

Caching Mechanisms towards Single-Level Storage Systems for Internet of Things

Yosuke Bando1, Konosuke Watanabe1, Ken-ichi Maeda1, Hiroki Kudo2, Masahiro Ishiyama2,

Atsushi Kunimatsu1, Hiroto Nakai1, Masafumi Takahashi1, and Yukihito Oowaki1

1Semiconductor & Storage Products Company, Toshiba Corporation, Yokohama, Japan
2Corporate Research & Development Center, Toshiba Corporation, Kawasaki, Japan

yosuke1.bando@toshiba.co.jp

Abstract
Internet of Things (IoT) involves coping with enormous

number of distributed devices. This paper introduces three

pieces of caching technology as steps towards single-level

storage systems that can host and map numerous IoT devices

on a single vast address space: 1) a caching mechanism for

making solid-state storage appear as huge main memory, 2)

speeding up access to resource-limited IoT devices by caching

the address translation table of solid-state storage chips, and 3)

ad hoc device-to-device data relay, which can be used as ef-

fective network caching for mapping IoT devices.

Introduction
In the coming era of Internet of Things (IoT), storage sys-

tems must cope with enormous number of distributed devices

connected primarily through wireless networks. We envision

single-level storage systems [1] that can logically host and map

numerous IoT devices on a single vast address space, where

user programs can access those devices without having to be

aware of the actual storage types or physical device locations,

as shown in Fig. 1. We introduce three pieces of caching

technology for such IoT-oriented storage systems as small but

concrete steps towards the aforementioned envisioned goal.

Single-Level Storage Systems based on Flash Memory
Using NAND flash memory suitable for typically small and

mobile IoT devices, we implemented two proof-of-concept,

partial prototypes of a single-level storage system, where data

can be accessed in a unified way regardless of whether it is on

the DRAM or on the flash memory. To realize this, a storage

memory management unit (SMMU) is introduced as shown in

Fig. 2 to cache flash memory data on the DRAM, making the

flash memory appear as huge main memory that can be ac-

cessed via load/store instructions rather than read/write system

calls. This is similar to virtual memory and memory-mapped

IO, but our goal here is to use flash memory as main memory,

and the main challenge is to hide limitations of flash memory

such as a limited number of write cycles. Our first prototype is

a virtual machine (VM) where the guest VM’s main memory is

mapped to the host VM’s flash memory. A software SMMU on

the host VM allows the guest VM to access data on the flash

memory as if it were on the main memory. The SMMU tries

not to write cached DRAM data back to the flash memory and

compresses it when write-back is necessary, eliminating 82%

of write-back traffic for video playback as shown in Fig. 3. Our

second prototype is a hardware implementation of the dotted

rectangle part in Fig. 2. A Linux® boot sequence successfully

runs on it, demonstrating the feasibility of the system.

Low-Latency Flash Memory Access using Host DRAM
Even with the use of DRAM cache, it is still desirable to

have faster flash memory. The access latency of solid-state

storage devices comes from the fact that they translate re-

quested addresses into device internal addresses in order to

reduce the number of erase operations by writing to different

parts of the storage. Since the address translation table is usu-

ally stored in a portion of the flash memory itself, called flash

translation layer (FTL), FTL access is required in addition to

actual data access. One solution to reducing the FTL access

latency is to add DRAM cache to the storage controller chip,

but this increases the chip size and power consumption, which

is unsuitable for resource-limited IoT devices. Instead, since

we consider host devices that are equipped with an SMMU, we

propose to cache the FTL table on the host DRAM and to have

the SMMU perform this additional address translation, as

shown in Fig. 4. Our storage chip that can access the host FTL

[2] reduces the access latency from 270 sec to 133 sec.

Wireless Ad Hoc Device-to-Device Data Relay
Network caching is needed for mapping remote IoT devices

on a single address space. However, it is unlikely that wireless

network infrastructures alone will be able to satisfy growing

mobile data traffic. We are developing a system for ad hoc

device-to-device data relay [3], where each device caches data,

so that other nearby devices can access it via proximity-based

wireless communication (e.g., Wi-Fi®) without going through

preexisting networks, as shown in Fig. 5. As a first step, we

consider presumably the simplest scenario of one IoT device

delivering data to others in the same area. The challenge here is

to efficiently transfer data by avoiding radio interference in the

absence of central control, which we address by using mul-

ticast transmission augmented with a packet repair mechanism,

along with adaptive selection of relay nodes according to sig-

nal levels of nearby devices [4]. Simulation indicates that our

method delivers 128kB data to 7000 devices in 50 sec, which is

seven times faster than naïve unicast flooding. We equipped

our prototype device with a FlashAir™ Wi-Fi SD card with

modified firmware as a wireless network adapter, to have more

control over the multicast bitrate and transmission power than

typical off-the-shelf adapters in order to optimize performance.

