, al-
though it is not clear if a general rule can be devel-
oped that works for a broad segment of web sites.

We may also wish to handle pages that contain a
high volume of images used as links rather than text
links. While not encountered in our test corpus, han-
dling of such pages is crucial, and perhaps assigning
a default weight to each image-link would further im-
prove results.

Detecting web pages and sites that are merely Java
applets or Flash programs is also important, since we
can no longer determine the optimal mode of interac-
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tion with the web page. If, however, we allow the user
to specify what mode of interaction to use when they
visit this page, then we can contact the interface sys-
tem each time this page is visited again and instruct
it to output commands according to the user’s speci-
fication. This is a very useful feature that will likely
be implemented in our web browser in future work.

It may also be useful to segment the rendered page
into different regions using a decomposition method
such as that introduced by Chen et al. [5] and then
classify each of the regions using our method. The
classification of the entire page could come from a
weighted sum of the classifications of each region.
This decomposition could also aid in interaction mod-
ification, since we can imagine displaying regions of
different types in different ways and changing the user
interaction method if they select a particular region.
This would incur a higher computational cost, but it
may be a necessary extension to further utilize web
context on PDA-class devices.

We could extend our approach to web page classi-
fication into the image processing realm by using a
bitmap image of the rendered page to classify text re-
gions and other regions using pixel information only.
This would be insulated from many of the problems of
parsing malformed HTML, but this type of algorithm
would be computationally expensive and require the
page to be rendered before it is altered, placing fur-
ther burden on the user. It may be useful to combine
this image-based method with our current classifica-
tion scheme, however, to yield a more robust estimate
of page type.

One issue that we touched upon earlier was sites
that have only one page type or web sites where only
pages of one type are visited. To handle this case au-
tomatically it may be necessary to first attempt to fit
a single cluster to all web pages on a site and then see
if the fit is acceptable. If not, then the regular algo-
rithm can resume. Characterizing what constitutes
a “good” fit may prove troublesome and complicates
this technique.

There are also web sites which do not fall within
the domain of sports or news web sites that may have
multiple types of pages. A major component of fu-
ture work is to identify these page types and examine
if they generalize across a wide range of web sites as

the article and index types do. If it appears that
new page types provide a nice fit for a wide range
of web sites, incorporating these types into a future
algorithm would be a definite possibility. It may be,
however, that beyond the basic article-index distinc-
tion different interaction modes and display modifi-
cations are not useful. This issue clearly demands
further research.

We also wish to extend our web browser to give
more control to the user in displaying different types
of web pages. We are experimenting with various
ways to offer this functionality, and it will surely cre-
ate a greatly enhanced interaction experience for the
user. Detailed experiments on how page display mod-
ification and changes in the interaction mode posi-
tively impact the user interface experience will also
be performed to further validate our results. This is
particularly relevant to our link grouping algorithm,
which could allow users to click on a link group to en-
large that group of links, or to highlight a link group
in a different color as it’s selected. What options are
most user-friendly and intuitive would make for in-
teresting future research.

Our work is a preliminary step into the larger in-
vestigation of computer context. In later work we
would also like examine other types of computer con-
text and investigate whether or not extending web
context to include previously browsed pages is feasi-
ble. Work in this area has only just begun.

9 Conclusion

We have presented a highly accurate method for clas-
sifying web pages based on link percentage. Our k -
means clustering method created unique thresholds
to differentiate index pages and article pages on in-
dividual web sites. Accuracy increased when we re-
moved web sites from the corpus that had extremely
malformed HTML, and it is expected that more ro-
bust HTML parsing will yield even more accurate re-
sults. Our method consistently outperformed a base-
line classifier even when using minimal data to gen-
erate initial article and index clusters.

Our link tree creation algorithm and link group-
ing method have been shown to be quite effective
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and guaranteed to outperform or at least stay at the
same level as the functionality offered by current web
browsers, leading to a possible improved communi-
cation rate for users with disabilities. This method
is fast and is portable to nearly all available web
browsers, giving it promise to become an integral tool
for web accessibility.

We also used web page classification and link
grouping to alter web page display on a web browser,
and future work will center around giving the user
more control in determining how different types of
web pages are displayed and choosing intuitive ways
to change interaction modes of an interface system
based on web page classification and link grouping.
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