Abstract

The recent rapid popularization of digital cameras alloaspse to capture a large number
of digital photographs easily, and this situation makesmatic avoidance and correction
of “failure” photographs important. While exposure and cassues have been mostly
resolved by the improvement in automatic corrective fuoriof cameras, defocus, mo-
tion, and camera shake blur can be handled only in a limitshida by current cameras.
Camera shake blur can be alleviated by an anti-camera shasleamsm installed in
most cameras; but for focus, although a particular scenthdzm be focused with an
auto-focus function, objects at different depths cannotdygured sharply at the same
time. Moreover, defocused images can often result due ttathee of auto-focusing. In
addition, blur caused by object motion, i.e., motion blsigmnly avoided by increasing the
shutter speed and sensor sensitivity when a camera detetitsin a scene.

This dissertation proposes a method for removing defocdsvaotion blur for digital
cameras. Since deblurring is generally an ill-posed prablend hence an image pro-
cessing approach alone has limitations, the proposed chétictudes modi cations of
camera optics. In this regard, this dissertation pursuestst and compact implementa-
tion, aiming at applications to consumer products. Thatrsll modi cations to existing
cameras or mechanisms that can be directly derived fronirexisnes will be adopted.

In order to set a baseline performance achievable withoutifiying camera optics,
this dissertation rst proposes an image deblurring mettiat is purely based on an
image processing approach, which consists of fast imagengetution for ef cient de-
blurring, and local blur estimation for handling spatialigrying blur. Additionally, a set
of intuitive user interfaces are provided with which therusan interactively change the
focus settings of photographs after they are captured,acstie/he can not only obtain
an all-in-focus image but also create images focused teréifit depths.

For removal of defocus blur, a method is proposed for esingdhe defocus blur size
in each image region by placing red, green, and blue colerslin a camera lens aper-
ture. As captured image will have depth-dependent coloaligisment, the scene depth
can be estimated by solving a stereo correspondence prdigemeen images recorded
with different wavelengths. Since the depth is directhyatetl to the defocus blur size,
deblurred images can be produced by deconvolving eachrregib the estimated blur
size. The modi cation requires only inexpensive color iige

For motion blur removal, this dissertation proposes to nbxecamera image sen-
sor circularly about the optical axis during exposure, s the attenuation of high fre-
guency image content due to motion blur can be preventeditdéing deconvolution.



The frequency domain analysis of the circular sensor matiajectory in space-time
shows that the degradation of image quality is equally reddor all objects moving in
arbitrary directions with constant velocities up to somedatermined maximum speed.
The proposed method may be implemented using an existirgpsshift system of an
anti-camera shake mechanism.
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Chapter 1

Introduction

This chapter rst describes the motivation for this worketithe background and prelim-
inary information on image deblurring, followed by a reviefithe related work. Finally,
the contributions and organization of this dissertatien@esented.

1.1 Motivation

The recent rapid popularization of digital cameras alloespde to capture a large num-
ber of digital photographs easily. As the number of casualtqdraphers increases, so
does the number of “failure” photographs including ovedemnexposed, noisy, blurred,
and unnaturally-colored images. This situation makesmatiw avoidance and correction
of failure photographs important. In fact, automatic cotire functions of digital cam-
eras including auto-exposure, automatic white balance,namse reduction capabilities
steadily improve to resolve exposure, color, and noiseessu

On the other hand, current digital cameras appear to hamalga blur only in a lim-
ited fashion; they only directly address camera shake blurnot defocus and motion
blur. For camera shake blur, most of the recent cameras angpagl with an anti-camera
shake mechanism that moves either the lens or the imagersersmpensate for camera
motion obtained from an accelerometer. For defocus blweher, although a particular
scene depth can be focused with an auto-focus function¢isige different depths cannot
be captured sharply at the same tirde§th-of- eld effects, see Fig. 1.1(a)). Moreover,
defocused images can be commonly seen in personal phoextwofs due to the fail-
ure of auto-focusing. In addition, blur caused by objectiomgti.e., motion blur (see
Fig. 1.1(b)), can only be avoided by increasing the shufteed and sensor sensitivity
when a camera detects motions in a scene, at the expensenaf@ased noise level.
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Figure 1.1: Examples of blurred photographs. (a) Photdyreith a shallow depth-of-
eld, in which only the faces at the focused depth are shacplytured, and the others are
subject to defocus blur. (b) Photograph containing mobturred sh.

To overcome the above-described situation, this dissentggroposes methods for
removing defocus and motion blurs in photographs. Sincéudetyg is generally an ill-
posed problem as will be explained in Sec 1.2, image pratgdschniques alone can
often suffer from noise ampli cation and ringing artifadts deblurred images, which
result from attenuation of high frequency image contentagture time and also from
misidenti cation of blur kernels during image processintherefore, in addition to im-
age processing techniques for deblurring, the proposetiadeancludes modi cations
of camera optics that alter the image capture process dfitmaal cameras in order to
achieve high frequency preservation and to facilitate kdurnel identi cation. In this re-
gard, this dissertation pursues low cost and compact haedwgplementation, aiming at
applications to consumer digital cameras. That is, smatliroations to existing cameras
or mechanisms that can be directly derived from existingsoné be adopted.

This dissertation focuses on a single-shot approach. Bhate try to recover an
unseen sharp image given a single blurred image, and do sott t® taking multiple
photographs. Although one could bene t from an increasedwof information from
multiple images, images must be registered in some way, gndniic scenes and/or
hand-held image capture without a tripod can introducetemhdil sources of errors. Of
course, one could use multiple synchronized cameras taathethis issue, but that is not
only expensive but also an unrealistic usage scenario fuatgphotographers. Another
option might be to use a high-speed camera to minimize mbttween frames to facili-
tate registration, but each frame will have an increaseskrievel due to reduced exposure
time, and the memory bandwidth required to transfer imaga ftam the sensor to the
storage device will become large, making the obtainablegarasolution small. More-
over, we would like to note that a single-shot approach andiki4shot approach can
complement each other; multi-shot approaches could beénam improved deblurring
results of the proposed single-shot methods, and vice versa
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Prior to proposing camera hardware-assisted deblurringpaods, we would like to
set a baseline performance achievable without modifyimgera optics. To this end, we
rst explore an image deblurring method that is purely basedan image processing
approach. After that, we propose defocus and motion debtumethods with modi ed
camera optics.

1.2 Image Deblurring

Image deblurring can be formulated as the process of imgenthage blurring. This sec-
tion rst introduces a model of image degradation, and thessents problem de nitions
of image deblurring with their basic solution strategied associated dif culties.

1.2.1 Image Degradation Model

Image degradation due to blur can be locally modeled as datmvo [43]:

g(xy) = h(xy) f(xy)+ n(xy); (1.1)
whereg is an observed degraded imagdeis a blur kernel or goint-spread function
(PSF),f is an unknown laten) original sharp imagen is a noise term, and denotes a
convolution operator. A defocus blur kernel can be often eted as a pillbox function
(see Fig. 1.2(b) top):

p
1=pr? for x2+y2 r

0 otherwise ; (1.2)

h(x;y) =

wherer is the radius of a circle of confusion. A motion blur kernet #ohorizontally
moving object can be modeled as a box function (see Fig. Jliom):

d(y)=2L forjxj L

h(x;y) = 0 otherwise (1.3)

where 2. is the length by which the object travels during exposure, @) is a Dirac
delta function.

Fig. 1.2 shows examples of this image degradation procds=athe blur is assumed
to be uniform for the entire image.

1.2.2 Image Deconvolution

Image deconvolution is a problem of estimating the laterstget given an observation
g and a blur kerneh. This is known to be already an ill-posed problem, becaughk hi
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(b)

Figure 1.2: Image degradation process (the noise term itahi (a) Original sharp
image f. (b) Blur kernelh. The top row corresponds to defocus blur Eq. 1.2, and the
bottom row to motion blur Eq. 1.3. (c) Blurred image

frequency information in the original imades attenuated by blur. This is apparent if we
consider Eg. 1.1 in the frequency domain:

O(wie wy) = h(wsg way) F(ws; ) + (s wg); (1.4)

where thehat notation f denotes the Fourier transform &f and (w; W) denotes spa-
tial frequencies. Note that convolution in the spatial don@ecomes multiplication in
the frequency domain. Fig. 1.3 shows frequency domain segmtation of Fig. 1.2. As
can be seen, the high frequency content (correspondingeteatines in the outer region
of each frequency domain image in Fig. 1.3) of the originadgm is signi cantly atten-
uated after multiplication by the blur kernel, because the kernel decays rapidly for
higher frequencies. In addition, the shown blur kernelsehaeriodic zeros that make
the corresponding frequency content completely lost. &foee, image deconvolution is
a process of recovering weakened or lost signals and eatgmivolves signal ampli -
cation. This is apparent in the following equation that iempénts naive deconvolution,
known agpseudo-inverse deconvolution

h (v W)
jh(w; w)j2+ e

s wy) = 6w ) (1.5)

wheref%denotes a deblurred image (in the frequency dom&irthe complex conjugate
of h, andeis a small number to avoid zero division. The fraction of tight-hand side of
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the equation is essentially division ﬁymeaning that weakened signals will be ampli ed
back accordingly. As a result, naive deconvolution alsolaegmoise in a blurred image,
which leads to ringing artifacts as shown in Fig. 1.4.

(b) ()

Figure 1.3: Image degradation process viewed in the frejudomain. (a) Log magni-
tude of the Fourier transforrh of an original sharp imagé. (b) Log magnitude of the
Fourier transfornh of a blur kerneh. (c) Log magnitude of the Fourier transfoigrof a
blurred imagen.

(b)

Figure 1.4: Results of pseudo-inverse deconvolution forbloered images shown in
Fig. 1.2. (a) Result for the defocus blurred image. (b) Resulttie motion blurred
image.

1.2.3 Blind Image Deconvolution

Blind image deconvolution is a problem of estimating theraienagef given only an
observatiorg [43]. As we must also estimate a blur kerhdtom the blurred imagg, the
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problem becomes under-constrained since the number obwmigi(the number of pixels

in f plus the number of values in) exceeds the number of observations (the number of
pixels ing, which is equal to that of). The problem is solved either by rst estimating
the blur kerneh and then applying (non-blind) image deconvolution to abtgior by
iteratively improving the estimates bfand f until convergence.

Frequency attenuation can even more adversely affect eeedvmage quality than
for non-blind deconvolution, since errors in the estimaterhel can excessively amplify
the frequency content that is not signi cantly attenuatgdtie true blur kernel. Fig. 1.5
shows examples of pseudo-inverse deconvolution resuitsblir kernels having slightly
different sizes from the true ones.

(b) :

Figure 1.5: Results of pseudo-inverse deconvolution witbngrblur kernels for the
blurred images shown in Fig. 1.2. (a) Result for the defocusét image. (b) Result for
the motion blurred image.

1.2.4 Target Problem

This dissertation addresses an image deblurring problevhich each local image region
can be treated as being subject to the blind image decomwolptoblem. That is, blur
kernels can vary across the image region but can be assuntedp@cewise uniform.
While we assume a parametric form of blur as in Egs. 1.2 andblu8 kernels arenot
assumed to ba priori known (i.e., blind).

1.3 Previous Work

Researches on image deblurring and restoration have a letgyhi14, 43, 11], and
they have mainly focused on an image processing approach.stWeview some of the
traditional methods and also explain recent advancessnehd in Sec. 1.3.1.
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While image processing approaches handle images in a poistreananner, recent
years have seen an emergence of techniques aalagutational photographjy 6] that
change the image capture process of cameras to acquireiat@meation unobservable
with traditional cameras, and/or to facilitate post-captmage processing. The methods
involving camera optics modi cations proposed in this éigation belong to this eld
of research. Sec. 1.3.2 introduces computational phgbbgrenethods for image deblur-
ring, and also some work that is not directly related to delrlg but is relevant to this
dissertation.

Finally, the relation of the previous work to ours is sumrpad in Sec. 1.3.3.

1.3.1 Image Processing Approach

Image Deconvolution

Solving an image deconvolution problem all comes down torgppith its ill-posedness
described in Sec.1.2.2, which, in one aspect, manifest§ &s zero division in the fre-
guency domain. While the simplest remedy is to add a xed smathber to the denomi-
nator as in Eq. 1.5, a more theoretically meaningful way asdj Ai( wy; Wy)j2:j f(wg V|/y)j2

to the denominator, known as Wiener deconvolution [14]. Qfrse the power spectra of
the noisgfj2 and original imaggfj?2 are not known, estimated values are used instead.

Apart from such relatively simpleegularization (i.e., to make ill-posed problems
well-posed ones), one can use some prior knowledge of namages. The dif culty
inherent in ill-posed problems is that the space of possiblations is large; a blurring
process can produce similar images from different imagdedigg the signals that make
the original images differ from each other. Therefore, ifeméorce some priori proper-
ties on deblurred images, the solution space can be conamadtaller one. A simple but
effective piece of prior knowledge of natural images is thatr pixel values are bounded;
they cannot take negative or unlimitedly large values. Rigban-Lucy deconvolution it-
eratively updates the estimated deblurred image suchtthgitel values are always kept
positive [79, 58].

Another form of such regularization is to minimiggx;y) fYx;y)j2, which is known
as Tikhonov regularization [88]. A regularizing operatas often set as a high-pass Iter
to rule out images with a large high frequency content, so ihging-free images are
favored. However, it may also rule out sharp images by itaneatMinimizing a squared
norm of high-pass Itered images can be viewed as enforciaggsian smoothness pri-
ors to the Itered signal distributions, but recent reséason natural image statistics

17



show that they obey so-callégavy-taileddistributions [29], which have a narrower peak
and a broader foot than Gaussians (also knowspasseness priojs Therefore, recent
methods exploit heavy-tailed priors to allow occasionatdntinuities (such as edges) in
restored images [30, 68, 10, 15]. These methodsliseeete wavelet transfordDWT) as
band-pass lters, but since restored images suffer fronckyl@rtifacts arising from the
dyadic image partitioning in DWT, they useanslation-invariant DWT(TI-DWT) [24],
also known astationaryDWT, to reduce such artifacts at the cost of signi cant inseea
in computational complexity.

Blind Image Deconvolution

Blind image deconvolution techniques restore the origihalg image from an observed
degraded image without precise knowledge of a point-spiwaction (PSF) [43]. There
are two main approaches to this: 1) rst estimate the PSF,thed apply a non-blind
deconvolution method with that PSF; 2) iteratively estiethe PSF and the original sharp
image.

For the approach that estimates the PSF rst, some traditioethods payed attention
to the frequency zero patterns in a blur kernel [20]. For gdamthe Fourier transform
of a box function as shown in Eq. 1.3 is givenigsy; W) = sindLw), meaning that it
has periodic zeros aty = kp=L for a non-zero integek. From Eq. 1.4, we can expect
that the Fourier transforrg 6f the observed image has the same zero pattern if we can
ignore noise. However, such methods are not practical iptégence of noise. Another
approach is to take a set of candidate PSFs, and to choosedhbai best explains the
observed image. The selection criteria differ from methmdnethod, such as residual
spectral matching [80] and generalized cross validati@h. [7

For the approach that iteratively estimates the PSF andhifug smage, Ayers and
Dainty proposed to iterate the process of updating the R8# the estimated sharp im-
age in the Fourier domain, imposing image space constramtise PSF (non-negativity,
for example), updating the sharp image from the PSF in thei&odomain, and im-
posing constraints on the sharp image [9]. More recent nasthook a conceptually
similar approach and estimated a camera shake PSF fromla smage by incorporat-
ing natural image statistics. Fergefsal. imposed a sparseness prior for image derivative
distributions, and used an ensemble learning approachve gt otherwise intractable
optimization problem [28]. Shaet al. introduced a more sophisticated noise model and
a local smoothness prior [81].

Some researchers used multiple images. Rav-Acha and P&leghjdgwed that using
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two motion blurred images can produce better deconvolugsults; Yuaret al [101]
used a long-exposure blurred image and a short-exposusg imeage, so that PSF esti-
mation can bene t from the short-exposure image which issutject to blur.

Handling Spatially-Variant Blur

The methods described above all assume a PSF to be spatiahant (uniform). A
spatially-variant PSF is usually estimated by sectionhrgimage and by assuming it to
be approximately spatially-invariant within each secfi@®, 72, 44]. This means that the
blur is assumed to be only slowly varying across the imageaat section should be
large enough to make reliable estimation. This is also tou@dn-blind spatially-variant
deconvolution methods [66, 46, 96].

A few methods exist that can estimate a spatially-variarft R&h abrupt changes
across the image. Levin identi ed spatially-variant matiolur by examining the differ-
ence between the image derivative distribution along theanalirection and that along
its perpendicular direction for the case of 1D linear mofidn]. You and Kaveh [100]
also addressed the problem of removing spatially-variatan blur, but only a synthetic
horizontal motion blur example was presented.