Conclusions
Three caching mechanisms have been demonstrated through

individual prototypes, which we believe to be integral parts for

IoT-oriented single-level storage systems. Emerging nonvola-

tile memory such as MRAM can certainly give a performance

boost, whose study will be an interesting future direction.

Acknowledgments
Special thanks to Henry Holtzman and V. Michael Bove, Jr.

for their valuable advice; to Tsutomu Owa and Takashi Omizo

for their help in developing the single-level storage prototypes.

References
[1] J. S. Shapiro et al. USENIX Tech Conf, 59-72, 2002.

[2] K. Watanabe et al. ISSCC, 330-331, 2014.

[3] D. Dubois et al. ESEC/FSE, 687-690, 2013.

[4] T. Sakoda et al. IEICE Tech Rep 114(417), 101-106, 2015.

Figure 1. Single-level storage system where distributed IoT devices are mapped onto a single huge address space.

Figure 2. Proposed storage system allowing for load/store access to the

flash memory with the aid of a storage memory management unit

(SMMU), making the flash memory appear as huge main memory, along

with the prototype board corresponding to the dotted rectangle part.

Figure 3. Plots of the amount of data traffic being

written from the DRAM back to the flash memory

as video playback progresses on the virtual ma-

chine prototype.

Figure 4. (a) Conventional solid-state storage needing to first read address translation information stored in the flash translation

layer (FTL) in the flash memory before accessing user data, resulting in an increased latency. (b) Proposed storage controller

eliminating this additional flash memory access by caching FTL data in the host DRAM. (c) Micrograph of the prototype chip.

Figure 5. (a) Distributed devices connected via a preexisting wireless network. (b) Devices connected directly with each other

nearby, where, as opposed to mesh networks, data is transferred in a store-and-forward way so that each device acts as network

cache. (c) Unicast transmission where a sender (blue) delivers data to one receiver (green) at a time. (d) Multicast transmission

where surrounding receivers are served simultaneously and can request repair for lost packets. (e) Flooding where all the devices

that have received the data relay it, causing interference. (f) Adaptive relay where only selected devices relay the data. (g) Plots of

data delivery progress in a simulation of 10,000 devices receiving data from a single source device. (h) Simulation snapshot where

green/blue dots indicate devices that have received the data, while red dots indicate those that have not. (i) Prototype device

equipped with a FlashAir™ Wi-Fi SD card as indicated by the red circle.
FlashAir is a trademark of Toshiba Corporation.

Remote

device A B C D E

Remote

device XSelf

Single address space

DRAM Storage I/O, etc. Self

E

B

C
A

D

Distributed

IoT devices

SMMU

Flash

memory

DRAM

CPU

Load/Store

Read/Write
upon page fault

Data

Data FPGA for SMMU

DRAM chips

PCI Express® to host

Flash memory board 12

10

8

6

4

2

0
6005004003002001000

Elapsed time [sec]

W
ri

te
-b

ac
k
 t

ra
ff

ic
 [

M
B

/s
]

Naïve full write-back

Write-back reduction

DRAM Flash

memory

Memory

controller

Host Storage

FTL data request

User data access

User data

FTL data

User data access

(a) Conventional solid-state storage

DRAM

Flash

memory

Memory

controller

Host Storage

FTL data request

User data access

User data

FTL data

User data access

(b) Proposed solid-state storage

FTL

cache
FTL

(c)

(a) Wireless communication
through an access point

(b) Ad hoc device-to-device
wireless communication

0

2000

4000

6000

8000

10000

0 50 100 150 200

#
 s

at
is

fi
ed

 d
ev

ic
es

Elapsed time [sec]

Proposed method

Naïve method

Multicast

Repair
request

Unicast

(e) Naïve method: Flooding(c) Naïve method: Unicast

(d) Proposed: Multicast with repair (f) Proposed: Adaptive relay

Source
device

Proposed method Naïve method

(g)

(h)

(i)

