
Abstract

The recent rapid popularization of digital cameras allows people to capture a large number

of digital photographs easily, and this situation makes automatic avoidance and correction

of “failure” photographs important. While exposure and color issues have been mostly

resolved by the improvement in automatic corrective functions of cameras, defocus, mo-

tion, and camera shake blur can be handled only in a limited fashion by current cameras.

Camera shake blur can be alleviated by an anti-camera shake mechanism installed in

most cameras; but for focus, although a particular scene depth can be focused with an

auto-focus function, objects at different depths cannot becaptured sharply at the same

time. Moreover, defocused images can often result due to thefailure of auto-focusing. In

addition, blur caused by object motion, i.e., motion blur, is only avoided by increasing the

shutter speed and sensor sensitivity when a camera detects motion in a scene.

This dissertation proposes a method for removing defocus and motion blur for digital

cameras. Since deblurring is generally an ill-posed problem, and hence an image pro-

cessing approach alone has limitations, the proposed method includes modi�cations of

camera optics. In this regard, this dissertation pursues low cost and compact implementa-

tion, aiming at applications to consumer products. That is,small modi�cations to existing

cameras or mechanisms that can be directly derived from existing ones will be adopted.

In order to set a baseline performance achievable without modifying camera optics,

this dissertation �rst proposes an image deblurring methodthat is purely based on an

image processing approach, which consists of fast image deconvolution for ef�cient de-

blurring, and local blur estimation for handling spatially-varying blur. Additionally, a set

of intuitive user interfaces are provided with which the user can interactively change the

focus settings of photographs after they are captured, so that she/he can not only obtain

an all-in-focus image but also create images focused to different depths.

For removal of defocus blur, a method is proposed for estimating the defocus blur size

in each image region by placing red, green, and blue color �lters in a camera lens aper-

ture. As captured image will have depth-dependent color misalignment, the scene depth

can be estimated by solving a stereo correspondence problembetween images recorded

with different wavelengths. Since the depth is directly related to the defocus blur size,

deblurred images can be produced by deconvolving each region with the estimated blur

size. The modi�cation requires only inexpensive color �lters.

For motion blur removal, this dissertation proposes to movethe camera image sen-

sor circularly about the optical axis during exposure, so that the attenuation of high fre-

quency image content due to motion blur can be prevented, facilitating deconvolution.
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The frequency domain analysis of the circular sensor motiontrajectory in space-time

shows that the degradation of image quality is equally reduced for all objects moving in

arbitrary directions with constant velocities up to some predetermined maximum speed.

The proposed method may be implemented using an existing sensor-shift system of an

anti-camera shake mechanism.
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Chapter 1

Introduction

This chapter �rst describes the motivation for this work, then the background and prelim-

inary information on image deblurring, followed by a reviewof the related work. Finally,

the contributions and organization of this dissertation are presented.

1.1 Motivation

The recent rapid popularization of digital cameras allows people to capture a large num-

ber of digital photographs easily. As the number of casual photographers increases, so

does the number of “failure” photographs including over/under-exposed, noisy, blurred,

and unnaturally-colored images. This situation makes automatic avoidance and correction

of failure photographs important. In fact, automatic corrective functions of digital cam-

eras including auto-exposure, automatic white balance, and noise reduction capabilities

steadily improve to resolve exposure, color, and noise issues.

On the other hand, current digital cameras appear to handle image blur only in a lim-

ited fashion; they only directly address camera shake blur,but not defocus and motion

blur. For camera shake blur, most of the recent cameras are equipped with an anti-camera

shake mechanism that moves either the lens or the image sensor to compensate for camera

motion obtained from an accelerometer. For defocus blur, however, although a particular

scene depth can be focused with an auto-focus function, objects at different depths cannot

be captured sharply at the same time (depth-of-�eldeffects, see Fig. 1.1(a)). Moreover,

defocused images can be commonly seen in personal photo collections due to the fail-

ure of auto-focusing. In addition, blur caused by object motion, i.e., motion blur (see

Fig. 1.1(b)), can only be avoided by increasing the shutter speed and sensor sensitivity

when a camera detects motions in a scene, at the expense of an increased noise level.
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(a) (b)

Figure 1.1: Examples of blurred photographs. (a) Photograph with a shallow depth-of-
�eld, in which only the faces at the focused depth are sharplycaptured, and the others are
subject to defocus blur. (b) Photograph containing motion-blurred �sh.