Depth-from-focus/defocus techniques generate a depthain@gcene by estimating
the amount of defocus blurs in images. Hence they can be diegepatially-variant PSF
estimation methods. Existing methods either use multiplages [73, 99, 67], or make
an estimate at edges in a single image by assuming that @t iiamp edge is originally
a sharp step edge [73, 85, 45].

Depth-of- eld Synthesis

Some methods are designed to create and alter the deptiebkffects from images,
rather than to remove blurs from them. Burt and Kolczynsketusultiple images with
different focus to generate images with an extended defpthleb [19]. Kubota and
Aizawa used two images, and generated arbitrarily focusejeés by assuming that a
scene consisted of two depth layers, each of which was irsfoceither image [42]. The
“Lens Blur” Iter of Adobe Photoshop CS [2] creates depth-adld effects from a single
sharp photograph with a user-provided depth map.
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Matting

In image editing, matting is an important technique for asting foreground objects in an
image so that they can be composited over other images j2afdition to image editing

purposes, matting is also important in the context of imagelwring, for separating

image regions so that each region can be deconvolved indeptn

The traditional approach to matting is to use a blue or greeges as a background
[91, 82]. Extracting a matte from a singhaturalimage (i.e., an image with general un-
known background colors) requires user intervention, &aform of which is arimap
that segments an image into “strictly foreground,” “styidiackground,” and “unknown”
regions. Fractional alpha values are computed in the “unkifigegion based on the
information from the other two regions [23, 86, 92, 49, 50]. 98B0 automate matting,
previous approaches used multiple images. Smith and Blighd&ptured images of a
foreground object with two different known background asloAlternatively, Wexleet
al. [97] used a sequence of images of a translating/rotatipgcobXiong and Jia [98]
captured images from two viewpoints, and computed theiesteorrespondences taking
into account alpha values of a foreground object. Severdhods used synchronized
cameras to capture multiple images of an object [60, 61, 391 &4].

1.3.2 Hardware-Assisted Approach

Defocus Blur Removal

For defocus blur removal, wavefront codingnethod [27] incorporates a cubic phase
plate in the imaging system, so that the defocus blur is iaddent of the scene depth.
The defocus blur can be removed with a single known PSF, mitébhnique requires a
custom optical system that can be expensive. Several odszarhave introducecbded
aperturetechniques [48, 90] which places a patterned mask in the realeres aperture to
change the frequency characteristics of defocus blur ierafacilitate blur estimation
and removal. These methods offer portable imaging systethsmnimal modi cations

to the conventional camera, but as the blur estimationysoddies on defocus cues, some
manual intervention may be required, and there is ambidngtween depths farther and
nearer than the focused depth.

Several camera designs have been proposed to estimatedsaheusing defocus
cues, which can also be viewed as defocus PSF estimatiorodsetiHiura and Mat-
suyama used a modi ed camera with multiple pinholes [36]dptare images in which
duplicated scene textures are displaced and superimposedapth-dependent manner.
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Two research groups used color lters in the lens apertucapiure the displaced images
in separate color channels [6, 21]. Moreno-Nogefeal. used a projector and estimated
depth from projector defocus [64].

If multi-view images are available, not only scene depth lbarestimated, but also
synthesis of depth-of- eld effects, aefocusing can be performed. There are several
camera designs to do multi-view image capture through desimgin lens. Adelson and
Wang [1] showed that light rays entering a camera can be ap&eparately depend-
ing on their incident angle by placing a microlens array om ithage sensor, and they
estimated depth from multi-view images captured throughntfain lens. Nget al. [70]
realized this idea in a hand-held camera, and proposed @&pgpssure refocusing method
by noting that the captured multi-view images corresporttiedight eld inside the cam-
era [69]. Multi-view images can also be captured by placin@gtienuation mask on the
image sensor [90], or by splitting light rays at the aper{@& 55, 54] or outside the main
lens [31].

Motion Blur Removal

For motion blur removal, Raskaat al. [75] developed acoded exposuréechnique to
prevent attenuation of high frequencies due to motion llaapture time by opening and
closing the shutter during exposure according to a pseaddem binary code. Agrawal
and Xu [4] presented another type of code that enables P$&Ragisin in addition to
high frequency preservation. Levat al. [51] proposed to move the camera image sensor
with a constant 1D acceleration during exposure, and shdwatdhis sensor motion can
render motion bluinvariant to 1D linear object motion (e.g., horizontal motion), and
that it evenly distributes the xed frequency “budget” tdfdrent object speeds. That is,
objects moving at different speeds can be deblurred equeailly

Some researchers proposed to move sensors for differepvgrs. Ben-Ezrat al.
[13] moved the sensor by a fraction of a pixel size betweerogupes for video super-
resolution. Moharet al. [63] moved the lens and sensor to deliberately introduceamo
blur that acts like defocus blur. Nagahataal. [65] moved the sensor along the optical
axis to make defocus blur depth-invariant.

Camera Shake Removal

For camera shake removal, Ben-Ezra and Nayar [12] attaclmedr@$olution video cam-
erato a main camera, and estimated a camera shake PSF freorfnathes to remove blur
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from a main camera image. Recent cameras typically have acamera shake mech-
anism that moves either the lens or the image sensor to caaf@efor camera motion
obtained from an accelerometer.

1.3.3 Relation to the Proposed Method

Fig. 1.6 shows four stages in a generic processing ow of iendgblurring. We rst
capture an image, and then segment the image into regioh®éadich can be assumed
to have a uniform blur. After that, for each local region, vetireate the blur kernel and
nally use it to deconvolve the image. Some methods may perfeegmentation and blur
estimation simultaneously. Some may iterate blur estonaaind deconvolution.

Deconvo-
lution

Image ESegmen- Blur |
capture i tation estimation |

Figure 1.6: Processing ow of image deblurring.

Table 1.1 summarizes the relationship between the proposéiiod and some of the
previous work for three of the above four stages and for tineettblur types, namely
defocus, motion, and camera shake blur. We set aside theeiocggure stage because
it is trivial for methods purely based on an image procesajmgroach, and for methods
involving optics modi cations, the (modi ed) image captistage can facilitate one, two,
or all of the succeeding three stages depending on the neetfderefore, the table has
two rows for each blur type, one for methods involving optiezdi cations, and the other
for pure image processing methods.

Image Processing Approach to Image Deblurring

Chapter 2 proposes a method for defocus blur removal purslydban an image process-
ing approach. For image segmentation and blur estimatierprapose a method that can
handle abrupt blur changes across images, while previotisoth® such as [72] assume
slowly varying blur. For deconvolution, we speed up the catapon involving heavy-
tailed priors by building upon one of the state-of-the-adtinods calledVaveGSM15]
and make it 10 times faster. The deconvolution method carsée tor removing motion
and camera shake blur as well. Additionally, we provide sigath a set of intuitive in-
terfaces with which the user can interactively change tloedasettings of photographs
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Table 1.1: Summary of the relationship between the proposettiod and some of the
previous work. Only a few representative methods that usglesimages are cited for
brevity.

Segmentation Blur estimation Deconvolution
ifi Wavefront coding 274
Moqmed . 9l U Chapter 3
Defocus | OpPtics Coded aperture [48, 98
blur |
mage Ozkan et al. 1991 [72] ]| WaveGSM [15] *
processing I
1
Modified ( Motion-invariant photography [51]
Motion | optics Coded exposure photography [75, 4
blur Image Chapter 4 (common to the
processing |[ Levin 2006 [47] )\ @bove field *)
Modified Ben-Ezra and Nayar| Image processing
Camera optics 2004 [12] alone will suffice
shake Not required
blur Image Fergus et al. 2006 | (common to the
processing [28] above field *)

after they are captured, so that she/he can not only obtaati-amfocus image but also

create images focused to different depths. To our knowle@gghniques that synthesize
refocused images from a single conventional photograpk hat been reported in the
literature.

Defocus Blur Removal using a Color-Filtered Aperture

As will be shown in Chapter 2, image processing alone does ec¢ssarily produce
satisfactory results, and we propose to modify camera plicChapter 3, we present a
method for simultaneously performing segmentation andalesf blur estimation by plac-
ing red, green, and blue color lters in a camera lens apertatthough wavefront coding
[27] can cover all the latter three stages for image deblgrit requires special lenses that
can be expensive, whereas the modi cation of the proposetiadeequires only inex-
pensive color Iters. The coded aperture methods [48, 96 alover the three stages,
but some issues remain for the segmentation and blur egiimstiages as described in
Sec. 1.3.2. As deconvolution quality can be considerabpyraved by the coded aperture,
this dissertation focuses on facilitating the segmemntadiod blur estimation stages, and
we use a color- ltered aperture to exploit parallax cuebeathan to directly use defocus
cues, which addresses the above-mentioned issues.
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The idea of using color lters in the aperture itself has bpesposed previously. For
a stereo correspondence measure between the color plamesi, @&d Adelson [6] used
a squared intensity difference with high-pass Itering. thgy discussed in their paper,
however, this measure was insuf cient to compensate fanisity differences between
the color planes. Their prototype was not portable, and ardingle result for a textured
planar surface was shown. Chaegal [21] normalized the intensities within a local
window in each color plane before taking the sum of absolifterdnces between them.
But as their camera was equipped with a ashbulb for projectrspeckle pattern onto
the scene in order to generate strong edges in all the cadoep) the performance of
their correspondence measure in the absence of ash watneins They also had to
capture another image without ash to obtain a “normal” irmagMe propose a better
correspondence measure between the color planes.

As compared to the existing camera designs for single-lerns-mew image capture,
our method splits light rays at the aperture similarly to,[35, 54], but uses only color
Iters as additional optical elements to the lens withouuiging multiple exposures.
Although this comes with a price of a reduced number of viewsy(three) each having
only a single color plane, we can still obtain useful infotioa for defocus deblurring
and post-exposure image editing.

As for matting, our method can automatically extract alplates with a single hand-
held camera in a single exposure, and to the best of our kdgelesuch capability has
not been reported previously.

Motion Blur Removal using Circular Sensor Motion

While a method for segmenting and identifying 1D motion bkig(, horizontal motions)
in a single image is reported in the literature [47], it #ems dif cult to handle general
2D (i.e., in-plane) motions in a pure image processing fraank. Chapter 4 proposes
to move the camera image sensor circularly about the opidal during exposure, so
that the attenuation of high frequency image content dueatbam blur can be prevented,
facilitating deconvolution. This is an extension of motiowariant photography [51] so
that it can handle 2D linear object motion, although thatésahe segmentation stage an
open problem.

The most closely related work to the proposed approachdeslacoded exposure pho-
tography [75, 4] and motion-invariant photography [51]blEal.2 summarizes qualitative
comparisons among these methods and ours. Refer also to {Bitaled comparison be-
tween the coded exposure and motion-invariant strategies.
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The motion-invariant strategy best preserves high fregiesrior target object motion
range, but it does not generalize to motion directions atiien the one it assumes. The
coded exposure strategy can handle any direction, and iifsrpence only gradually
decreases for faster object motion. Our circular motioatstyy can treat any direction
and speed up to some assumed limit, and it achieves bettefreiguency preservation
for target object speed than the coded exposure strategynrstof deconvolution noise.
Similar to the motion-invariant strategy, the circular matstrategy degrades static scene
parts due to sensor motion, but it can partially track mowigects so that they are
recognizable even before deconvolution. Unlike the othategies, the circular motion
strategy has no 180motion ambiguity in PSF estimation; it can distinguish tigard
object motion from leftward one.

Table 1.2: Summary of the trade-offs among various imagaucatrategies for motion

deblurring.
| | Static camerg Coded exp. [75, 4] Motion-inv. [51] | Circular (ours)]

High frequency Bad Good Good Good
preservation

Direction gener- _ Yes No Yes
alization

Speed general- 3 Yes Yes' Yes'
ization
Static scene parts Yes Yes No No
unblurred
Image recogniz/ NG No Yes' Yes'
able w/o deconwv.

discrimination

For target object motion, Motion-invariart Circular> Coded exposure.
T Within some assumed motion range. f Asin [4].
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1.4 Contributions

The major contributions of this dissertation are threefold

1. Image Processing Approach to Image Deblurring{Chapter 2): In order to set a
baseline performance achievable without modifying caropties, this dissertation
rst proposes a set of methods for image deblurring that relybased on an image
processing approach.

We propose a method for speeding up deconvolution computédr ef cient de-
blurring. Deconvolution quality is known to be improved [&aking into account
derivative distributions of natural images. While existimgthods take time to re-
peat derivative and convolution operations, the proposethod achieves similar
image quality with 1/10 computation time by taking derivas beforehand and by
working in the gradient domain.

We also present a method for estimating defocus blur thatheaudle spatially-
variant blur having abrupt changes across the image. Weopeof use color im-
age segmentation rather than the traditional rectangel@mentation in order to
divide the image into regions each having a similar defoduisdize. A criterion is
elaborated to choose the best blur size from a set of cardifiat each region, and
means are also provided to correct the estimated blur sa@ser-assisted manner.

Moreover, besides producing all-in-focus images as thatre§ defocus removal,
we provide users with means to interactively control theufosettings of pho-
tographs after they are captured, since defocus blur cae $erenhance artistic
impression of photographs.

2. Defocus Blur Removal using a Color-Filtered Aperture(Chapter 3): We propose
a method for estimating defocus blur sizes in each imagemegy placing red,
green, and blue color Iters in a camera lens aperture inroi@éacilitate defocus
blur removal. The camera modi cation requires only inexgiea color lters.

As a captured image will have depth-dependent color misalent, the scene
depth can be estimated by solving a stereo correspondeabkepr between im-
ages recorded with different wavelengths. We devise a retgeto correspondence
measure that can robustly identify disparities betweeRiB8 color channels. The
disparities are directly related to the defocus blur siaesl deblurred images can
be produced by deconvolving each region with the estimaltatsize.

We also present a matting method for extracting an in-foousgiround object so
that the unblurred part of the scene can remain unaffectetthdyleconvolution

26



process. Color misalignment cues introduced by the lterses¢o constrain the
space of possible mattes that would otherwise contain eawsmattes when fore-
ground and background colors are similar. We propose a moa#ing algorithm
exploiting the color misalignment cues to obtain bettertesathan ones that can be
produced by the previous matting methods.

3. Motion Blur Removal using Circular Sensor Motion (Chapter 4): We propose
to move the camera image sensor circularly about the ogtiéalduring exposure,
so that the attenuation of high frequency image content dumadtion blur can be
prevented, facilitating motion blur removal. That is, altigh no object may be
photographed sharply at capture time, differently movibgects can be decon-
volved with similar quality. The proposed method may be enpénted using a
sensor-shift system of an anti-camera shake mechanism.

We analyze the frequency characteristics of circular semsmion in relation to

linear object motion, and show that this sensor motion gesasénly distributes the
xed frequency “budget” to different object speeds, meanihat the degradation
of image quality is equally reduced for all objects movingaiitrary directions

with constant velocities up to some predetermined speed.

We also present a method for estimating motion blur basedefatt that, for a set

of PSFs resulting from circular sensor motion, deconvolubly wrong PSFs causes
ringing artifacts, which is not always the case for othergmaapture strategies.
This allows us to take a simple hypothesis testing approacR$F estimation, and

we propose to detect such ringing based on image sparsanass p

1.5 Organization

As listed in Sec. 1.4, Chapter 2 describes an image deblumetbod that is purely based
on an image processing approach, and Chapters 3 and 4 prestimids that exploit
camera optics modi cations for defocus blur and motion bemoval. Finally, conclusion
and future work are presented in Chapter 5.
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Chapter 2

Image Processing Approach to Image
Deblurring

This chapter explores a method for removing blur in images ith purely based on an
image processing approach. Although the goal of this dissen is to facilitate the
deblurring process by modifying the capture process ofittcahl cameras, we would
rst like to know the achievable performance without modations of camera optics. To
this end, this chapter deals with defocus deblurring in thretext ofdigital refocusing
in which images are not only deblurred, but atefocusedas if they were focused to
different depths.

2.1 Introduction

Digital refocusing, a technique that generates photogrdpbused to different depths
(distances from a camera) after a single camera shot as showg. 2.1, is attracting
the attention of the computer graphics community and othrexsew of its interesting
and useful effects. The technique is originally based oni¢ii¢ eld rendering [52, 32],
and exploits the fact that a photograph is a 2D integral ptime of a 4D light eld [69],
as was simulated by Isakse al. [37]. Ng et al. made this technique practical with
their hand-held plenoptic camera [70], eliminating thechiee large and often expensive
apparatus such as a camera array or a moving camera thatadamirally required to
capture light elds. Since then, other novel camera desigive been emerging in order to
improve the resolution of images and/or to reduce the cogpti€al equipment attached
to a camera [31, 48, 54].

