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Abstract 
Internet of Things (IoT) involves coping with enormous 

number of distributed devices. This paper introduces three 

pieces of caching technology as steps towards single-level 

storage systems that can host and map numerous IoT devices 

on a single vast address space: 1) a caching mechanism for 

making solid-state storage appear as huge main memory, 2) 

speeding up access to resource-limited IoT devices by caching 

the address translation table of solid-state storage chips, and 3) 

ad hoc device-to-device data relay, which can be used as ef-

fective network caching for mapping IoT devices. 

Introduction 
In the coming era of Internet of Things (IoT), storage sys-

tems must cope with enormous number of distributed devices 

connected primarily through wireless networks. We envision 

single-level storage systems [1] that can logically host and map 

numerous IoT devices on a single vast address space, where 

user programs can access those devices without having to be 

aware of the actual storage types or physical device locations, 

as shown in Fig. 1. We introduce three pieces of caching 

technology for such IoT-oriented storage systems as small but 

concrete steps towards the aforementioned envisioned goal. 

Single-Level Storage Systems based on Flash Memory 
Using NAND flash memory suitable for typically small and 

mobile IoT devices, we implemented two proof-of-concept, 

partial prototypes of a single-level storage system, where data 

can be accessed in a unified way regardless of whether it is on 

the DRAM or on the flash memory. To realize this, a storage 

memory management unit (SMMU) is introduced as shown in 

Fig. 2 to cache flash memory data on the DRAM, making the 

flash memory appear as huge main memory that can be ac-

cessed via load/store instructions rather than read/write system 

calls. This is similar to virtual memory and memory-mapped 

IO, but our goal here is to use flash memory as main memory, 

and the main challenge is to hide limitations of flash memory 

such as a limited number of write cycles. Our first prototype is 

a virtual machine (VM) where the guest VM’s main memory is 

mapped to the host VM’s flash memory. A software SMMU on 

the host VM allows the guest VM to access data on the flash 

memory as if it were on the main memory. The SMMU tries 

not to write cached DRAM data back to the flash memory and 

compresses it when write-back is necessary, eliminating 82% 

of write-back traffic for video playback as shown in Fig. 3. Our 

second prototype is a hardware implementation of the dotted 

rectangle part in Fig. 2. A Linux® boot sequence successfully 

runs on it, demonstrating the feasibility of the system. 

Low-Latency Flash Memory Access using Host DRAM 
Even with the use of DRAM cache, it is still desirable to 

have faster flash memory. The access latency of solid-state 

storage devices comes from the fact that they translate re-

quested addresses into device internal addresses in order to 

reduce the number of erase operations by writing to different 

parts of the storage. Since the address translation table is usu-

ally stored in a portion of the flash memory itself, called flash 

translation layer (FTL), FTL access is required in addition to 

actual data access. One solution to reducing the FTL access 

latency is to add DRAM cache to the storage controller chip, 

but this increases the chip size and power consumption, which 

is unsuitable for resource-limited IoT devices. Instead, since 

we consider host devices that are equipped with an SMMU, we 

propose to cache the FTL table on the host DRAM and to have 

the SMMU perform this additional address translation, as 

shown in Fig. 4. Our storage chip that can access the host FTL 

[2] reduces the access latency from 270 sec to 133 sec. 

Wireless Ad Hoc Device-to-Device Data Relay 
Network caching is needed for mapping remote IoT devices 

on a single address space. However, it is unlikely that wireless 

network infrastructures alone will be able to satisfy growing 

mobile data traffic. We are developing a system for ad hoc 

device-to-device data relay [3], where each device caches data, 

so that other nearby devices can access it via proximity-based 

wireless communication (e.g., Wi-Fi®) without going through 

preexisting networks, as shown in Fig. 5. As a first step, we 

consider presumably the simplest scenario of one IoT device 

delivering data to others in the same area. The challenge here is 

to efficiently transfer data by avoiding radio interference in the 

absence of central control, which we address by using mul-

ticast transmission augmented with a packet repair mechanism, 

along with adaptive selection of relay nodes according to sig-

nal levels of nearby devices [4]. Simulation indicates that our 

method delivers 128kB data to 7000 devices in 50 sec, which is 

seven times faster than naïve unicast flooding. We equipped 

our prototype device with a FlashAir™ Wi-Fi SD card with 

modified firmware as a wireless network adapter, to have more 

control over the multicast bitrate and transmission power than 

typical off-the-shelf adapters in order to optimize performance. 

Conclusions 
Three caching mechanisms have been demonstrated through 

individual prototypes, which we believe to be integral parts for 

IoT-oriented single-level storage systems. Emerging nonvola-

tile memory such as MRAM can certainly give a performance 

boost, whose study will be an interesting future direction. 
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Figure 1. Single-level storage system where distributed IoT devices are mapped onto a single huge address space. 

 
Figure 2. Proposed storage system allowing for load/store access to the 

flash memory with the aid of a storage memory management unit 

(SMMU), making the flash memory appear as huge main memory, along 

with the prototype board corresponding to the dotted rectangle part. 

 
Figure 3. Plots of the amount of data traffic being 

written from the DRAM back to the flash memory 

as video playback progresses on the virtual ma-

chine prototype. 

 
Figure 4. (a) Conventional solid-state storage needing to first read address translation information stored in the flash translation 

layer (FTL) in the flash memory before accessing user data, resulting in an increased latency. (b) Proposed storage controller 

eliminating this additional flash memory access by caching FTL data in the host DRAM. (c) Micrograph of the prototype chip. 

 
Figure 5. (a) Distributed devices connected via a preexisting wireless network. (b) Devices connected directly with each other 

nearby, where, as opposed to mesh networks, data is transferred in a store-and-forward way so that each device acts as network 

cache. (c) Unicast transmission where a sender (blue) delivers data to one receiver (green) at a time. (d) Multicast transmission 

where surrounding receivers are served simultaneously and can request repair for lost packets. (e) Flooding where all the devices 

that have received the data relay it, causing interference. (f) Adaptive relay where only selected devices relay the data. (g) Plots of 

data delivery progress in a simulation of 10,000 devices receiving data from a single source device. (h) Simulation snapshot where 

green/blue dots indicate devices that have received the data, while red dots indicate those that have not. (i) Prototype device 

equipped with a FlashAir™ Wi-Fi SD card as indicated by the red circle.                                
FlashAir is a trademark of Toshiba Corporation.
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