To overcome the above-described situation, this dissertation proposes methods for

removing defocus and motion blurs in photographs. Since deblurring is generally an ill-

posed problem as will be explained in Sec 1.2, image processing techniques alone can

often suffer from noise ampli�cation and ringing artifactsin deblurred images, which

result from attenuation of high frequency image content at capture time and also from

misidenti�cation of blur kernels during image processing.Therefore, in addition to im-

age processing techniques for deblurring, the proposed method includes modi�cations

of camera optics that alter the image capture process of traditional cameras in order to

achieve high frequency preservation and to facilitate blurkernel identi�cation. In this re-

gard, this dissertation pursues low cost and compact hardware implementation, aiming at

applications to consumer digital cameras. That is, small modi�cations to existing cameras

or mechanisms that can be directly derived from existing ones will be adopted.

This dissertation focuses on a single-shot approach. That is, we try to recover an

unseen sharp image given a single blurred image, and do not resort to taking multiple

photographs. Although one could bene�t from an increased amount of information from

multiple images, images must be registered in some way, and dynamic scenes and/or

hand-held image capture without a tripod can introduce additional sources of errors. Of

course, one could use multiple synchronized cameras to alleviate this issue, but that is not

only expensive but also an unrealistic usage scenario for casual photographers. Another

option might be to use a high-speed camera to minimize motionbetween frames to facili-

tate registration, but each frame will have an increased noise level due to reduced exposure

time, and the memory bandwidth required to transfer image data from the sensor to the

storage device will become large, making the obtainable image resolution small. More-

over, we would like to note that a single-shot approach and a multi-shot approach can

complement each other; multi-shot approaches could bene�tfrom improved deblurring

results of the proposed single-shot methods, and vice versa.
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Prior to proposing camera hardware-assisted deblurring methods, we would like to

set a baseline performance achievable without modifying camera optics. To this end, we

�rst explore an image deblurring method that is purely basedon an image processing

approach. After that, we propose defocus and motion deblurring methods with modi�ed

camera optics.

1.2 Image Deblurring

Image deblurring can be formulated as the process of inverting image blurring. This sec-

tion �rst introduces a model of image degradation, and then presents problem de�nitions

of image deblurring with their basic solution strategies and associated dif�culties.

1.2.1 Image Degradation Model

Image degradation due to blur can be locally modeled as convolution [43]:

g(x;y) = h(x;y) � f (x;y)+ n(x;y); (1.1)

whereg is an observed degraded image,h is a blur kernel or apoint-spread function

(PSF), f is an unknown (latent) original sharp image,n is a noise term, and� denotes a

convolution operator. A defocus blur kernel can be often modeled as a pillbox function

(see Fig. 1.2(b) top):

h(x;y) =
�

1=pr2 for
p

x2 + y2 � r
0 otherwise

; (1.2)

wherer is the radius of a circle of confusion. A motion blur kernel for a horizontally

moving object can be modeled as a box function (see Fig. 1.2(b) bottom):

h(x;y) =
�

d(y)=2L for jxj � L
0 otherwise

; (1.3)

where 2L is the length by which the object travels during exposure, and d(�) is a Dirac

delta function.

Fig. 1.2 shows examples of this image degradation process, where the blur is assumed

to be uniform for the entire image.