In an attempt to perform digital refocusing without modifgicamera optics, in this
chapter we are interested in developing an image processetgod for synthesizing

28



\

R €

(a) (b) (c)
Figure 2.1: From a single input photograph, images focusdtifterent depths can be
obtained. (a) A single input photograph, focused on theqguens the left. (b) Created

image, refocused on the person in the middle. (c) Createdamafpcused on the person
in the right.

refocused images from a single photograph taken with a ctioveal camera. If we had a
sharp, all-in-focus photograph with a depth map of the sdemeuld be straightforward
to create depth-of- eld effects by blurring the input phgtaph according to the depth,
as some of the existing image-editing software do (e.g. L@ Blur Iter of Adobe
Photoshop CS [2]). Therefore, we must rst estimate “a shargge with a depth map”
from an input photograph. In other words, we must rst esterend remove defocus blur
in a photograph.

To achieve this goal, we assume that spatially-variantaefdslur in an input photo-
graph can be locally approximated by a uniform blur, and vetore a sharp image by
stitching multiple deconvolved versions of an input pho#gdp. And we also propose a
local blur estimation method applicable to irregularlyapbd image segments in order to
handle abrupt blur changes at depth discontinuities dudjecbboundaries. To create
desired refocusing effects, we present several means efmdiging the amount of blur
to be added to a restored sharp image based on the estimatetbivhich users can
change focus and depth-of- eld interactively and intuetiy

2.2 Image Processing Flow

Fig. 2.2 shows a block diagram of our method. From an inpub@efed photograph
a(x;y), we rst restore datent image (x;y), which would have been observed if defocus
blur had not been introduced by the camera lens systemdgkelurred sharp image). We
use the standard pillbox PSF parameterized by radidishe circle of confusion, referred
to asblur radius as a defocus blur model [11]:

1=pr? forpXZTy2 r

hixy:r) = 0 otherwise ; (2.1)
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and we generate multiple differently deblurred imaggs;y) by deconvolving an input
photograph with each of the predetermindd 1 blur radiifrjjj= 0;1, ;Mg. Thatis,
we remove uniform defocus blur with blur radigsfrom g(x;y) to obtainfj(x;y). This
amounts to solving the image deconvolution problem

a(xy) = h(xsy;rj)  fi(xy)+ n(xy); (2.2)

whose solution is given in Sec. 2.3. The+ 1 blur radii are arranged in ascending order
asrg< ri<rp< <ry,andrg= 0sothatfp(x;y) 9(x;y). We typically usej = 0:5j,
andry = 10:0 (in pixels).

From the deblurred images(x;y), we locally select the “best” image and stitch them
together to obtain the latent imabe;y), the approach known asectional methodB9].
More precisely, we rst estimate a blur radius eld,g(X;y) which describes with what
blur radius the input photograph is originally blurred ardweach pixel locatiof;y), as
described in Sec. 2.4. We then linearly blend the deblumejes as

+1 Tog(XY) ¢
] J

o= 112 o)

r
j+1 T (ey)+ F+1 Tj ij+1(x;y); @3)

where] is appropriately chosen for each piXely) such tharj rog(Xy)  rj+1.

Now that we obtained the latent imafe;y), we create an output refocused image
o(x;y) by blurring the latent image. The reason for rst obtainihg tatent image is that,
as convolution of two disc PSFs does not result in another BSF, refocused images
cannot be obtained by directly convolving/deconvolvingimout photograph. Sec. 2.5
presents a method for determining a new blur radius rlgy(x;y) to be added to the
latent image based amr(Xx;y) in order to meet desired refocusing effects. To perform
the synthesis in real-time, we again employ the sectionsihatk and we prepare multi-
ple differently blurred images d5(x;y) = h(x;y;rj) 1(x;y) in the preprocessing stage.
Again,bo(x;y) 1(x;y). In the interactive refocusing stage, we perform lineagrpbla-
tion similar to Eq. 2.3 for a new blur radius elthen(X;y) and the blurred images (x;y)
andbj+ 1(x;y) as:

Mi+1 rnev\(X;y)b.(X_y)_l_
F+1 I al Mj+1

o(x;y) = fre®¥) T +X; Y

I
- i 10 y); (2.9)
J

wherej satis esrj rorg(X;y) rj+1 for each pixelx;y).
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Figure 2.2: Block diagram of our defocus deblurring and digfocusing process.
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2.3 Image Deconvolution

In Sec. 1.2.2 we brie y reviewed the dif culties lying in thenage deconvolution prob-
lem. Here we take a closer look. For notational convenietiig chapter uses a matrix-
vector version of Eq. 2.2 as follows [11].

g= Hf+n; (2.5)

whereg, f, andn are P-vectors representing(x;y), fj(x;y), andn(x;y), respectively,
with lexicographic ordering oP discretized pixel locations, and is aP P matrix
representing convolution by a P&Ex;y;rj). Dependence onis omitted for brevity.

Since solving Eq. 2.5 fof as a least squares problem of minimizikg Hfk? is
known to be ill-posed due to ill-conditioned matik one needs prior knowledge about
which images are more likely to occur in nature. Howevergdiently-used Gaussian
smoothness priors are not suitable for restoring sharpcéheat necessarily smooth) im-
ages, even though they are computationally tractable. eftwer, recent methods exploit
so-calledheavy-tailed priorsaccording to which the distributions of band-pass Itet-ou
puts of (sharp) natural images have a narrower peak and ddartizot than Gaussians as
shown in Fig. 2.3, allowing occasional discontinuitiesofsas edges) in restored images
[30, 15]. These methods uséscrete wavelet transforfDWT) as band-pass lters, but
since restored images suffer from blocky artifacts arignogn the dyadic image parti-
tioning in DWT, they usdranslation-invariant DWT(TI-DWT) [24], also known asta-
tionary DWT, to reduce such artifacts at the cost of signi cant inseean computational
complexity.

We avoid this problem by using derivative lters instead oMD, since they are
translation-invariant and do not involve dyadic image iparting. Speci cally, we bring
Bioucas-Dias's wavelet domain method (WaveGSM) [15] inte ¢hadient domain, be-
cause theGaussian scale mixtur€GSM) representation of heavy-tailed priors used in
WaveGSM is also applicable to speeding up the non-lineamigdtion involving heavy-
tailed priors in the gradient domain.

Following Tapperet al. [87], we use a generalized Laplacian distribution as ayeav
tailed prior model for image gradients:

(D) 1 exp(j flili%=b); (2.6)

wheref[i] denotes thée-th element of the derivative dfwith respect te, andp( ) denotes
a probability density function of an argument variable. \Weas= 0:3 andb = 0:085 with
pixel values in range [0, 1], so that Eq. 2.6 approximateg@aigradient distributions as
shown in Fig. 2.3. We use the same prior yaterivatives fy[i].
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Figure 2.3: (a) Sample sharp images. (b) Gradient distabstof the top image (red) and
of the bottom image (green), and the generalized Lapladstnilmition we use (blue).
For visibility, these plots are horizontally displaced.eVhall actually peak at zero.

Taking derivatives of Eq. 2.5 leads to the following two geadd domain deconvolu-
tion equations:
Ox = Hfx+ ny; gy = Hfy+ ny: (2.7)

For brevity, we will only deal with thex component in what follows. Assuming that
the noiseny in the gradient domain can be modeled as a Gaussian withneanaand
that the prior is independently applicable to each pixehtmni, the posterior distribution
of a latent gradient, given an observatiogy is given as

kgy Hfxk® 2

P(higa) 1 P(gdf P pexp  ————— O p(i[il): (2.8)
i=1
The latent gradient is estimated as the maximizer of (tharldg)n of) Eq. 2.8 as
2 P
9= argmax <& HUK o (2.9)
fx 2w i=1

leading to non-linear optimization because the prior tesmat quadratic: Ip(fy[i]) =
j x[i]i#=b with a = 0:3 (see Eq. 2.6).

In order to solve Eq. 2.9 ef ciently, we follow the WaveGSMmpach, and we rep-

resent the heavy-tailed prior as a Gaussian scale mixtuB&jG&s
Zy

(i) = p(Rdligp(s)ds (2.10)

where p(f«[i]js) is a zero-mean Gaussian with scale (or variarszayeighted byp(s).
Regardings as a “missing variable,” Eq. 2.9 is turned into an expectatiaximization
(EM) iteration as )

2 P
1 kg HIK L 2 EMIinp(iilis] (2.11)
i=1

= argmax
9 fy 2w
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wheremis an iteration count, ani™[ ] denotes the expectation with respecp(gif[i]),
the probability density of scalegiven the currentr(r-th) estimate[i] of the latent gra-
dient. Sincep(fy[i]js) is a Gaussian, the prior term in Eqg. 2.11 now becomes

(f«li])? (fx[i])zE_m 1

EMInp(fhflis]l= E" o = DSRET S

; (2.12)

which is quadratic with respect fg[i] sinceE™[s !] is xed during mth EM iteration
(see [15] for more details):

E™

1 a
- 2.1
5 (2.13)

" bifpllZ
Now that the objective function to be maximized in Eq. 2.1fjusdratic, taking its
derivative with respect tf and setting it to zero leads to the following system of linear

equations:
(HTH+ wS™f, = HTgy; (2.14)

whereHT is the transpose dfl, S™ is a diagonal matrix representing the prior term
whosei-th element is given by Eq. 2.13, amdserves as a weighting coef cient for it,
which we treat as a user-speci ed value (typically around®)0The solution to Eq. 2.14
for fx becomes the next estimatg* 1, from whichS™ ! is computed, and this process is
iterated. Eq. 2.14 can be solved rapidly by seeond-order stationary iterative method
[8], with the use offast Fourier transform(FFT) for matrix multiplication byH andHT.
We set the observation as an initial estimaf@= gx. Following Welket al. [95], for
better noise suppression in the early stage of deconvalutie rstrun a few (around 3)
EM iterations withw being twice the user-speci ed value, and then we run andeer
EM iterations with the original value. Thepart of Eq. 2.7 is solved similarly. After
obtaining estimated latent gradierﬁ;ﬁbﬂndff,’, we reconstruct the deblurred imatfeby
solving a Poisson equation [74] with a multigrid solver. Aswuse FFT, periodic boundary
conditions are assumed. Edge tapering is performed to edolmgndary effects, and the
DC component lost by the derivative Iters is restored frdma thput photograph. As with
WaveGSM, positivity of pixel values is not enforced so fare Wamp any negative pixel
values to a small positive value (1/255), and run additigaadund 10) Richardson-Lucy
iterations [58, 79] in the image domain.

The time complexity of our method ©(PlogP) in the numberP of pixels owing
to the use of FFT convolution for matrix multiplication, wehi remains the same as that
of WaveGSM. However, the amount of computation is signi ttameduced in two re-
spects as illustrated in the owcharts shown in Fig. 2.4stiwe have onlyYO(P) deriva-
tive coef cients to be updated, in contrast@PlogP) TI-DWT coef cients. Second,
WaveGSM perform®(PlogP) TI-DWT and its inverse for each iteration, whereas our
method performs derivative and its inverse (i.e., intégrperations only at the beginning
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(by deriving Eq. 2.7 from Eqg. 2.5) and at the end (by solvingog$son equation) of the
whole deconvolution process.

OP)

Derivative

Prior term calc.

Prior term calc.

Inverse TI-DWT
FFT convolution

o)

A 4

FFT convolution

O(PlogP)

v ©O@

> O(PlogP)
Div. by prior term Div. by prior term%

) o
(@

(b)

Figure 2.4: Processing ows of deconvolution algorithma) \WaveGSM [15]. (b) Pro-
posed method.

Expectation maximization iteration
Expectation maximization iteration
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2.4 Local Blur Estimation

Similar to the existing spatially-variant PSF estimatientniques, we divide an image
into segments, and we assume the blur to be uniform withih sagment. However,
rectangular segmentation as in [72, 44] can produce segrtigttviolate this uniformity
assumption, as the blur radius can change abruptly due tb degzontinuities at object
boundaries. Therefore, we perform color image segmenté2i] so that segments con-
form to the scene content. In what follows, we present a lddius estimation method
that is applicable to non-rectangular segments.

Our approach is to select the blur radius from the predetesdM + 1 candidate blur
radii frjg that gives the “best” deblurred image for each segment. ttunfately,focus
measureg84, 40] are not suitable for this selection criterion, hesm digitally decon-
volved images with wrong blur radii have different imagetistacs from optically mis-
focused images. Instead, we measure the amplitude ofaiscitlartifacts in deblurred
images due to overcompensation of blur (examples can bars&en 2.11). For simplic-
ity, we explain this phenomenon using the 1D version of E&. 2.

g(x) = h(xr) f(X)+ n(x); (2.15)
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where the PSF is given by the following box function:

1=2r for jxj r .

h(xr) = 0 otherwise - (2.16)
In the frequency domain, Eq. 2.15 is rewritten as
g(w) = sindrw) f(w) + A(w); (2.17)

where thehat notation (such ag) denotes the Fourier transform of a given signal, and
w denotes frequency. The Fourier transformh@f;r) is sindrw) [20]. Neglecting the
noise, an approximate solution to Eq. 2.17 can be given biotleving equation, known

as pseudo-inverse ltering:

fQw) = sing(rw)

siné(rw) + e 9(w); (2.18)

where e is a small number (around 18) to avoid zero division aw = kp=r (k =

1, 2; ). If §(w) is non-zero at these frequencies, it is overly ampli ed [sday
1=e), which results in oscillation in the deblurred image. Assitoften the case that
jé(w)j is a decreasing function with respecj g, major oscillation occurs av=  p=r,
which emerges as striped artifacts with an intervalropiXels.

Suppose we deblur a signal that has been blurred with radaysa pseudo-inverse
Iter with radius R. Then at the major oscillation frequeney= p=R, we obtain the
following equation from Eqgs. 2.17 and 2.18 (similar fer= p=R):

fqp=R) = % singpr=R) f(p=R) + A(p=R) : (2.19)

Fig. 2.10(a) shows a plot gf{p=R)j as a function oR, assuming thatf(w)j is also

a decreasing function and thgi(w)j is constant (white noise) and is small compared
to jf(w)j except for high frequencies. From this plot we can expecthseove large
oscillation in deblurred images fd® > r. Therefore, the maximum radius with which
pseudo-inverse ltering does not produce large oscillat®estimated to be the true blur
radius. The above discussion is also applicable to the 2B, @asthe Fourier transform
of Eq. 2.1 has a similar shape to circular sinc functions.[20]

For each candidate radiug we apply pseudo-inverse Itering to an input photograph
with that radius, and we measure the amplitude of oscitiaip the ratio of the number
of pixels within each segment whose values are out of réqggn  d; gemaxt d], where
[9c:min; Gemax IS the original range of pixel values within that segment figput pho-
tograph for each color channel andd is a small number around 0.1. Thoscillation
measurecan be easily computed for arbitrarily-shaped segmentsigfiability, however,
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we exclude too small or thin segments (e.g., under 100 pixEiom a set of blur radii

frjg, we identify the maximum radius having the oscillation measbelow a certain

threshold as the true blur radius. If this measure neveresiscthe threshold, which typ-
ically occurs for segments with minimal color variance, veerabt make an estimate for
those segments.

A blur radius eld rorg(X;y) is obtained by stitching the estimated blur radii. Values
in segments where no estimate was made as described abamegpelated from sur-
rounding segments. We apply some smoothingddx;y) in order to suppress occasional
spurious estimates, and also to reduce step transitionedbkl lead to discontinuities in
refocused images.

From a blur radius eldrorg(X;y) and deblurred imageg(x;y), we can reconstruct a
latent imagd (x;y) by Eq. 2.3. As we cannot guarantee the blur estimation to Hegie
we provide users with a simple drawing interface in whichepirtensity corresponds to
the size of a blur radius as shown in Fig. 2.5, so that usersntaractively modify the
estimated blur radius eld. Modi cation to the blur radiuld is immediately re ected
in the latent image.

Figure 2.5: Screenshot of the blur eld editing interfacéeTuser draws on the grayscale
image on the right which represents a blur radius eld. lis #istample, the user is increas-
ing the values around the upper right corner of the imageghvaiie immediately re ected
in the deblurred image on the left. The blur radius to be spe@nd the magnitude with
which the speci ed radius in uences the blur eld can be asted by the sliders on the
left.
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2.5 Interactive Refocusing

Since defocus blur can serve to enhance artistic impres$ioimotographs, in this section
we aim to provide users with means to interactively conthe tocus settings of pho-
tographs after they are captured, based on the deblurregkiarad estimated blur radius
eld. Fig. 2.6 shows our example implementation of the pregad user interface. By the
sliders on the left, users can make the depth-of- eld of goutrphotograph wider or nar-
rower, and the focused depth nearer or farther. They carchtsoon the image to bring

the speci ed point in focus, in analogy with auto-focusingaoreal camera. The three
refocus modeen the top left will be explained later.

Figure 2.6: Screenshot of the interactive refocusing fater. The focused depth is im-
mediately adjusted to the point speci ed by a mouse click.

To determine a new blur radius elglen(X;y) to be applied to the latentimage in order
to create desired refocusing effects, we associate a dexia(myy) of the scene with the
original blur radius eldrqrg(x;y) through the ideal thin lens model [73] (see Fig. 2.7):

Fovo

X 2.20
Vo Fo Qorg(Xy)fo ( )

z(xy) =

Fo; fo, andvg are the original camera parameters, which represent tla logth, the f-
number, and the distance between the lens and the image m@apectively, andorg(X; y)
is the originalsignedblur radius eld, such thatorg(X;y) = jdorg(X;y)j. The sign of
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Jorg(X;y) is related to the original focused deph= Fovo=(Vo Fo) as: q(x;y) < 0 for
Z(x;y) < zo, andq(x;y) > 0 for z(x;y) > zo.

lens (X y)
scene \

|
”T qorg(xl y)

Zxy) Vo \

image plane

Figure 2.7: Thin lens defocus model.

As we can only estimateyg(X;y), we let users draw binary masks to specify the
sign as shown in Fig. 2.8. Rough masks seem suf cient. If temedepth is greater or
smaller than the focused depth everywhere, users havemdbctare so. For other cases,
our drawing interface shown in Fig. 2.9 provides users witlph-cut image segmentation
capability [17], so that the user has only to draw strokessghaon the image.

Figure 2.8: Binary masks specifying the sign of blur radiulsl org(X;y). Top row: Input
photographs. Bottom row: Corresponding masks. White indscaégative (nearer than
the original focused depth), and black positive (farther).

Suppose that we change the camera paramet&;d t@ndv, then a newsignedblur
radius eld gnew(X;y) is derived by using Eq. 2.20 as
Fovo _ Fv )
Vo Fo dorg(Xy)fo v F Onew(X;y) T
where we eliminated(x; y) to directly associat@new(X; y) With dorg(X; ). Solving Eq. 2.21
for gnew(X; y) leads to

(2.21)

foV F

VoFo(v F) VF(vo Fo).
fvoFo '

eE, (2.22)

Onew(X;Y) = Qorg(X;y) +
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(a) (b)

Figure 2.9: Screenshot of the signed mask speci catiorrfiaate. Only the portion of
the panel enclosed by the red rectangle is used for this parga) The user drew some
strokes to roughly specify the regions nearer than the ftwepth (blue) and those
farther (red). (b) The system automatically Il in the otlregions using graph-cut image
segmentation [17].

from which a new (unsigned) blur radius eld to be added tol#tent image is obtained
asrnew(XY) = jonew(X;y)]-

The original camera parametdfs fo; andvg may be obtained from EXIF data [38]
embedded in JPEG les created by most of the recent digitakras. However, some pa-
rameters are often unavailable, and EXIF data itself mayadavailable from converted
or edited image les. In addition, it is not necessarily imtte to manipulate the actual
values when handling an image, not a camera. Therefore, asepr three simpli ed
versions of Eq. 2.22, in which relative camera parametersised.

Constant Focal Lengthassumes the focal length to be const&t Fy. Then Eq. 2.22
simpli es to
1
Onew(XY) = T (Vr Qorg(X;¥) + Ao(vr 1)) ; (2.23)
r

wheref, f=fpis a relative f-numben;  v=v is a relative image plane distance, and
Ao Fo=fpis the original aperture. This equation has a good analoghamging focus
using a real camera.

Simple OffsetassumesF = vgFy. EqQ. 2.22 becomes
1
Onew(X;Y) = _r(QOrg(X; Y)+ Gots); (2.24)

whereqeis (v F) (v Fg))=fpis a blur radius offset. Though it is not realistic to
change the parameters in this manner when handling a rearaathis equation provides
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users with a simple and intuitive way of manipulating blur.

Fixed Max Blur assumes F = vy Fp. Then,
1
Onew(X;Y) = — (Ur Qorg(X; ¥) + Omax(1  Wr)); (2.25)
r

whereu, VF=\pFp, andgmax (Vo Fo)=fo is the maximum blur radius, corresponding
toz= ¥ in Eqg. 2.20. This equation is useful for refocusing among rodgects while
keeping far objects from becoming too sharp or blurry.

Using any one of the above threefocusing modesusers can interactively do the
following three types of refocusing operations.

Changing depth-of- eld. This operation can be done by changing relative f-nunfper
Increasingf, extends the depth-of- eld, whereas decreasingiakes it shallower.

Changing focus.This can be done by changing gy s, Or u; depending on the refocusing
mode in use. The other parametégandgmax can also be adjusted, which we typically
set to makrorg(X;y)g for good refocusing effects.

Auto-focusing. Users can simply specify a point in a photograph which theytwabe in
focus. An appropriate value is automatically computed lier parameter of the selected
refocusing mode so thahew(X;y) = 0 at the speci ed poinfxs; ys) as:

Vi = Ao=(Ao+ Qorg(Xs:Ys)):
Qofs = Jorg(Xs: Ys); (2.26)
U = Omax(Omax Corg(Xs:Ys)):

In summary, from the user's point of view, the user will take following steps to
perform refocusing.

1. The user inputs a photograph. The system automaticadigyzes a blur radius
eld and a set of deblurred images. This takes about 20 msigtean image size
of 512 512.

2. The user edits the blur radius eld if it has noticeableoesy using the interface
shown in Fig. 2.5. This typically takes a few to ten minutes.

3. The user draws a signed mask via the interface shown ir2Fg.This takes less
than a minute.

4. The user can now interactively refocus the photograptmusie interface shown in
Fig. 2.6.
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2.6 Results

All of the input photographs shown in this paper were takethawiCanon EOS-1D Mark
Il camera and a Canon EF 28-70mm wide aperture (F2.8) lens.iri&ge format was
JPEG with sSRGB color space (gamma-corrected gith2:2). We inverted this gamma-
correction during deconvolution and blur estimation.

2.6.1 Estimation and Removal of Uniform Blur

We rst demonstrate the performance of our blur estimatind deconvolution methods
for uniform defocus blur. For the images shown in Figs. 2a)@), in which the scenes
have approximately uniform depths, we plotted their oatidh measure in Fig. 2.10(b),
treating the whole image as one segment. The arrows showtiheaged blur radii with a
threshold of 0.01, which are 11 pixels for Fig. 2.12(a) andxéls for Fig. 2.12(f). These
results conform to visual inspection as shown in Fig. 2.1igy. £11 also shows that the
number of out-of-range pixels (see Sec. 2.4) begins to asaras the pseudo-inverse Iter
radius exceeds the true blur radius.

0.4

03¢

0.2r

}
o - 1

o r 2r ¥ 0 5 10 15 20
pseudo-inverse filter radiuR pseudo-inverse filter radiu

(@) (b)

Figure 2.10: (a) Plot of the amplitude of oscillatipf‘F)(p:R)j as a function of pseudo-
inverse lter radiusR. (b) Plots of the oscillation measure for Fig. 2.12(a) (radyl
Fig. 2.12(f) (green), treating the whole image as one seggmé&he arrows show the
estimated blur radii with a threshold of 0.01.

amplitude of oscillation
oscillation measure

Based on the estimated blur radii, we applied our deconwasiutiethod, along with
other methods including Richardson-Lucy [58, 79], WaveGSithwrdinary DWT, and
that with TI-DWT. Fig. 2.12 shows the results. Since Richandsacy does not exploit
explicit image priors, it produced less sharp images witlsegbetween the alphabets
in Fig. 2.12(b)) and halo artifacts (around the hair and fadeig. 2.12(g)). WaveGSM
with DWT resulted in blocky images as expected (see Sec. 28).method produced
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9 pixels 10 pixels 11 pixels 12 pixels 13 pixels

5 pixels 6 pixels 7 pixels 8 pixels 9 pixels

Figure 2.11: Results of pseudo-inverse ltering for FigslZa)(f) with different blur
radii. The out-of-range pixels are shown in red in the rigdif bf each image.

better (for the alphabet image) or comparable (for the fatge) results as compared to
WaveGSM with TI-DWT, running about 10 times faster.

Since our deconvolution method does not assume a specine ébia PSF, we also ap-
plied it to the removal of camera shake from a photographyu=est al. used Richardson-
Lucy deconvolution to remove the camera shake PSF estirbgtdeeir method [28], and
we replaced Richardson-Lucy by our deconvolution algorith@ur method appears to
produce less noisy results as shown in Fig. 2.13. In this el@mwve estimated the PSF
by extracting the trajectory of a bright small object in thput photograph (not shown in
the gure).

2.6.2 Estimation of Spatially-Variant Blur

Next, we show several local blur estimation results in Fij42 The input photographs are
shown in Figs. 2.1(a), 2.16(a), 2.17(a), 2.18(a), and 2)1We performed relatively ne
segmentation to ensure estimation locality. The estimateidapproximately correspond
to the scene depths. For comparison, we applied the spataiant blur estimation
method byOzkanet al. [72]. This method is based on local Fourier transform, kehc
employs rectangular segmentation. The results are showig# 2.15(a)(d). It failed in
regions around object boundaries and also failed to idestifall blur radii, leading to
noisy latent images as shown in Figs. 2.15(b)(e). The cporading latent images based
on our blur estimation are shown in Figs. 2.15(c)(f).
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2.6.3 User Intervention for Blur Estimation

Next, we show an example of user intervention for the eseahélur radius eld men-
tioned in Sec. 2.4. Fig. 2.16(b) shows an image represethimgstimated blur radius
eld after smoothing. Users can draw on this image to locailyrease/decrease the val-
ues as shown in Fig. 2.16(c), for better visibility (Fig. &4) top) and ringing reduction
(Fig. 2.16(g) middle and bottom). This can be done in an atistsense to obtain a vi-
sually pleasing latent image, and the edited blur radiud re¢eds not correspond to the
scene depth. This user editing operation took from a fewrtartmutes for our examples
shown below.

2.6.4 Refocusing Results

Finally, we show several refocusing examples in Figs. 221¥8, and 2.19, in which
we changed the depth-of- eld and moved the focus nearer fartirer from the camera.
Out-of-focus objects became sharp after they were brougbtfocus, as can be seen in
the oret symbol at the bottom of the red crayon in Fig. 2.)7nd the furry texture of
the nearer marmot in Fig. 2.19 right.

When synthesizing Fig. 2.17(c) from Fig. 2.17(a), we usedréfiecusing equation
Eg. 2.23, which simulates focus changes of a real cameraSsee2.5). We obtained
the synthesis result that well approximates a real phopbgstaiown in Fig. 2.17(d). For
Fig. 2.1, we used Eq. 2.24 for simple manipulation of blurirdebr Figs. 2.18 and 2.19,
we used Eq. 2.25 to keep distant objects unaffected as tletoarblurry to be fully
restored.

For an image size of 512512, our deconvolution described in Sec 2.3 took about 1
minute for each blur radius;, and the blur estimation 15 seconds on an Intel Pentium4
3.2GHz CPU. Although the theoretical time complexitpPE@logP), it seemsO(P) com-
putation is dominant, and the deconvolution took 16 minated the blur estimation 4
minutes for a 4Mpixel image. Refocusing can be performedahtime.

2.7 Summary

This chapter has presented a method for removing defocusnbimnages in the context
of digital refocusing, in which the goal is not only to perfordeblurring but also to
create images with different focus settings. This chapéerfocused exclusively on an
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image processing approach without camera optics modoeatiin order to set a baseline
performance achievable without modifying the image capprocess.

For image deconvolution, we have proposed a method for spgeeg deconvolution
computation while taking into account heavy-tailed priftmsimage derivative distribu-
tions. The proposed method achieves similar image quality W10 computation time
by taking derivatives beforehand and by working in the ggatidomain. The proposed
method can also be used for removing blur other than defdcus b

For blur estimation, we have proposed a method which canl@abdupt blur changes
at depth discontinuities due to object boundaries. Our atetlses color image segmen-
tation rather than the traditional rectangular segmeonat better divide the image into
uniformly blurred regions, and the largest blur radius tiha¢s not cause ringing after
deconvolution is selected for each region. Although thepsed method was shown to
outperform the previous method, the estimated blur radelds still needed to be re-
touched to obtain better deblurring and refocusing results

For creating refocusing effects, we have presented sewezahs of determining the
amount of blur to be added to a restored sharp image basecastimated blur, with
which users can interactively control the focus settingstaftographs after they are cap-
tured. While we have reduced the burden for the user by pmyidfituitive refocusing
parameters and “auto-focusing” capability, it is still eesary for the user to draw a signed
mask before performing refocusing operations.

In summary, we have found that we can achieve desired rafagesfects by ex-
clusively relying on an image processing approach, but wktbantroduce some user
intervention, indicating that image processing aloneilbrgit suf cient for making de-
blurring and refocusing processes completely automatic.
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(a) Input photograph (b) Richardson-Lucy (c) WaveGSM (DWT)
240 240 pixels, grayscale 20 sec. 4 sec.

(d) WaveGSM (TI-DWT)  (e) Our method
48 sec. 5 sec.

(f) Input photograph (9) Richardson-Lucy (h) WaveGSM (DWT)
240 240 pixels, color 35 sec. 7 sec.

(i) WaveGSM (TI-DWT)  (j) Our method
103 sec. 12 sec.

Figure 2.12: Comparison of four deconvolution methods aed@ tomputation times.
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(@) (b) (©)

Figure 2.13: (a) Photograph spoiled by camera shake. Theatetl PSF is shown in the
top left corner. (b) Result of Richardson-Lucy deconvoluti@r) Result of our deconvo-
lution method.

(@) (b)

(€) (d) (e)

Figure 2.14: Results of our local blur estimation shown inygevel. The maximum
intensity (white) corresponds to a blur radius of 10 pixdlse blue regions indicate that
no estimate was made there. The black lines show the segioerttaundaries.
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(@) (b) (€)

(d) (e) ()

Figure 2.15: Comparison with the existing blur estimatiorthrod [72]. (a) Estimation
result for the teapot image shown in Fig. 2.16(a). (b) Lai@aige based on (a). (c) Latent
image based on our estimate shown in Fig. 2.14(b). (d) E&bmaesult for the crayon
image shown in Fig. 2.17(a). (e) Latent image based on (yl)Lafient image based on
our estimate shown in Fig. 2.14(c).
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(@) (b) (€)

(d) (e) ) (9) (h)

Figure 2.16: Example of user intervention for a blur radiesd. (a) Input photograph.
(b) Blur radius eld after lling in the unde ned (blue) regios in Fig. 2.14(b) and after
smoothing. (c) Edited blur radius eld. The red circles icalie the edited regions. (d)
Latent image based on (b). This is the same as Fig 2.15(d)afeint image based on (c).
(f) Magni ed crops from the red rectangles in (d) (beforeted)). (g) Magni ed crops
from the corresponding red rectangles in (e) (after edjtiffy) Refocused image, created
by using the image (e) as a latent image.

(@) (b) (€) (d)

Figure 2.17: (a) Input photograph, focused on the brownammrayb) Created image with
a shallow depth-of- eld. (c) Created image, refocused onaitamge crayon. (d) Ground
truth photograph, focused on the orange crayon.
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(@) (b)

Figure 2.18: (a) Input photograph, focused on the ower i ¢lenter. (b) Created image,
refocused on the ower in the top right corner.

) (b)

Figure 2.19: (a) Input photograph, focused on the farthemma (b) Created image,
refocused on the nearer marmot.
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Chapter 3

Defocus Blur Removal using a
Color-Filtered Aperture

The previous chapter has shown that automatic defocus wliglgjuhat is solely based

on image processing is still not feasible, and user intérearfor blur estimation was

necessary. This chapter describes a method for defocusrdablconsisting of a camera
lens modi cation with color Iters and associated image pessing techniques in order
to achieve automatic defocus blur estimation.

3.1 Introduction

Wide aperture lenses are ef cient in increasing the amodinh@ming light so as to
improve the signal-to-noise ratio of captured images. Haneahey make the depth-of-
eld shallow, and only objects located at a limited range epth can be focused sharply.