1.2.2 Image Deconvolution

Image deconvolution is a problem of estimating the latent image f given an observation

g and a blur kernelh. This is known to be already an ill-posed problem, because high
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(a) (b) (c)

Figure 1.2: Image degradation process (the noise term is omitted). (a) Original sharp
image f . (b) Blur kernelh. The top row corresponds to defocus blur Eq. 1.2, and the
bottom row to motion blur Eq. 1.3. (c) Blurred imageg.

frequency information in the original imagef is attenuated by blur. This is apparent if we

consider Eq. 1.1 in the frequency domain:

ĝ(wx;wy) = ĥ(wx;wy) f̂ (wx;wy)+ n̂(wx;wy); (1.4)

where thehat notation f̂ denotes the Fourier transform off , and(wx;wy) denotes spa-

tial frequencies. Note that convolution in the spatial domain becomes multiplication in

the frequency domain. Fig. 1.3 shows frequency domain representation of Fig. 1.2. As

can be seen, the high frequency content (corresponding to the values in the outer region

of each frequency domain image in Fig. 1.3) of the original image is signi�cantly atten-

uated after multiplication by the blur kernel, because the blur kernel decays rapidly for

higher frequencies. In addition, the shown blur kernels have periodic zeros that make

the corresponding frequency content completely lost. Therefore, image deconvolution is

a process of recovering weakened or lost signals and essentially involves signal ampli�-

cation. This is apparent in the following equation that implements naive deconvolution,

known aspseudo-inverse deconvolution.

f̂ 0(wx;wy) =
ĥ� (wx;wy)

jĥ(wx;wy)j2 + e
ĝ(wx;wy); (1.5)

where f̂ 0denotes a deblurred image (in the frequency domain),ĥ� the complex conjugate

of ĥ, ande is a small number to avoid zero division. The fraction of the right-hand side of
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the equation is essentially division byĥ, meaning that weakened signals will be ampli�ed

back accordingly. As a result, naive deconvolution also ampli�es noise in a blurred image,

which leads to ringing artifacts as shown in Fig. 1.4.

� =

� =

(a) (b) (c)

Figure 1.3: Image degradation process viewed in the frequency domain. (a) Log magni-
tude of the Fourier transform̂f of an original sharp imagef . (b) Log magnitude of the
Fourier transform̂h of a blur kernelh. (c) Log magnitude of the Fourier transform ˆg of a
blurred imageg.

(a) (b)

Figure 1.4: Results of pseudo-inverse deconvolution for theblurred images shown in
Fig. 1.2. (a) Result for the defocus blurred image. (b) Result for the motion blurred
image.

1.2.3 Blind Image Deconvolution

Blind image deconvolution is a problem of estimating the latent image f given only an

observationg [43]. As we must also estimate a blur kernelh from the blurred imageg, the
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problem becomes under-constrained since the number of unknowns (the number of pixels

in f plus the number of values inh) exceeds the number of observations (the number of

pixels ing, which is equal to that off ). The problem is solved either by �rst estimating

the blur kernelh and then applying (non-blind) image deconvolution to obtain f , or by

iteratively improving the estimates ofh and f until convergence.

Frequency attenuation can even more adversely affect recovered image quality than

for non-blind deconvolution, since errors in the estimatedkernel can excessively amplify

the frequency content that is not signi�cantly attenuated by the true blur kernel. Fig. 1.5

shows examples of pseudo-inverse deconvolution results with blur kernels having slightly

different sizes from the true ones.

(a) (b)

Figure 1.5: Results of pseudo-inverse deconvolution with wrong blur kernels for the
blurred images shown in Fig. 1.2. (a) Result for the defocus blurred image. (b) Result for
the motion blurred image.

1.2.4 Target Problem

This dissertation addresses an image deblurring problem inwhich each local image region

can be treated as being subject to the blind image deconvolution problem. That is, blur

kernels can vary across the image region but can be assumed tobe piecewise uniform.

While we assume a parametric form of blur as in Eqs. 1.2 and 1.3,blur kernels arenot

assumed to bea priori known (i.e., blind).

1.3 Previous Work

Researches on image deblurring and restoration have a long history [14, 43, 11], and

they have mainly focused on an image processing approach. We�rst review some of the

traditional methods and also explain recent advances in this �eld in Sec. 1.3.1.
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While image processing approaches handle images in a post-capture manner, recent

years have seen an emergence of techniques calledcomputational photography[76] that

change the image capture process of cameras to acquire sceneinformation unobservable

with traditional cameras, and/or to facilitate post-capture image processing. The methods

involving camera optics modi�cations proposed in this dissertation belong to this �eld

of research. Sec. 1.3.2 introduces computational photography methods for image deblur-

ring, and also some work that is not directly related to deblurring but is relevant to this

dissertation.

Finally, the relation of the previous work to ours is summarized in Sec. 1.3.3.

1.3.1 Image Processing Approach

Image Deconvolution

Solving an image deconvolution problem all comes down to coping with its ill-posedness

described in Sec.1.2.2, which, in one aspect, manifests itself as zero division in the fre-

quency domain. While the simplest remedy is to add a �xed smallnumber to the denomi-

nator as in Eq. 1.5, a more theoretically meaningful way is toaddjn̂(wx;wy)j2=j f̂ (wx;wy)j2

to the denominator, known as Wiener deconvolution [14]. Of course the power spectra of

the noisejn̂j2 and original imagej f̂ j2 are not known, estimated values are used instead.

Apart from such relatively simpleregularization(i.e., to make ill-posed problems

well-posed ones), one can use some prior knowledge of natural images. The dif�culty

inherent in ill-posed problems is that the space of possiblesolutions is large; a blurring

process can produce similar images from different images bylosing the signals that make

the original images differ from each other. Therefore, if weenforce somea priori proper-

ties on deblurred images, the solution space can be con�ned to a smaller one. A simple but

effective piece of prior knowledge of natural images is thattheir pixel values are bounded;

they cannot take negative or unlimitedly large values. Richardson-Lucy deconvolution it-

eratively updates the estimated deblurred image such that its pixel values are always kept

positive [79, 58].

Another form of such regularization is to minimizejc(x;y) � f 0(x;y)j2, which is known

as Tikhonov regularization [88]. A regularizing operatorc is often set as a high-pass �lter

to rule out images with a large high frequency content, so that ringing-free images are

favored. However, it may also rule out sharp images by its nature. Minimizing a squared

norm of high-pass �ltered images can be viewed as enforcing Gaussian smoothness pri-

ors to the �ltered signal distributions, but recent researches on natural image statistics
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show that they obey so-calledheavy-taileddistributions [29], which have a narrower peak

and a broader foot than Gaussians (also known assparseness priors). Therefore, recent

methods exploit heavy-tailed priors to allow occasional discontinuities (such as edges) in

restored images [30, 68, 10, 15]. These methods usediscrete wavelet transform(DWT) as

band-pass �lters, but since restored images suffer from blocky artifacts arising from the

dyadic image partitioning in DWT, they usetranslation-invariant DWT(TI-DWT) [24],

also known asstationaryDWT, to reduce such artifacts at the cost of signi�cant increase

in computational complexity.

Blind Image Deconvolution

Blind image deconvolution techniques restore the original sharp image from an observed

degraded image without precise knowledge of a point-spreadfunction (PSF) [43]. There

are two main approaches to this: 1) �rst estimate the PSF, andthen apply a non-blind

deconvolution method with that PSF; 2) iteratively estimate the PSF and the original sharp

image.