In this chapter we intend to obtain an all-in-focus image &noving defocus blur
whose size is dependent on the scene depth. While coded raperthniques [48, 90]
facilitate both blur estimation and deconvolution, thertdstimation has to rely solely on
defocus cues, requiring some manual intervention and essdtig in ambiguity between
depths farther and nearer than the focused depth (this ampwas also present in Chap-
ter 2, and we let the user draw a mask as shown in Fig. 2.8)eddstve propose to use
a color- ltered aperture mask to exploit parallax cues whéscape the above-mentioned
depth ambiguity.

By dividing the aperture into three regions through whiclhydigiht in one of the RGB
color bands can pass, we can acquire three shifted views aéreesn the RGB planes
of a captured image in a single exposure. This allows us t® $tédreo correspondence
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between the RGB planes to estimate the scene depth, whicheistldirelated to the
defocus blur size. A challenge we must address in using a-dtdoed aperture is that,
as a scene is captured with three different bands of waviiergrresponding points
in the RGB planes generally have different signal intenstyels. We develop a color
alignment measure to nd correspondence between such RGtlsig Moreover, we
propose a method for extracting the matte of an in-focusgfotend object, so that the
extracted foreground will be free from possible degraaatioe to deconvolution. Color
misalignment cues introduced by the color lters serve tostmin the space of possible
mattes that would otherwise contain erroneous mattes wireground and background
colors are similar.

The proposed imaging system is portable, and it only reguwfethe-shelf color I-
ters for cameras as additional optical elements. The dalessif using a color- Itered
aperture are that objects having only a single pure R, G, orl& cannot be handled,
and that the visual quality of images is spoiled by color tigsement. We will show,
however, that our method can handle many real-world objactd we also present how
to reconstruct color-aligned images using extracted dapthmatte.

3.2 Color-Filtered Aperture

Fig. 3.1(a) shows our prototype camera lens with color dterthe aperture. We arranged
the RGB regions so that their displacement with respect tophieal center of the lens
aligns with the X and Y axes of the image sensor, as indicateddarrows in Fig. 3.1(b).
By this arrangement, a scene point farther than the focuspth de observed with a
rightward shift in the R plane, an upward shift in the G plaaed a leftward shift in
the B plane. A scene point nearer than the focused depth gvghiifted in the opposite
directions. Note that these color shifts come from geomeiptics, not from chromatic
aberration. Fig. 3.2 illustrates this phenomenon in 2D wlike aperture is split into two
(R and G) regions.

(@) (b)

Figure 3.1: (a) Camera lens with color lIters placed in therapre. (b) Filter arrange-
ment.
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background color filters background color filters

focused

i lens | lens .
object image sensor image sensor

(a) (b)

Figure 3.2: 2D illustration of the interactions betweertigays from a scene point and a
color- Itered aperture. (a) For a scene point at the focusepth, light rays in the R band
and those in the G band converge to the same point on the ineagers (b) For a scene
point off the focused depth, light rays in the two bands rediffierent positions on the
image sensor, resulting in a color shift.

Fig. 3.3 shows an example photograph and its separated RGBspleaDue to the
higher transmittance of the R lIter, captured images arathetly reddish.

Figure 3.3: Example photograph taken with our lens, ancepasated RGB planes. The
white lines are superimposed to highlight the backgrourdrcshifts. See Fig. 3.16(a)
for a closeup view.
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3.3 Defocus Blur Estimation

The RGB planes; Ig, andly, of a captured imagecorrespond to three views of a scene. If
we take a virtual center vieveyclopean vieyas a reference coordinate system, the R, G,
and B planes are shifted to rightward, upward, and leftwaading to the arrangement
of the aperture color Iters. Meanwhile, the defocus PSFefach color plane is an oblique
square corresponding to the Iter shape shown in Fig. 3.4c&the size of the PSF mea-
sured by the half diagonal of the square (the length of thenaxin Fig. 3.1(b)) is equal to
the disparity between the RGB planes, we can estimate bles sig a stereo correspon-
dence problem between the RGB planes. Therefore, ladtinga hypothesized disparity
at (x;y), we need to measure the quality of a match betwieea d;y);lg(x;y d), and

I(x d;y).

Clearly, we cannot expect these three values to have simi@nsities because they
are recorded with different bands of wavelength. To copé whis issue, inspired by
Levin et al.'s matting approach [50], we exploit the tendency of colareatural images
to form elongated clusters in the RGB spaceldr lines modél [71]. We assume that
pixel colors within a local windowv(x;y) around(x;y) belong to one cluster, and we use
the magnitude of the cluster's elongation as a correspaale@asure. More speci cally,
we consider a s&§ (x;y; d) of pixel colors with hypothesized disparityasS (x;y; d) =
f(lr(s+d;t);lg(s;t d);lp(s d;t)) j (sit) 2 w(x;y)g, and search fod that minimizes the
following color alignment measure

I'ol 1l
L(xy;d) = ﬁ; (3.1)

wherelg;l 1, andl2 (I 11 12 0) are the eigenvalues of the covariance matrix
S of the color distributionS (x;y;d), and srz;sgz, and sg are the diagonal elements of
S. Note that the dependence ¢xiy;d) of the right-hand side of Eq. 3.1 is omitted
for brevity. L(x;y;d) is the product of the variances of the color distributionngldhe
principal axes, normalized by the product of the variandesgathe RGB axes. It gets
small when the cluster is elongated (iJey, [ 1;/2) in an oblique direction with respect
to the RGB axes, meaning that the RGB components are correlatitt, this measure
can be interpreted as an extensiomofmalized cross-correlatiofNCC) [53] so that it

is applicable to three images simultaneously (see AppeAlix(x;y;d) is in the range
[0, 1], with the upper bound given by Hadamard's inequal@$][ sincel of 1/ » = det(S).

To illustrate the effect of this measure, we use a sampleensagwn in Fig. 3.4(a),
taken with a conventional camera lens. Since its RGB plareealmned, the true dispar-
ity is d = 0 everywhere, and colors within the local window indicatgdh® red rectangle
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in Fig. 3.4(a) actually form an elongated cluster, as shawhig. 3.4(c). If we deliber-
ately misalign the RGB planes ly= 1;3, and 5 pixels, the distribution becomes more
isotropic, and the color alignment measure becomes laageshown in Figs. 3.4(d-f).

Now that we can evaluate the quality of a match between the R@fep, we can
nd the disparityd that minimized_(x;y; d) at each pixe(x;y), from a predetermined set
of disparity values (-5 to 10 in our implementation). As Ibeatimates alone are prone
to error, we use the standard energy minimization framewsikg graph-cuts [16] to
impose spatial smoothness constraints.

(dd=1,L= 011 (e)d= 3;L=0:39 (Hd=5L= 054

Figure 3.4: (a) Sample photograph taken with a conventioaalera lens. (b) Closeup
of the local window indicated by the red rectangle in (a)f)(P4ots of the pixel colors

within the local window in the RGB space. The valukandL shown below each plot
are the simulated disparity and the value of Eqg. 3.1.
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3.4 Matting

This section describes a method for extracting the matte of-focus foreground object,
so that the extracted foreground will be free from possileigrddation due to deconvolu-
tion. Matting is a problem of solving for foreground opaciyx;y) at each pixe(x;y) in
the following matting equation

1(xy) = a(xy)F(xy)+(1  a(xy)B(xy); (3.2)

which models an observed imafas a convex combination of a foreground cdfoand

a background coloB. By capturing an image so that a foreground object is in fomes,
can assume tha(x;y) is aligned between the RGB planes. More precisely, regiotts wi
fractional alpha values (i.e., the silhouette of a foregbobject) should be within the
depth-of- eld of the lens. Slight violation of this assurigt however does not lead to
severe degradation of extracted mattes, as will be showadn36.

Solving Eg. 3.2 based only on the observatlors an under-constrained problem,
since we have only three measuremeiitslg, andl,) for seven unknownsa(, F, Fg,
Fo. Br, Bg, andBy,) at each pixel. Therefore, to incorporate additional camsts, we use
a trimap which we automatically generate from the disparigp, and we also leverage
the difference in misalignment between foreground and ¢pazknd colors to iteratively
optimize the matte.

3.4.1 Matte Optimization Flow

Algorithm 3.1 shows our iterative matte optimization prdeee. For initialization, we
rst roughly divide the image into foreground and backgrduegions by thresholding
the disparity map, and we dilate their border to construdt@alp having a conservatively
wide “unknown” region (50-70 pixels in our implementatip@s shown in Fig. 3.5(a).
We then initialize the alpha values using a trimap-basedingamethod, for which we
used Leviret al.'s Closed-Form Matting50]. While this often gives already good results,
errors can remain where foreground and background colersimuilar (see Fig. 3.12(a) as
an example). We detect and correct these errors in the sudaseiterative optimization
using color misalignment cues. To determine how the for@gtcand background colors
are misaligned in the “unknown” region, we make a two-laygsumption for the scene
around the foreground silhouette. And we propagate thadigpalues from the “strictly
foreground” region to obtain foreground disparity mady{(x;y) as shown in Fig. 3.5(b).
Similarly we obtain background disparity mag(x;y) from the “strictly background”
region (Fig. 3.5(c)).
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In the iterative optimization, letting denote an iteration count, we rst estimate fore-
ground and background coldfs andB, based on the current matég, by minimizing a
quadratic cost functiod (., i1 (Xy) an(Y)Fn(xy) (1 an(xy))Bn(X; y)jj? derived
from Eq. 3.2, plus smoothness constraints on foregroundankiground colors, similar
to [50]. These estimated coldfg andB,, have errors in the same regionsaghas errors.
We detect these erroneous regions by measuring how cartdiséeestimated colors are
with the foreground and background disparity mdpéx;y) anddg(x;y), as we will de-
scribe in Sec. 3.4.2. We then correct the alpha values athweradketected regions to obtain
the mattean. 1 for the next iteration (Sec. 3.4.3). We iterate this proceds change in
the matte is suf ciently small. Fig. 3.6 illustrates eachsbf the iterative optimization.

Algorithm 3.1: Matte optimization algorithm.

Initialization

1. Construct a trimap from the disparity map.
2. Find an initial matteag based on the trimap.

3. Propagate the disparity values to obtain foreground
and background disparity mags anddg.

Iterative optimization

1. Estimate foreground cold¥, and background cold8,
based on the curreat,.

2. Compute consistency measu@sandCg, (Sec. 3.4.2).
3. Updatean: 1 based orCg, andCg, (Sec. 3.4.3).

4. Repeat until convergence.

3.4.2 Measuring Consistency with Disparity Maps

Similar to the color alignment measure in Eq. 3.1, we consadetS: (x;y; d) of pixel col-
ors within a local windowv(x;y), in this case for the foreground colb(x;y), not for the
input imagel (x;y) asSe(x,y;d) = f(F(s+d;t);Fy(sit d);FRy(s d;t)) j (sit) 2 W(X;y)g
with hypothesized disparitd, and we de ne a foregroundolor lines model erroras
follows.

I?; (3.3)

Zl =
Qo=

er(xy,d) =
i=1
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Figure 3.5: (a) Trimap for the toy dog image in Fig. 3.3, candied from the disparity
map shown in Fig. 3.10(a) top. White: strictly foreground. dkastrictly background.
Gray: unknown. (b) Propagated foreground disparity rdafx;y). Blue indicates an
unde ned region. (c) Propagated background disparity oigg;y).

whereN = jS(x;y;d)j, andl; is the distance of theth color in S=(x;y;d) from the line
tted to the elongated color cluster (i.e., the rst prinailpaxis). Intuitively, we examine
whether the colors in a local window t the color lines modeTherefore,er(x;y;d)
becomes large whethis a wrong disparity. We de ne the background color lines elod
erroreg(x;y; d) similarly. See Appendix B for more details.

As we have two possible disparitiels (x;y) anddg(x;y) at each pixelx;y) in the
“unknown” region, we de ne foreground and backgrowwalor consistency measurby
incorporating two values of color lines model errors at éhego disparities:

Ce(xy) = exp (er(Xy;dr) er(XY;ds))=ks ;

(3.4)
Ca(xy) = exp (es(x;y;ds) es(Xy;dr))=ks ;

whereks is a scale parameter. If the estimated foreground colomar(yy) erroneously
contains the (true) background col@; (x;y) will be large around that region because
er(x;y;dr) will be large ander(x;y;dg) will be small. The effect of the background
counterparCg(x;y) can be similarly explained.

3.4.3 Solving for the Matte

Following Wang and CohenBRobust Mattingapproach [93], we solve faa(X;y) as a
soft graph-labelingoroblem, where each pixel (regarded as a node in a graphjdtas
weights W(x;y) andWgs(X;y), and each pair of neighboring pixels hasedye weight
Wa(Xo;Yo; X1;¥1). The data weighWWe(X;y) is responsible for pullinga(x;y) toward 1,
whereas\g(x;y) pulls it toward 0. The edge weights impose spatial smoothces-
straints on alpha values by tivatting Laplacian[50]. This formulation is bene cial in
that it can be solved as a sparse linear system [34], not graish and that it guarantees
a(x;y) to be in the range [0, 1] without additional hard constraints
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While Wang and Cohen [93] used color samples gathered from dtnstty fore-
ground” and “strictly background” regions to set the dataghts, we instead iteratively
update the data weights according to the consistency mesSg(x;y) and Cg,(X;y)
computed for the current estimate of the foreground anddracind colord-, andB;, as
follows.

WE (X Y) = kaan(Xy) + ke(Cg, (XY)  Cr(XY));

(3.5)
We, (X y) = ka(l  an(Xy)+ k(Cr(xy)  Ca,(XY));

wherek, andk. are constants. We clanvi= (x;y) andWg,(x;y) at O to keep them non-
negative. When the foreground consistency meaSHyex;y) is smaller (i.e., more con-
sistent) than the background countergagt(x;y), the foreground data weighti, (x;y)
is increased while the background data weidht (x;y) is decreased, so that(x;y) is
pulled toward 1 from the current valuag(x;y). Converselya (x;y) will be pulled toward
0if Cg,(xy) > Cg,(XY).
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Figure 3.6: Synthetic toy example demonstrating how outengtimization works. (a)
Ground truth foreground color. (b) Ground truth backgrowatbr. (c) Ground truth
matte. (d) Composite image from (a-c) with the backgroundrawmiisaligned by 5 pixels.
This image is input to our matting algorithm. (e) Trimap. istexample we manually
drew it in order to leave a wide “unknown” region. (f) Initizéd matteag. The center
image region has large errors because the foreground akdroaad colors are similar.
These errors will be corrected in the subsequent steps aslagmisalignment cues from
the "x' shaped textures. (g) Estimated foreground cBlpbased orag in (f). Blue in-
dicates an unde ned region. (h) Estimated background ddfpbased orag in (f). (i)
Foreground color consisten€, computed forFq in (g). The disparity of (g) around
the top center region is 5, which is inconsistent with the timereground disparity of 0.
Therefore Cr, became large around there. (j) Background color consist€ggyxom-
puted forBg in (h). The disparity of (h) around the bottom center regi®®, which is
inconsistent with the true background disparity of 5. Thene Cg, became large around
there. (k) Updated matte. The alpha values were pulled tb@&avhereCg, in (i) is large,
and toward 1 wher€g, in (j) is large. (I) Final matte after convergence, whichlsse to
the ground truth matte (c).
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3.5 Camera Hardware Implementation

For a prototype camera lens, we cut out a disc with a tripleasgrshaped hole from a
piece of black cardboard, glued color lters (Fuji lter SGB5BPB-53, and BPB-45) to
it, and attached it immediately in front of the aperture tigggm of a Canon EF 50mm
f/1.8 Il lens (see Fig. 3.7). This fabrication was done ina Feurs with a box cutter and
a micro screwdriver. We used an unmodi ed Canon EOS40D DSLR eamera body.

Fig. 3.8 shows the point-spread function (PSF) of the pyp@iens, which is an image
of a defocused point light source. The square shape of eéehid observed mostly as-
is, with only slightly rounded corners at the horizontalrertities due to occlusion by
the lens housing. Fig. 3.8 also shows that the three coladdare well separated. We
achieved this by applying a linear transform to RGB sens@aese so as to minimize
crosstalk between the aperture lters and the image sesserAppendix C for details).

(a) (b) (©) (d)

Figure 3.7: Prototyping process of a color- ltered apegtliens. (a) Original Canon EF
50mm /1.8 Il lens. (b) The aperture part of the disassemlgersd. (c) Color lters are
attached to the aperture. (d) The lens after reassembly.

Color Red Green Blue

Figure 3.8: Point-spread function of our lens and its RGB comemts. The positions
of the R and B regions are opposite to those in Figs. 3.1 and)3.ds the viewpoint is
behind the lens in this gure.