For the approach that estimates the PSF �rst, some traditional methods payed attention

to the frequency zero patterns in a blur kernel [20]. For example, the Fourier transform

of a box function as shown in Eq. 1.3 is given asĥ(wx;wy) = sinc(Lwx), meaning that it

has periodic zeros atwx = kp=L for a non-zero integerk. From Eq. 1.4, we can expect

that the Fourier transform ˆg of the observed image has the same zero pattern if we can

ignore noise. However, such methods are not practical in thepresence of noise. Another

approach is to take a set of candidate PSFs, and to choose the one that best explains the

observed image. The selection criteria differ from method to method, such as residual

spectral matching [80] and generalized cross validation [78].

For the approach that iteratively estimates the PSF and the sharp image, Ayers and

Dainty proposed to iterate the process of updating the PSF from the estimated sharp im-

age in the Fourier domain, imposing image space constraintson the PSF (non-negativity,

for example), updating the sharp image from the PSF in the Fourier domain, and im-

posing constraints on the sharp image [9]. More recent methods took a conceptually

similar approach and estimated a camera shake PSF from a single image by incorporat-

ing natural image statistics. Ferguset al. imposed a sparseness prior for image derivative

distributions, and used an ensemble learning approach to solve the otherwise intractable

optimization problem [28]. Shanet al. introduced a more sophisticated noise model and

a local smoothness prior [81].

Some researchers used multiple images. Rav-Acha and Peleg [77] showed that using
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two motion blurred images can produce better deconvolutionresults; Yuanet al. [101]

used a long-exposure blurred image and a short-exposure noisy image, so that PSF esti-

mation can bene�t from the short-exposure image which is notsubject to blur.

Handling Spatially-Variant Blur

The methods described above all assume a PSF to be spatially-invariant (uniform). A

spatially-variant PSF is usually estimated by sectioning the image and by assuming it to

be approximately spatially-invariant within each section[89, 72, 44]. This means that the

blur is assumed to be only slowly varying across the image, aseach section should be

large enough to make reliable estimation. This is also true for non-blind spatially-variant

deconvolution methods [66, 46, 96].

A few methods exist that can estimate a spatially-variant PSF with abrupt changes

across the image. Levin identi�ed spatially-variant motion blur by examining the differ-

ence between the image derivative distribution along the motion direction and that along

its perpendicular direction for the case of 1D linear motion[47]. You and Kaveh [100]

also addressed the problem of removing spatially-variant motion blur, but only a synthetic

horizontal motion blur example was presented.

Depth-from-focus/defocus techniques generate a depth mapof a scene by estimating

the amount of defocus blurs in images. Hence they can be viewed as spatially-variant PSF

estimation methods. Existing methods either use multiple images [73, 99, 67], or make

an estimate at edges in a single image by assuming that a blurred ramp edge is originally

a sharp step edge [73, 85, 45].

Depth-of-�eld Synthesis

Some methods are designed to create and alter the depth-of-�eld effects from images,

rather than to remove blurs from them. Burt and Kolczynski fused multiple images with

different focus to generate images with an extended depth-of-�eld [19]. Kubota and

Aizawa used two images, and generated arbitrarily focused images by assuming that a

scene consisted of two depth layers, each of which was in focus in either image [42]. The

“Lens Blur” �lter of Adobe Photoshop CS [2] creates depth-of-�eld effects from a single

sharp photograph with a user-provided depth map.
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Matting

In image editing, matting is an important technique for extracting foreground objects in an

image so that they can be composited over other images [22]. In addition to image editing

purposes, matting is also important in the context of image deblurring, for separating

image regions so that each region can be deconvolved independently.

The traditional approach to matting is to use a blue or green screen as a background

[91, 82]. Extracting a matte from a singlenatural image (i.e., an image with general un-

known background colors) requires user intervention, a typical form of which is atrimap

that segments an image into “strictly foreground,” “strictly background,” and “unknown”

regions. Fractional alpha values are computed in the “unknown” region based on the

information from the other two regions [23, 86, 92, 49, 50, 93]. To automate matting,

previous approaches used multiple images. Smith and Blinn [82] captured images of a

foreground object with two different known background colors. Alternatively, Wexleret

al. [97] used a sequence of images of a translating/rotating object. Xiong and Jia [98]

captured images from two viewpoints, and computed their stereo correspondences taking

into account alpha values of a foreground object. Several methods used synchronized

cameras to capture multiple images of an object [60, 61, 39, 59, 104].