To align the RGB regions with the image sensor axes, manuastgnt was suf-
cient. Once this is done, pixel disparities will always @i with the X and Y axes of
captured images, requiring no further calibration andi e&tton at capture time or dur-
Ing post-processing.
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3.6 Results

For all of the results shown below, we set the local windowe $wrl5 15 pixels,ks= 0:1,

ks = 0:.01, andk. = 0:02. The matte optimization converged in about 20 iteratidre
computation time for a 720 480 image was 10 sec. for blur estimation, and 2 min. for
matting on an Intel Pentium 4 3.2GHz with 2GB RAM. We usethmed-area tablg26]

to rapidly compute covariance matrices in local windows.

3.6.1 Blur Estimation Results

We rst demonstrate the performance of our RGB corresponglemeasure used for dis-
parity/blur estimation. We compare our disparity estimatiesults with those of the pre-
vious methods [6, 21] in Figs. 3.9(a-c). In order to reveal performance, we show local
window estimates without graph-cut optimization. As Amamd Adelson’'s method [6]
relies on high-pass ltering, it mostly failed to detect pigsities of the defocused scene
backgrounds (Fig. 3.9(b)). Charg al's method [21] performed better, but it handled
color edges and gradations poorly, presumably because thag not be accounted for
by a single intensity normalization factor within a locahaow (Fig. 3.9(c)). Our method
produced better results than the previous methods (Fi¢p)3.9

(@) (b) (€)

Figure 3.9: Comparison of correspondence measures betived&GB planes (local es-
timate). Larger intensities indicate larger dispariti@®p row: results for the toy dog
image in Fig. 3.3. Bottom row: results for the woman image o Bil7. (a) Our method.
(b) Amari and Adelson [6]. (c) Charef al. [21].

We also compare our results with a mutual information-basethod by Kimet al.
[41], which can handle broad types of intensity relatiopshietween images. Since their
method is coupled with iterative graph-cut optimizatioar cesults after (single) graph-
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cut optimization are also shown in Fig. 3.10(a). Because tteerespondence measure
is de ned for two images, we take the average of the valuesherthree pairs of RGB
planes (RG, GB, and BR). Their method performed well in view offdu that it does
not assume priori knowledge of the intensity relationships. However, someiqas of
the foreground objects were not detected (Fig. 3.10(b)).

(@) (b)

Figure 3.10: Comparison of correspondence measures bethedGB planes (global
estimate). Larger intensities indicate larger dispagiti€op row: results for the toy dog
image in Fig. 3.3. Bottom row: results for the woman image o Bil17. (a) Our method
(after graph-cut optimization). (b) Kiret al. [41].

3.6.2 Matting Results

Next we show our matting results. Fig. 3.11(a) shows theaeted matte for the toy dog
image in Fig. 3.3. The hairy silhouette was extracted sigfug We can use this matte
to re ne the boundary of the foreground and background megjim the disparity map
as shown in Fig. 3.11(b), by compositing the foreground aakbround disparity maps
shown in Figs. 3.5(b, ¢). In Fig. 3.12, we applied existintunal image matting methods,
Closed-Form Matting [50] and Robust Matting [93], with thertap given by our method.
These results are not for comparison because the previdhedseare designed for color-
aligned images, but the matte errors seen in Fig. 3.12 areaitiek of the importance of
our color consistency measure in suppressing them.

For proper comparison, we used a ground truth matte showigirBRL.3(a) obtained
by capturing an object in front of a simple background and sjmgBayesian Matting
[23], followed by manual touch-up where needed. We creachthetic “natural’ image
as shown in Fig. 3.13(b) by compositing the object over a naekbround image. We
also created its color-misaligned version as shown in Fit3(®8) by shifting the back-
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(@) (b)

Figure 3.11: (a) Extracted matte for the toy dog image in Big. (b) Re ned disparity
map. Compare this with Fig. 3.10(a) top.

(@) (b)

Figure 3.12: Results of existing natural image matting mgsh¢a) Closed-Form Matting
[50]. (b) Robust Matting [93].

ground color by 3 pixels before composition. We applied thevipus methods to the
color-aligned synthetic image, and our method to the colmaligned one. Though not
perfect, our method produced a better matte as shown in Eit3(d-f). For quantitative
evaluation, we conducted the same experiment for ve moasrgtes shown in Fig. 3.14,
and we computed the mean squared errors (MSE) against thedytauth mattes, which
we plotted in Fig. 3.15. Our method reduced MSE values by &@&-8ompared to the
other two methods.

3.6.3 Defocus Deblurring Results

We show defocus blur removal results based on the estiméuedmd matte. First, we
restore a color-aligned image as shown in Fig. 3.16(b), byorapositing the foreground
and background colors after canceling their color misatignt based on the foreground
and background disparity maps. Speci cally, if the foragnd disparity a{x;y) is d, the
aligned foreground color at that point is restored @(x+d;y); Fg(x;y d);Fp(x d;y)).
We then restore an all-in-focus background color by stitgldeconvolved images based
on the estimated blur size as illustrated in Fig. 2.2, andpmsa it with the extracted
foreground as shown in Fig. 3.16(c). In addition, by rebhgrthe deblurred image dif-
ferently as was done in Chapter 2, we can synthetically resftlee image as shown in
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(d) (€) (f)

Figure 3.13: Comparison using a ground truth matte. (a) Giowth matte. (b) Synthetic
natural image. (c) Color-misaligned version of (b). (d) Cbh$®rm Matting (applied to
(b)). (e) Robust Matting (applied to (b)). (f) Our method (kb to (c)).

Fig. 3.16(d). In the presence of hairy foreground objedfshamattes are indispensable
for the above operations to give plausible results. Fig7 3liows another deblurring
result for an outdoor photograph.

3.6.4 Additional Results

Fig. 3.18 shows additional color misalignment cancelfatesults.

Fig. 3.19 shows an example where a portion of the foregroumeco (the hip of the
sheep) is slightly out of the depth-of- eld of the lens, \atihg the assumption that(x;y)
is aligned between the RGB planes in Eq. 3.2. However, detjoadaf the extracted
matte around the region was small, as shown in Fig. 3.19(d).

The extracted mattes can also be used for composing therdéomed) objects onto
different background images as shown in Fig. 3.20.

Due to the use of color Iters, our method cannot handle ehtipure-red objects (as
well as entirely pure-green or pure-blue objects). But thisshot mean that objects must
not be mostly red. To prove that our method works for mosttialjects, we applied our
method to a photo of a red chair. This chair is mostly red btientrely pure-red because:
1) itis not entirely red as it has a silver frame, 2) it is notgdy red as this orangish red
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Man Girl Flower Giraffe Tree

Figure 3.14: Synthetic natural images and their groundh tmettes.
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Figure 3.15: MSE values of the mattes produced by our methddree previous methods
for the images shown in Figs. 3.13 and 3.14.

has a suf cient green component. Our method indeed workedhawn in Fig. 3.21.

Fig. 3.22 shows additional results for a photograph of twgpriames in the computer
graphics community.

Using the rapid shooting capability of the camera, we alstopmedvideo matting
as shown in Fig. 3.23. We applied our method to each framedvitteo independently
without taking into account temporal coherence.

3.7 Summary

This chapter has presented a method for estimating defdousiaes by placing red,
green, and blue color Iters in a camera lens aperture. Byddig the aperture into three
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Figure 3.16: Defocus blur removal and refocusing. The rghimn shows closeup views
of the left one. (a) Captured image. The colors are misaligiedColor misalignment
canceled. (c) Defocus blur removed. (d) Refocused.

regions through which only light in one of the RGB color bands pass, we can acquire
three shifted views of a scene in the RGB planes of a capturagenm a single exposure.
This allows us to take stereo correspondence between the REpBspto estimate the
scene depth, which is directly related to the defocus bhe.sWe have also presented a
matting method for extracting an in-focus foreground obgecthat the unblurred part of
the scene can remain unaffected by the deconvolution pgoCrs method only modi es
a camera lens with off-the-shelf color lters, and utilizé®e RGB planes of the image
sensor of a conventional camera body to capture multi-wieagies in a single exposure.
We have proposed an effective correspondence measuredretiee RGB planes, and a
method for employing color misalignment cues to improvertiate. By showing results
for outdoor scenes and/or hairy foreground objects, we baweonstrated the portability
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Figure 3.17: Defocus blur removal for an outdoor scene. (@t@ad image. (b) Ex-
tracted matte. The estimated blur/disparity map is showhRign 3.10(a) bottom. (c)
Deblurred image. The reddish color shade seen in (a) duestaghrture lters is also
corrected. (d) Closeup of (a). (e) Closeup of (c).

(a) (b) (€)
Figure 3.18: More color misalignment cancellation resulfa) Restored images. (b)

Closeups of (a). (c) Closeups of the original.

of our device and the effectiveness of our method in defotwsrbmoval, as well as in
post-exposure image editing including digital refocusamgl composition over different
backgrounds.
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Figure 3.19: Results for a sheep. (a) Captured image. (b) Bdpedty map. (c) Matte.
(d) Closeup from the red rectangle in (c).

Figure 3.20: Composition onto different background images.

(a) (b)

() (d)

Figure 3.21: Results for a red chair. (a) Captured image. (bjnated depth. (c) Ex-
tracted matte. (d) Composite image, where the extracted ishadlded back to the input
image multiple times.
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Figure 3.22: Results for two big names in the computer graggommunity. (a) Captured
image. (b) Estimated depth. (c) Extracted matte. (d) Conpasiage.
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Figure 3.23: Some frames from a video matting result, frofntéeright. (a) Captured
images. (b) Depth maps. (c) Trimaps. (d) Alpha mattes. (e) fi@mition over a blue
background. (f) Composition over another video.
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Chapter 4

Motion Blur Removal using Circular
Sensor Motion

So far, this dissertation has dealt with defocus blur. Thespter focuses on motion blur,
and describes a method for motion deblurring exploiting dired image capture process
which involves translation of the camera image sensor gugxposure.

4.1 Introduction

Motion blur, while being useful for depicting object motiamstill images, often spoils
photographs by losing image sharpness. The frequency hahdan be recovered by de-
convolution easily becomes narrow for fast object motiohigh frequencies are severely
attenuated and virtually lost.

Follow shot a photographing technique in which a photographer pansre@ato
track an object during exposure, can capture sharp imagemoking object as if it were
static. However, there are cases where follow shot is netg¥e: 1) when object motion
Is unpredictable; 2) when there are multiple objects witfedent motion. This is because
follow shot favors particular motion that a photographes baosen to track, as much as
a static camera favors “motion” at the speed of zero (i.aticsbbjects): objects moving
differently from favored motion degrade.

This chapter explores camera sensor motion during expéisatéreats a wide range
of in-plane linear object motion in any direction and up tensopredetermined speed.
That is, although no object may be photographed sharply @tucatime, differently
moving objects can be deconvolved with similar quality. STtiea is inspired by Levin
et al. [51], who proved that constantly accelerating 1D sensdiona@an render motion
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blur invariantto 1D linear object motion (e.g., horizontal motion), andwkd that this
sensor motion evenly distributes the xed frequency “butige different object speeds.
We intend to extend their budgeting argument to 2D (i.eplane) linear object motion
by sacri cing motion-invariance. We propose to translatamera sensor circularly about
the optical axis, and we analyze the frequency charadteyist circular sensor motion in
relation to linear object motion.

By losing motion-invariance, we inevitably reintroduce tissues inherent to the clas-
sical motion deblurring problem, which [51] resolved for hiotion. Firstly, we need to
estimate a point-spread function (PSF) of motion blur aspgehds on object motion.
Fortunately, for a set of PSFs resulting from circular semsotion, deconvolution by
wrong PSFs causes ringing artifacts, which is not alwaysd#se for other image capture
strategies. This allows us to take a simple hypothesiswgsafpproach for PSF estimation.
Secondly, we need to segment an image into regions withreiffemotion in order for
deconvolution to be applicable. This is still a challengprgblem which has only been
partially addressed by state-of-the-art methods (e.gd],fpt 1D motion), and this chapter
assumes user-speci ed motion segmentation.

4.2 Circular Image Integration

Fig. 4.1(a) shows the proposed motion of a camera image iséfistranslatethe sensor
along a circle perpendicular to the optical axis while kagpts orientation. We use the
phrase “circular motion” to emphasize that we do rbatethe sensor itself.

During exposure time2 [ T;+ T], the sensor undergoes one revolution with constant
angular velocityw = p=T. Letting the radius of circular motion & the sensor moves
along the circle with constant spe&ul, which corresponds to the target object sp8ed
in the image spacerhe corresponding object speed in the world space (i.eiabspeed
in a scene) is determined by the camera optics and the distarthe object from the
camera. Given exposure tim& 2nd the target object spe&lthe appropriate radius is
thereforeR= ST=p. Taking anxy plane on the sensor, the sensor motion goes through a
spiral in thexyt space-time volume as shown in red in Fig. 4.1(b).

Fig. 4.2 shows simulated motion blur PSFs and their powertspef various object
motions observed from a static camera, the coded exposurerag75], the motion-
invariant camera [51], and our circular motion camera. As ba seen in the gure,
while the power spectrum for a static object observed frortaicscamera is perfectly
broadband, those for moving objects become quickly naramglas the object speed in-
creases. The coded exposure camera makes power spectthdirdat the cost of losing
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Figure 4.1: Circular sensor motion. (a) The sensor is tréedlercularly about the optical
axis. (b) Trajectory of the sensor motion in the space-tislame (shown in red).

light blocked by the shutter, but the tendency of bandwidihrawing for faster motion
remains. The motion-invariant camera produces similarbatiband power spectra for
horizontal motions (they are not completely identical duéetail clipping effect [51]),
but vertical frequencies are sacri ced as motion directieviates from horizontal. The
circular motion camera produces power spectra that extehdyh frequency regions in
all cases. Although they have striped frequency zerosethesos facilitate PSF estima-
tion as described in Sec. 4.4.

We evaluated the quality of these PSFs in a similar way to][b§3imulating mo-
tion blur for a set of 12 natural images, and by measuring teamsquared errors
(MSE) between the deconvolved images (using pseudo-iavaEsonvolution) and the
original unblurred images. Fig. 4.3 plots the deconvolutimise increase in decibels
as 10logy(MSE=s?), where we assumed noise corruption for motion blur to be Gaus
sian of standard deviatioss = 10 2 for [0, 1] pixel values. As shown in the plots, the
motion-invariant camera shows excellent constant perdoca for horizontal motion up
to the target spee8, but for other motion directions, deconvolution noise e@ases for
faster object motion. The coded exposure camera and ourstdtame such directional
dependence. The coded exposure camera performs almostedlpas a static camera
for static objects, and deconvolution noise graduallyeases for faster object motion.
The circular motion camera also maintains stable perfoomdar all directions up to
and slightly beyond. It moderately favors the target object sp&zavhere it has lower
deconvolution noise than the other cameras except for theommvariant camera for
horizontal object motion. The downside of our image capsirategy is the increased
deconvolution noise for static objects.
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Figure 4.2: Motion blur PSFs and their corresponding log@uospectra. Rows: (1) PSFs
and (2) power spectra for a static camera. (3)(4) For theadtedposure camera. (5)(6)
For the motion-invariant camera. (7)(8) For the circulartiomo camera. Columns: (a)
Static object. (b)(c) Horizontal object motion at diffetespeeds. (d)(e) Oblique object
motion. (f)(g) Vertical object motion.

Fig. 4.4 demonstrates the above-mentioned trade-offsyisgasynthetically motion
blurred objects and their deblurred images.
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Figure 4.3: Plots of deconvolution noise increase for d#ifi object speeds and direc-
tions. Pseudo-inverse deconvolution is used. The expasuees 1 sec for all the cam-
eras. The vertical gray lines indicate the target (maximabjgct spee& = 50 pixels/sec
for the motion-invariant camera and ours. The length 50 @aaining 25 "1's [5] was
used for the coded exposure camera (half the light level).
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Figure 4.4: Simulated motion blurred images of a colorfudcgr ball and their pseudo-
inverse deconvolution results. The values indicate demlatien noise increase. Rows:
(1) Blurred and (2) deblurred images for a static camera4j3}pded exposure camera.
(5)(6) Motion-invariant camera. (7)(8) Circular motion cara. Columns: (a) Static

object. (b)(c)(d) Horizontal, oblique, and vertical olijewotion at the target spe&l
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4.3 Analysis of Circular Sensor Motion

Levin et al. [51] proved that constantly accelerating 1D sensor maofgming through a
parabolax = at? in xt space-time) is the only sensor motion that makes PSF imtzoa
1D linear object motion. Based on this nding, we can derive fibllowing proposition.

Proposition 1. There is no sensor motion that makes PSF invariant to 2D tinea
object motion.

Proof: Suppose there exists such sensor matif) = ( my(t); my(t)). As itis invari-
ant to 2D linear object motion, for any constant object viéjou = ( s;sy), there must
existc andd such that

m(t) vt= m(t+c)+ d; (4.2)

which means that the object motion only translates the senstion pathm(t). Differ-
entiating Eq. 4.1 and rearranging, we have:

fmt+o)  m@) _

ft o
From this equation we can see that bfith,(t)=1t and Tmy(t)=1t are linear functions of
t, and thereforen(t) andmy(t) are parabolas. However, lettimg(t) = at? andmy(t) =
bt?, Eq. 4.1 cannot be satis ed because

(4.2)

m(t) st = at % ’ 4%; (4.3)
m() st = bt % ’ %; (4.4)

andc does not exist unlesg=2a = s,=2b, leading to a contradiction. Q.E.D.

Hence, we must abandon motion-invariance, and we seek émattevinet al's
another nding that their sensor motion evenly and nearliiroglly distributes the xed
frequency “budget” to different object speeds.

The intuitive explanation for optimality of constant camercceleration for 1D case is
as follows. Fig. 4.5(a) shows the range of spge8, + § that must be taken care of. We
can cover the entire range by accelerating a camera begiahspeed Suntil it reaches
+S. The camera tracks every speed at one moment during expoByrextending to
2D, the range oVelocity(speed + direction) we must cover becomes a disc as shown in
green in Fig. 4.5(b). We are no longer able to Il the entireadby a nite sensor motion
path, and we opt to trace only the circumference of the disows in blue), which can
be achieved by moving a sensor circularly. The reasons fiogdm are threefold.
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1. It makes theoretical analysis easier. Although full freicy analysis of 3Dxyt
space-time is dif cult, we were able to draw some insight$refuency character-
istics of circular sensor motion.

2. Tracing the circumference alone can be shown to deal weiibcity in the interior
of the disc fairly well.

3. It makes implementation of camera hardware easier.

As for Reason 2, we have already seen empirically in Fig. 4aB e circular sensor
motion favors the target speed but this tendency is not toaqunced. To further treat
different object speeds evenly, one can consider samgimgnterior of the velocity disc
by a set of concentric circles. However, this does not bnmngjgni cant improvement of

PSF power spectra, since the phases of the Fourier transfamultiple circular motions

cancel each other when superimposed, resulting in a gusaitasimilar set of power

spectra to the one shown in the bottom row of Fig. 4.2 (see AgigeD).

AT,
-

(a) (b)

Figure 4.5: The range of velociiis,; s,) that must be covered by sensor motion for (a)
1D case and (b) 2D case (shown in green). We trace only thensfezence of the disc
(shown in blue).

4.3.1 Frequency Budgeting

Now we review the frequency budgeting argument of [51] fa tlase of 2D object mo-
tion.

We consider a camera path in tkyg space-time volume.

. d(x m(t) fort2[ T;+T] .
pOGT) = 0 otherwise : (4.5)

wherex = ( x;y), m(t) speci es the camera position at timeandd( ) is a delta function.

We would like to consider its 3D Fourier transform, denotgdb
Z Z ., ‘
p(f; f) = d(x m(t))e 2PIEx+ ) gax; (4.6)
W T
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wheref = ( fy; fy) is a 2D spatial frequencyf; is a temporal frequency, alf spans the
entirexy plane.

It can be shown that the 2D Fourier transform of a motion blsiF Ror object velocity
vis a 2D slice ofp(f; f;) along the planeofy = v f= sy s, fy (Fourier projection-
slice theorem [18], see Appendix E). Therefore, given a maxn speed5, the volume
in the 3D ffy f; frequency domain that these slices can pass through is ednto the
outside of the cone gd$;j Sfj, as shown in blue in Fig. 4.6(a). We would likg(f; ;)]
to have as large value as possible within this volume, sorttwdion blur PSFs up t&
have large power spectra. However, the budget is exattigl@ng each vertical line= ¢

the line shown in red and green in Fig. 4.6(a)) for any givpatisl frequencyc: i.e.,
jp(c; f)j2d f; = 2T (see Appendix F).

To assign the 2 budget so that any 2D linear object motion belSas the same
amount of PSF spectral power, we consider the following tuiterca.

Effectiveness: The budget should be assigned as much as possible withimntne |
segment off; 2 [ §¢j;+ §cj] which is shown in red in Fig. 4.6(a). In other words, we
would like to avoid assigning the budget to the other pogiohthe line (shown in green
in Fig. 4.6(a)) as they correspond to object speeds be$amd the budget will be wasted.
Because the budget is exactly Bnless we close the shutter during exposure, less assign-
ment to some portion means more assignment to the other.

Uniformity: The budget should be distributed evenly across the line eegrso that
every object motion PSF has an equal amount of spectral power

Therefore, optimal assignment in which both effectiverses$ uniformity are perfect
givesT=3¢j to each point on the line segment.

4.3.2 Spectrum of Circular Sensor Motion

We take the 3D Fourier transform of the circular sensor nmoti¢t) = ( Rcoswt; Rsinwt),
a spiral in thexyt space-time as shown in Fig. 4.1(b). By integrating Eq. 4.6 wespect
tot, we obtain:

Z ..
o(F: f) = d(jxj R)e 2pifim Y(x) g 2pif Xy (4.7)
\"Y; Rw

since the integrand is non-zero onlyjpgt= Rand at = m 1(x). Jacobiandm(t)=dtj =
Rw is introduced in the denominator. By using polar coordinates= r cosq andy =
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Figure 4.6: (a) The cone de ning the volume (shown in bluepaaaslices passing through
the origin correspond to the power spectra of motion bluriS&#How the spee8. (b)
Discretef; slices. (c)fy slices. The hyperbolic intersections with the cone are shiow

purple. (d) Plots of Bessel functiodg(2) of the rst kind for somek, which correspond
to the slices in (b).

rsing, 7

. dr R e ,

pifo= —(RW e 20ifia=w o 20ifxgy (4.8)
This is a hard-to-integrate expression, but we can prodaee focus on a set of discrete

fi slices wher&k = 2p fi=w is an integer as shown in Fig. 4.6(b), as (see Appendix G):
JB(f; f0)j? = 4T2J(2pRif); (4.9)

whereJy(2) is thek-th order Bessel function of the rst kind [94, 62], which isopted for
somek in Fig. 4.6(d).

We show theeffectivenesanduniformityof this distribution as described in Sec. 4.3.1.
For effectiveness, we shoy(f; f;)j? is small inside the congl;j  Sfj, shown in white
in Fig. 4.6(a). By simple algebraic manipulation, we haydRj < k inside the cone.
As can be observed in Fig. 4.6(d) particularly clearlyer 10 and 20, Bessel functions
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Jk(2) start from zero at the origin (except for= 0), and remain small until coming close
to the rst maximum value, which is known to be around k+ 0:80861&%'= > k [94].
Therefore Ji(2) is small forz< k, which meangp(f; ;)j2 is small inside the cone.

Next, we show the uniformity of the distribution. For sufamitly largez k2, the

Bessel function can be approximated as
r__

2 kp p |
k(2 p—zcos z > 4 (4.10)

Using this approximation, Eq. 4.9 can be written as:

A ) 4 T .k
i 07 o 20R] 2 2. (4.11)

This equation indicates that, at any given spatial frequénehich is suf ciently large,
jp(f; f)j? is a sinusoidal wave with an amplitude @=p)(T=5fj) irrespective of tem-
poral frequencyf;. Hence, although undulating, the distribution is uniforiong the f;
direction on an average. The amplitude is greater than thtienabassignment =Sfj

as described in Sec. 4.3.1, and by averaging the cosineatiauin Eq. 4.11, we can
see that the assigned frequency powdRip)(T=3fj) on an average, meaning that the
circular sensor motion achievesy2 (about 64%) of the optimal assignment (it achieves
more around the target speed).

To verify the above argument, we show a numerically comppteder spectrum of a
spiral in Fig. 4.7 by thredy slices as shown in Fig. 4.6(c), along with the power spectra
of the other camera paths. The motion-invariant camerdyneptimally assigns the bud-
get for thefy = 0O slice corresponding to horizontal object motion, but ilsféo deliver
the budget uniformly for other cases. Our circular motiomeea distributes the budget
mostly evenly within the volume of interest, with condengesver around the cone sur-
face corresponding to the maximum value of Bessel functiwhgh results in a tendency
to favor the target speed.

4.4 Motion Blur Estimation

As shown in the bottom row of Fig. 4.2, the power spectra of2®Bulting from circular

sensor motion have different frequency zeros dependindptiomotion, serving as cues

for PSF estimation [48]. As a result, deconvolution with mgd®SFs will result in ringing

artifacts as shown in Fig. 4.8, which we detect by the follggwequation:
1, ﬁd] (V) ﬂdj(v)

EW)= g8 logg = +logg T
J

(4.12)
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Figure 4.7: Camera paths in the space-time and 2D slices infabdog power spectra.
Purple curves show the intersections with the cone of tasgeedS. Rows: (1) Static
camera. (2) The coded exposure camera. (3) The motionimiacamera. (4) The
circular motion camera. Columns: (a) Camera path inxthepace-time. See Fig. 4.1(b)
for the circular sensor motion path. (b) Slicefat= 0. (c)(d) Slices off thefy f; plane
(fy 6 0).

whereN is the number of pixelsj is a pixel index,d(v) denotes a deconvolved image
with pseudo-inverse Itering using the PSF correspondimgltject motionv, andq( ) is

a sparseness prior for natural image derivatives learoed $ample images. Images with
ringing artifacts have many large derivative values incstestly with the prior, making
Eq. 4.12 small. We search all possible (discretized) objeation directions and speeds
up to 15S and pick the motiov (equivalently the PSF) that gives the largest value for
Eqg. 4.12 as a true PSF.

As shown in Fig. 4.8, the simple hypothesis testing appra@scribed above is valid
only for the circular motion camera PSFs. Figs. 4.8(c)(89 ahow that our PSF estima-
tion can clearly distinguish opposite motion directions.
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Figure 4.8: Deconvolution results for a synthetically matblurred ball and their cor-
responding values of the sparseness prior Eqg. 4.12. Thesiavglue for each camera
is written in cyan, which identi es the correct PSF only fyetcircular motion camera.
Rows: (1) Static camera. (2) Coded exposure camera. (3) Moti@miant camera. (4)
Circular motion camera. Columns: (a) Deconvolution resulth static object PSFs, (di-
rection, speed) £0 ;0). (b) Incorrect speed45 ;S=2). (c) Correct PSH45 ;S). (d)
Incorrect direction(90 ;S). (e) Opposite direction(225 ;S).

4.5 Camera Hardware Implementation

While we believe that circular sensor motion can be impleeemtith sensor shift mech-
anisms for image stabilization, they are not currently asitde to users, and we made the
following two prototypes by taking different approachestplementing circular motion.

For the rst prototype shown in Fig. 4.9, we opt to transldie entire camera body
mechanically using stepper motors. The circular motionusts R = 1.1cm, and the
exposure time is set tol2= 1.0sec. Translation of the whole camera body makes the
target object speefiequal toRw in the world spacéabout 7cm/sec in our case), and the
size of PSFs becomes depth-dependent (i.e., far objectsotiadfected by the camera
motion). Therefore, this prototype only works for scenesta®Ocm away from the
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camera. Precision issues also kept us from using it fordagbenes, because the PSF for
static objects deviates from a circle as the optical axghdy tilts during circular motion.

To overcome the above-described issues, for the seconatyyet we place a tilted
acrylic plate inside the camera lens mount as shown in Fif),4androtate it so that
refracted light rays move circularly. The plate is 3mm thigikth a refraction index of
1.49, and the tilt angle is 7.7 degrees, making the circularon radiusk to be 0.13mm.
This radius corresponds to 5 pixels in our experiments, amté the target object speed
is S= 31.4 pixels/sec with the exposure time 2 1.0 sec. We used this second prototype
for all of the results shown below.

Stepper motors

Camera
Micro-controller to PC
and batteries USB ports

|

Figure 4.9: Prototype camera based on a Canon PowerShot SXh&Owhole camera
body is translated by two stepper motors.

4.6 Results

For deblurring, we performed the PSF estimation describefec. 4.4 for each user-
segmented object, and applied deconvolution with the esichPSF. In order to reduce
ringing due to boundary effects, we made a rectangular irnageining a cropped object,
and smoothly Il in the outside of the object region with pmaic boundary condition
similarly to [57]. The deblurred objects and the backgroanel blended back together.
The PSF estimation using a multi-resolution approach amio [28] took 20 min for
a 512 512 image on a desktop PC with an Intel Pentium 4 3.2GHz CPU &l 2
RAM. User intervention for motion segmentation took lessitaaminute. An example of
segmentation can be seen in Fig. 4.13(d).
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Side view Worm gear

\ Motor

Camera
body

t

Sensor
Ring gear + acrylic plate

Figure 4.10: Prototype camera based on a Canon EOS 40D DSLRe e lens is
detached to reveal the modi ed lens mount. We attach an argi@anon EF 50mm /1.8
lens for image capture. After passing through the lens,mmig light (shown in red) is
displaced via the tilted acrylic plate, and the displaceinsgreeps a circle on the sensor
while the plate rotates (yellow arrow).

4.6.1 Motion Deblurring Results

Fig. 4.11 shows an example of multiple objects moving inedéht directions and at dif-
ferent speeds. The digits and marks on the cars are visiltleideblurred image. For
comparison, we also show closeups of the deconvolutiontsasuFig. 4.12 for both the
static camera image and the circular motion camera imagée tHat, for Fig. 4.12, we
used simpler, pseudo-inverse deconvolution to better dstrate high frequency preser-
vation. As shown, more details are recovered for the cirquietion camera image with
less deconvolution noise.

(@) (b) ()

Figure 4.11: Toy cars. (a) From a static camera. (b) Fromitiealar motion camera. (c)
Deblurring result of (b).
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(@) (b) (©) (d)

Figure 4.12: Comparison of pseudo-inverse deconvolutisaltefor the toy car example.
(a)(c) Results for the static camera image. (b)(d) Resultghcircular motion camera
image.

Fig. 4.13 shows an example of an object whose parts are mdiffegently. Fig. 4.13
(d) shows the user-speci ed motion segmentation. The regaverlap in order to stitch
them smoothly at the borders after deconvolution. Detaithss ngers and wrinkles on
the clothes were recovered.

(@) (b) (c) (d)

Figure 4.13: Squat motion. (a) From a static camera. (b) Fhenircular motion camera.
(c) Deblurring result of (b). (d) User-speci ed motion segmtation. Four regions are
enclosed by differently-colored lines.

Fig. 4.14 shows an example with a textured background. Daoediusion boundaries,
artifacts can be seen around the silhouettes of the peoptehé deblurred faces are
clearly recognizable. It is worth mentioning that the clasumotion camera tells us that
the man was moving downward while the woman was moving lettwaot upward or
rightward), which is unavailable information from the gtatamera image in Fig. 4.14(a)
and also from the other capture strategies. We also noteath#tie sensor partially tracks
object motion during exposure, details such as facial featare already visible in the
captured image even before deconvolution as shown in Fig(d). To demonstrate this,
we applied a facial feature point detector [102] to Figs4daic). As shown in Fig. 4.15,
facial feature points were successfully detected withadodvolution. These motion
identi cation and recognizable image capture capabgitieay be useful for surveillance
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purposes.

(@) (b) (©)

Figure 4.14: Moving people in front of a textured backgrou(a From a static camera.
(b) From the circular motion camera. (c) Deblurring restifi).

(@) (b) (€) (d) (€) (f)

Figure 4.15: Results of facial feature point detection [1f02Fig. 4.14. (a)(d) Detection

failed for the static camera image in Fig. 4.14(a), as thedaae severely blurred. (b)(e)
Detection succeeded for the circular motion camera imadeéign4.14(b) even before

they were deblurred, since the facial features are alre&iyle. (c)(f) Detection also

succeeded for the deblurred image in Fig. 4.14(c).

Fig. 4.16 shows an example of a license plate of a motorbike.dlgits and characters
are legible in the deblurred image Fig. 4.16(c). The motahs identi ed as moving
rightward (not leftward), which is unavailable informatifrom the static camera image
in Fig. 4.16(a). This information may be useful for traf c@dent investigation (e.g.,
to identify whether the motorbike crashed into another cathe left or it was trying to
avoid being hit by that car).