1.3.2 Hardware-Assisted Approach

Defocus Blur Removal

For defocus blur removal, awavefront codingmethod [27] incorporates a cubic phase

plate in the imaging system, so that the defocus blur is independent of the scene depth.

The defocus blur can be removed with a single known PSF, but this technique requires a

custom optical system that can be expensive. Several researchers have introducedcoded

aperturetechniques [48, 90] which places a patterned mask in the camera lens aperture to

change the frequency characteristics of defocus blur in order to facilitate blur estimation

and removal. These methods offer portable imaging systems with minimal modi�cations

to the conventional camera, but as the blur estimation solely relies on defocus cues, some

manual intervention may be required, and there is ambiguitybetween depths farther and

nearer than the focused depth.

Several camera designs have been proposed to estimate scenedepth using defocus

cues, which can also be viewed as defocus PSF estimation methods. Hiura and Mat-

suyama used a modi�ed camera with multiple pinholes [36] to capture images in which

duplicated scene textures are displaced and superimposed in a depth-dependent manner.
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Two research groups used color �lters in the lens aperture tocapture the displaced images

in separate color channels [6, 21]. Moreno-Nogueret al. used a projector and estimated

depth from projector defocus [64].

If multi-view images are available, not only scene depth canbe estimated, but also

synthesis of depth-of-�eld effects, orrefocusing, can be performed. There are several

camera designs to do multi-view image capture through a single main lens. Adelson and

Wang [1] showed that light rays entering a camera can be captured separately depend-

ing on their incident angle by placing a microlens array on the image sensor, and they

estimated depth from multi-view images captured through the main lens. Nget al. [70]

realized this idea in a hand-held camera, and proposed a post-exposure refocusing method

by noting that the captured multi-view images correspond tothe light �eld inside the cam-

era [69]. Multi-view images can also be captured by placing an attenuation mask on the

image sensor [90], or by splitting light rays at the aperture[35, 55, 54] or outside the main

lens [31].

Motion Blur Removal

For motion blur removal, Raskaret al. [75] developed acoded exposuretechnique to

prevent attenuation of high frequencies due to motion blur at capture time by opening and

closing the shutter during exposure according to a pseudo-random binary code. Agrawal

and Xu [4] presented another type of code that enables PSF estimation in addition to

high frequency preservation. Levinet al. [51] proposed to move the camera image sensor

with a constant 1D acceleration during exposure, and showedthat this sensor motion can

render motion blurinvariant to 1D linear object motion (e.g., horizontal motion), and

that it evenly distributes the �xed frequency “budget” to different object speeds. That is,

objects moving at different speeds can be deblurred equallywell.

Some researchers proposed to move sensors for different purposes. Ben-Ezraet al.

[13] moved the sensor by a fraction of a pixel size between exposures for video super-

resolution. Mohanet al. [63] moved the lens and sensor to deliberately introduce motion

blur that acts like defocus blur. Nagaharaet al. [65] moved the sensor along the optical

axis to make defocus blur depth-invariant.

Camera Shake Removal

For camera shake removal, Ben-Ezra and Nayar [12] attached a low resolution video cam-

era to a main camera, and estimated a camera shake PSF from video frames to remove blur
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from a main camera image. Recent cameras typically have an anti-camera shake mech-

anism that moves either the lens or the image sensor to compensate for camera motion

obtained from an accelerometer.

1.3.3 Relation to the Proposed Method

Fig. 1.6 shows four stages in a generic processing �ow of image deblurring. We �rst

capture an image, and then segment the image into regions each of which can be assumed

to have a uniform blur. After that, for each local region, we estimate the blur kernel and

�nally use it to deconvolve the image. Some methods may perform segmentation and blur

estimation simultaneously. Some may iterate blur estimation and deconvolution.

Image
capture

Segmen-
tation

Blur
estimation

Deconvo-
lution

Figure 1.6: Processing �ow of image deblurring.

Table 1.1 summarizes the relationship between the proposedmethod and some of the

previous work for three of the above four stages and for the three blur types, namely

defocus, motion, and camera shake blur. We set aside the image capture stage because

it is trivial for methods purely based on an image processingapproach, and for methods

involving optics modi�cations, the (modi�ed) image capture stage can facilitate one, two,

or all of the succeeding three stages depending on the methods. Therefore, the table has

two rows for each blur type, one for methods involving opticsmodi�cations, and the other

for pure image processing methods.

Image Processing Approach to Image Deblurring

Chapter 2 proposes a method for defocus blur removal purely based on an image process-

ing approach. For image segmentation and blur estimation, we propose a method that can

handle abrupt blur changes across images, while previous methods such as [72] assume

slowly varying blur. For deconvolution, we speed up the computation involving heavy-

tailed priors by building upon one of the state-of-the-art methods calledWaveGSM[15]

and make it 10 times faster. The deconvolution method can be used for removing motion

and camera shake blur as well. Additionally, we provide users with a set of intuitive in-

terfaces with which the user can interactively change the focus settings of photographs
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Table 1.1: Summary of the relationship between the proposedmethod and some of the
previous work. Only a few representative methods that use single images are cited for
brevity.

(common to the 
above field *)

Fergus et al. 2006 
[28]

Image
processing

Image processing
alone will suffice

Ben-Ezra and Nayar
2004 [12]

Not required

Modified
opticsCamera

shake
blur

(common to the 
above field *)

Image
processing

Modified
opticsMotion

blur

WaveGSM [15] *
Image
processing

Modified
opticsDefocus

blur

DeconvolutionBlur estimationSegmentation

Wavefront coding [27]       

Coded aperture [48, 90]         

Motion-invariant photography [51]

Coded exposure photography [75, 4]

Chapter 3

Chapter 2

Chapter 4

Levin 2006 [47]

Ozkan et al. 1991 [72]

after they are captured, so that she/he can not only obtain anall-in-focus image but also

create images focused to different depths. To our knowledge, techniques that synthesize

refocused images from a single conventional photograph have not been reported in the

literature.

Defocus Blur Removal using a Color-Filtered Aperture

As will be shown in Chapter 2, image processing alone does not necessarily produce

satisfactory results, and we propose to modify camera optics. In Chapter 3, we present a

method for simultaneously performing segmentation and defocus blur estimation by plac-

ing red, green, and blue color �lters in a camera lens aperture. Although wavefront coding

[27] can cover all the latter three stages for image deblurring, it requires special lenses that

can be expensive, whereas the modi�cation of the proposed method requires only inex-

pensive color �lters. The coded aperture methods [48, 90] also cover the three stages,

but some issues remain for the segmentation and blur estimation stages as described in

Sec. 1.3.2. As deconvolution quality can be considerably improved by the coded aperture,

this dissertation focuses on facilitating the segmentation and blur estimation stages, and

we use a color-�ltered aperture to exploit parallax cues rather than to directly use defocus

cues, which addresses the above-mentioned issues.
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The idea of using color �lters in the aperture itself has beenproposed previously. For

a stereo correspondence measure between the color planes, Amari and Adelson [6] used

a squared intensity difference with high-pass �ltering. Asthey discussed in their paper,

however, this measure was insuf�cient to compensate for intensity differences between

the color planes. Their prototype was not portable, and onlya single result for a textured

planar surface was shown. Changet al. [21] normalized the intensities within a local

window in each color plane before taking the sum of absolute differences between them.