(@) (b) ()

Figure 4.16: License plate of a motorbike. (a) From a statioera. (b) From the circular
motion camera. (c) Deblurring result of (b).
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4.6.2 Comparisons using a High-speed Camera

For comparison with the other capture strategies, we usgdspeed camera images of
a horizontally moving resolution chart provided online.[B]urred images are simulated
by averaging 150 frames from the 1,000 fps video, resultireg39-pixel blur. The length
50 code was used for the coded exposure camera, spendingc3fonssach chop of
the code. For fair comparison, the motion-invariant andutar motion cameras were
targeted to an object speed of 50 pixels (not 39 pixels) ppogxre time. We tilted the
camera by 90to simulate the “vertical” object motion relative to the cama. As shown
in Fig. 4.17, the coded exposure deblurring produced a lesy image than the static
camera, although oblique streaks of noise can still be sBe®mmotion-invariant camera
produced an even less noisy image for horizontal objectonphbut the result for vertical
object motion exhibits severe noise. The circular motiomeea produced clean images
for both motion directions, although they are not artifke, either.

We also used high speed camera images to demonstrate tigaimsdulity of captured
images even before deconvolution, as compared to the atiege capture strategies.
Examples of a vertically moving face are shown in Fig. 4.18e Tacial feature point
detection succeeded only for the circular motion camergévdd Fig. 4.18(d), as shown
in Fig. 4.18(e).

Fig. 4.19 shows examples of a license plate. They are alsdatied from high speed
camera images (note that Fig. 4.16 is a real example, notw@latiea one). Large digits
“72-14" are legible for all of the capture strategies, bug ttharacters above these digits
are hard to recognize in the static and coded exposure inshgem in Figs. 4.19(a)(b).
Legibility for the motion invariant camera image (c) is nstgood as that for the circular
motion camera image (d) as the motion direction is slightfyhe horizontal.

4.7 Summary

This chapter has proposed a method for removing motion hlurdmslating a camera
sensor circularly about the optical axis during exposueethat high frequencies can
be preserved for a wide range of in-plane linear object matip to some target speed.
We analyzed the frequency characteristics of circular@em®tion in relation to linear
object motion, and investigated its trade-offs betweerotapture strategies. We have
also presented a blur estimation method that can be appleedét of PSFs resulting from
circular sensor motion, based on a simple observation #@aird/olution by wrong PSFs
causes ringing artifacts, which is not always the case foeroimage capture strategies.
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Static camera Coded exposure

Motion-invariant (horizontal) Motion-invariant (verad)

Circular (horizontal) Circular (vertical)

Figure 4.17. Comparison using high-speed camera imagesedébr pair of shown im-
ages, the left one is a simulated blurred image, and the dghtis its deconvolution

result.

(@) (b) () (d) (€)

Figure 4.18: Motion-blurred face simulated from high speathera images. (a) Static
camera. (b) Coded exposure camera. (c) Motion-invarianecam(d) Circular motion
camera. (e) Facial feature point detection succeededdaritbular motion camera image

(d) without deconvolution (and failed for the others (a-c))
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) (b) (c) (d)

Figure 4.19: Motion-blurred license plate simulated froighhspeed camera images. (a)
Static camera. (b) Coded exposure camera. (c) Motion-iewagamera. (d) Circular
motion camera.

We have shown deconvolution results for simulated imagesedisas real photographs
captured by our prototype camera, and demonstrated thattsbinoving in different
directions at different speeds can be deblurred equalli; wel

91



Chapter 5

Conclusions and Future Work

This dissertation has proposed methods for removing defaad motion blurs in pho-
tographs. Since deblurring is generally an ill-posed pohlthe proposed method in-
cludes modi cations of camera optics that alter the imagetwa process of traditional
cameras in order to achieve high frequency preservationafadilitate blur kernel iden-
ti cation. Aiming at applications to consumer digital caras, this dissertation proposed
low cost hardware implementation which adopted small moations to existing cameras
and mechanisms that can be directly derived from existirggon

5.1 Common Issues

This section describes several issues common to variots giathe proposed methods,
which result from our assumption that spatially-varianirtsh an input photograph can be
locally approximated by a uniform blur. This directly leadsthe following limitations,
which we would like to address in the future.

First, in order for blur estimation to be reliable, objeatsai photograph should be
larger than the blur size around them, so that local segnoemtsin a uniform blur with
enough sample pixels. Hence, estimation can be erroneossll or thin objects (e.g.,
a strand of hair).

Second, since blur is locally modeled as convolution by glsifPSF, translucent
objects are not accounted for. A similar problem occursmgacclusion boundaries [7],
which we alleviated by blending deblurred images. The guali deblurred images will
degrade patrticularly if occlusion boundaries frequenfpear in a scene (e.g., bars of a
cage).
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Third, sources of image degradation other than blur, suémage compression arti-
facts can disrupt our blur estimation and deconvolutioodigms. Over/under-exposures
also lead to loss of information, breaking the linear relaship between pixel values and
captured light intensities. Blur estimation can still be docted by excluding affected
regions, but deconvolution will produce artifacts aroumeré as shown in Fig. 5.1. Trans-
parent objects and specular highlights will also inducdlamartifacts as they distort the
PSF shape.

(a) (b)
Figure 5.1: (a) Saturated input photograph. (b) Result ofuttghg.

5.2 Image Processing Approach to Image Deblurring

We have presented a method for removing defocus blur in imiage context of digital
refocusing, in which the goal is not only to perform deblogribut also to create im-
ages with different focus settings. The proposed methaesreclusively on an image
processing approach without camera optics modi cationgrder to set a baseline per-
formance achievable without modifying the image captuoeess. The proposed method
consists of a fast image deconvolution method for ef ciegibldirring, a local blur estima-
tion method which can handle abrupt blur changes at deptiodlisuities due to object
boundaries, and a set of user interfaces for interactiaeusing.

Although the gradient domain approach made the deconwolytrocess faster, we
are no longer able to directly impose positivity constraion variables, which are known
to be effective in regularizing the solution. Currently we values after bringing them
back to the image domain, but we would like to seek a way torppm@te such constraints
into the deconvolution process. The degree of ringing seggion of our deconvolution
method depends on the choice of parametawhich is related to the image noise level.
We would like to consider determining the parameter autaaly based on noise esti-
mation methods [56].

We used a simple pillbox PSF model, which seems suf cientlierdefocus blur of
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the lens we used. Nevertheless, it is worth considering $ieeofi more complex models
and calibrated PSFs depending on a target imaging system.

It would be interesting to consider applying heavy-tailems also to blur estima-
tion, which we did not because we knew that the defocus PSFawakbox, which is
much stronger prior knowledge about the PSF shape; and wenasisthe blur to be uni-
form within each segment, which may be interpreted as a htaled prior that allows
discontinuities in a blur radius eld occasionally at segrboundaries. For better blur
estimation, it would also be useful to improve segmentadjoality.

We provided a means of modifying a blur radius eld to x ringg artifacts that
may still remain. Skilled retouching software users couidHer improve the quality by
directly working on the latent images. We would like to calesi developing example-
based touch-up tools for ordinary users.

5.3 Defocus Blur Removal using a Color- Itered Aper-
ture

We have presented a method for estimating defocus blur armmbfor extracting the alpha
matte of an in-focus foreground object in order to faciétaiefocus blur removal. Our
method only modi es a camera lens with off-the-shelf coldters and utilizes the RGB
planes of the image sensor of a conventional camera bodyptareamulti-view images
in a single exposure. We have proposed an effective comelgpnee measure between the
RGB planes, and a method for employing color misalignmens toémprove the matte.

The major limitation of our approach is that it does not warkdbjects having only a
single pure R, G, or B color. Combining with depth-from-defecoethods may partially
solve this problem. However, this does not mean that obieat have achromatic colors
all over. For example, the disparity of the red box in Fig. B.8orrectly identi ed as
shown in Fig. 3.10(a), thanks to the alphabets and the gistaf chocolates printed on
the box. Therefore, our requirement is that objects musbeqturely colorecentirely,
and we think there are many real-world objects satisfying tbequirement. We would
like to further investigate this limitation.

In our imaging system, the f-number is xed to 1.8 (full apge of our prototype lens)
because a large aperture increases disparities and thheases depth resolution. Since
disparities also increase when the lens is focused neasystem typically works well for
foreground objects at 0.5 to 2.5 meters away from the cam#heansuf ciently distant
(about twice as far away) background. For farther scengaghdesolution will gradually
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decrease, and the matte quality will also deteriorate derdiice between foreground
and background color misalignment will be small. At a certpoint, there will be no
disparity, and the system will not work at all.

By introducing color lters, the amount of incident light iedreased. Increasing the
aperture lter area to compensate for this introduces mefeacus. While this degrades
depth estimation accuracy at defocused regions, it supgsdsackground clutters, which
is bene cial for matting. Color Iters may also affect coloethosaicing for the image
sensor, although we did not observe any loss of quality iregperiments, mainly because
we downsampled the captured images for tractable compntame.

While our blur estimation works fairly robustly, our mattifagls when the foreground
and background colors are similar with little texture, aeveh in Fig. 5.2(b), since we
have few color misalignment cues. Another failure mode &,ths we use a relatively
large window (15 15), we cannot recover small/thin features such as hainds$rand
holes in foreground objects, once they are missed in thesemfroptimization, as shown
in Fig. 5.2(d). We would like to address the above issuesarfuture.

(@) (b) (€) (d)

Figure 5.2: Failure cases of the proposed matting algoritfiajor errors are indicated by
the arrow and circles. (a) Captured image. (b) Matte from(@)Closeup of the ground
truth matte for the girl image in Fig. 3.14. (d) Our result.

5.4 Motion Blur Removal using Circular Sensor Motion

We have proposed to translate a camera sensor circularlyt e optical axis during
exposure, so that high frequencies can be preserved foranaiye of in-plane linear
object motion up to some target speed. We analyzed the fnegueharacteristics of
circular sensor motion in relation to linear object motiand investigated its trade-offs
between other capture strategies.

Our camera prevents capture-time loss of frequency coonfemages and also facili-
tates blur estimation. However, another issue of classicgiion deblurring remains. That
is, motion segmentation is left an open problem, for whichasgumed user-intervention
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in this dissertation. We also con ned ourselves to consideonly in-plain linear object
motion. We would like to address these limitations in theifat

Another issue of our method is that static objects are alswdadd. One way to alleviate
this is to pause the sensor for a fraction of exposure timerbedr after the circular
motion. We intend to investigate ways to control the degoeehich static and moving
objects are favored relative to each other.

5.5 Future Directions

In this dissertation we have presented two types of camerh cations. One is to place
color Iters in the camera lens aperture, and the other isdwerthe camera image sensor
circularly. Both of the modi cations have large design spacd-or the color- ltered
aperture, we could change the square shape of each lteri@ieather shapes such as
circles and hexagons, or we could change relative positbtise Iters. For the circular
sensor motion, we could move the sensor multiple times, nitowéh acceleration, or
move it along a whorl-like path. We would like to investigéte pros and cons of various
designs for each of the two modi ed image capture processes.

Another future direction is that, as we have focused on catrgnad low-cost imple-
mentation of camera hardware modi cations, we are intecks making the existing
computational photography techniques (including the avesave proposed in this dis-
sertation) more common to ordinary people. The rst step weld like to take is to im-
plement multi-sensor consumer digital cameras for ligeld capture, which can leverage
the abundant ndings and knowledge from the recent advaincitss eld.
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Appendix

A Color Alignment Measure and Normalized Cross Cor-
relation

An equivalent of Eg. 3.1 in 2D (e.qg., in the RG space) would be:
L(x;y;d) = I of 1=52s&: (A.1)

Let srg be the covariance between the R and G components, thég/hy= de(S) =
SPs§  sf, we obtain:

Lixy,d)= 1 sZ=sfsg (A.2)
Since normalized cross-correlation (NCC) is given as NCE€,g=s,sqg 2 [ 1,;1], and
JNC(G 2 [0;1] indicates the magnitude of correlation, the 2D version efablor align-

ment measure has a one-to-one correspondenceNGCj.

B Computing the Color Lines Model Error

Letting ¢; be thei-th color in S§(x;y;d), mbe the mean color, andg, be a unit vector
of the tted line (the rst principal eigenvector), trigomoetry gives the distandeof the
pointc; from the line as:

I?=ja m? ((a m'v* (B.1)
The average of the rst term is, by de nition, the variance:

jci mi?=sf+ si+ sg: (B.2)

Qo=

1
NiZy
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For the second term, we have:

1N 1)
N a (6 mTw)?= N & (c MMvo)"((ci M v)
i=1 i=1
- L8 me my
N i§1 0 \GCi i O' (B.3)

1) '
W oga me mt v
i=1
= V§Svo = V(I ovo) = 1 o(Vivo) = 1 o;

by the de nitions of the covariance matr&and the eigenvectog. Therefore, the color
lines model error can be computed as follows.

er(xy;d)= sP+ s+ s o (B.4)

This turns out to be similar to the color alignment measuilegf3.1, but we found it more
effective for matting to use this unnormalized, direct emmeasure. Since estimation
errors of background disparities are typically larger tHavse of foreground disparities,
we discouneg(x;y; d) by scaling it by around 0.7-0.9.

C Color Crosstalk Suppression

Let cr, cg, andc, be the mean image colors of a sheet of white paper through ties R,
and B lters, respectively. For our prototype,

¢ = (1:000,0:3350:025 ;
cg=(0:1531:000,0:162T; (C.1)
cp = (0:007:0:190,1:000 ;

where the values are normalized with respect to the maximamponent. LettingVl =

(cr;cq;Cp), We can decompose an observed calpinto the three aperture lIters' contri-
butions byM 1c,.

D Multiple Revolutions of the Sensor

For the velocity disc shown in Fig. 4.5(b), we trace only tiveuumference of the disc by
circularly moving the sensor once during exposure. Hereamsider additionally tracing
the interior of the disc by concentric circles as shown in Bid,, meaning that the sensor
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undergoes circular motion multiple times with differenieesps during exposure. This
may seem to Il in the frequency zeros of the motion blur PSWeospectra seen in the
bottom row of Fig. 4.2. However, frequency zeros remain asvshin Fig. D.2 as the
phases of the Fourier transform of PSFs each corresporalamgingle revolution cancel
each other when superimposed. Moreover, as the numberattens increases, PSFs
become more like the ones resulting from a static cameraeotdded exposure camera,
and begin to favor static objects.

'S

Figure D.1: Example of two circles (shown in blue) for samglthe velocity disc.

E The Slicing Relationship

As we are interested in motion blur PSF, we consider an olgje@ point light source
moving at velocityv asd(x vt). An image of this object (i.e., PSF) observed from a
camera moving according ta(t) during exposure timg T;+ T]is given as:

Z .7
h(x) = . d(x vt+ m(t))dt: (E.1)
Taking its 2D Fourier transfzor? leads to
h(f) = " +TT d(x vt+ m(t))e *dtdx: (E.2)
By changing variable asozz v; X, we obtain:
h(f) = " +TT d(m(t) x9e 2Pif ( XV gey0 (E.3)

and integrating with respect tdleads to:
Z

h(f) = +Te 2pif (- MO+ V) g (E.4)
T
Meanwhile, by integrating Eq. 4.6 with respectxiave obtain:

+T .
pihif)= e 2pi(t m(ty+ ) git: (E.5)

Comparing this equation to Eq. E.4, we see tﬁ(dy = p( f;f v), meaning that the
Fourier transform of a motion blur PSF is a 2D slicepdf; f;) along the plane of; =
v f.
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Figure D.2: Motion blur PSFs and their corresponding log @ospectra. Rows: (1) PSFs
and (2) power spectra resulting from two-revolution ciestdensor motion. (3)(4) Five-
revolution. (5)(6) Ten-revolution. Columns: (a) Staticedt} (b)(c) Horizontal object

motion at different speeds. (d)(e) Oblique object motidy{g} Vertical object motion.

F The Amount of the Frequency Budget

From Eq. E.5, we see tha(c, f;), when viewed as a function df, is the (1D) Fourier
transform of the following function:

e 2Picm(®) fort2[ T;+T] .

b(t) = 0 otherwise (F1)
Therefore, using the Parseval's theorem,
jp(c; f)jsdf = jb(t)j“dt
¥ ¥
Z, T
= ldt= 2T: (F.2)
T
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G Fourier Transform of a Spiral

According to [83], 2D Fourier transform of a functiggr)e k9 is given asG(f,)e
where(r;q) and(f,;f) are the polar coordinates in the primal and frequency dosnain
respectively (i.e.fr = jfj j (fx; fy)j), and we have:
Zy
G(f;)= 2pi * , INKE@pfinyrdr: (G.1)

Applying this theorem to Eq. 4.8 leads to:
-k ikfZ¥ 1, q
2pi e . Rw (r RX(2pfr)rdr

p(f; f)
= 2pi e Vivak(szfr): (G.2)
Hence we have:

. . 1
ip(f 1)i* = 4p® 5K (2pRE)
= 4T233(2pRifj): (G.3)
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