But as their camera was equipped with a �ashbulb for projecting a speckle pattern onto

the scene in order to generate strong edges in all the color planes, the performance of

their correspondence measure in the absence of �ash was not shown. They also had to

capture another image without �ash to obtain a “normal” image. We propose a better

correspondence measure between the color planes.

As compared to the existing camera designs for single-lens multi-view image capture,

our method splits light rays at the aperture similarly to [35, 55, 54], but uses only color

�lters as additional optical elements to the lens without requiring multiple exposures.

Although this comes with a price of a reduced number of views (only three) each having

only a single color plane, we can still obtain useful information for defocus deblurring

and post-exposure image editing.

As for matting, our method can automatically extract alpha mattes with a single hand-

held camera in a single exposure, and to the best of our knowledge, such capability has

not been reported previously.

Motion Blur Removal using Circular Sensor Motion

While a method for segmenting and identifying 1D motion blur (e.g., horizontal motions)

in a single image is reported in the literature [47], it stillseems dif�cult to handle general

2D (i.e., in-plane) motions in a pure image processing framework. Chapter 4 proposes

to move the camera image sensor circularly about the opticalaxis during exposure, so

that the attenuation of high frequency image content due to motion blur can be prevented,

facilitating deconvolution. This is an extension of motion-invariant photography [51] so

that it can handle 2D linear object motion, although that leaves the segmentation stage an

open problem.

The most closely related work to the proposed approach includes coded exposure pho-

tography [75, 4] and motion-invariant photography [51]. Table 1.2 summarizes qualitative

comparisons among these methods and ours. Refer also to [3] for detailed comparison be-

tween the coded exposure and motion-invariant strategies.
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The motion-invariant strategy best preserves high frequencies for target object motion

range, but it does not generalize to motion directions otherthan the one it assumes. The

coded exposure strategy can handle any direction, and its performance only gradually

decreases for faster object motion. Our circular motion strategy can treat any direction

and speed up to some assumed limit, and it achieves better high frequency preservation

for target object speed than the coded exposure strategy in terms of deconvolution noise.

Similar to the motion-invariant strategy, the circular motion strategy degrades static scene

parts due to sensor motion, but it can partially track movingobjects so that they are

recognizable even before deconvolution. Unlike the other strategies, the circular motion

strategy has no 180� motion ambiguity in PSF estimation; it can distinguish rightward

object motion from leftward one.

Table 1.2: Summary of the trade-offs among various image capture strategies for motion
deblurring.

Static camera Coded exp. [75, 4] Motion-inv. [51] Circular (ours)

High frequency
preservation�

Bad Good Good Good

Direction gener-
alization

– Yes No Yes

Speed general-
ization

– Yes Yes† Yes†

Static scene parts
unblurred

Yes Yes No No

Image recogniz-
able w/o deconv.

No No Yes† Yes†

180� motion
discrimination

No No‡ No Yes

� For target object motion, Motion-invariant> Circular> Coded exposure.
† Within some assumed motion range. ‡ As in [4].
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1.4 Contributions

The major contributions of this dissertation are threefold.

1. Image Processing Approach to Image Deblurring(Chapter 2): In order to set a

baseline performance achievable without modifying cameraoptics, this dissertation

�rst proposes a set of methods for image deblurring that is purely based on an image

processing approach.

We propose a method for speeding up deconvolution computation for ef�cient de-

blurring. Deconvolution quality is known to be improved by taking into account

derivative distributions of natural images. While existingmethods take time to re-

peat derivative and convolution operations, the proposed method achieves similar

image quality with 1/10 computation time by taking derivatives beforehand and by

working in the gradient domain.

We also present a method for estimating defocus blur that canhandle spatially-

variant blur having abrupt changes across the image. We propose to use color im-

age segmentation rather than the traditional rectangular segmentation in order to

divide the image into regions each having a similar defocus blur size. A criterion is

elaborated to choose the best blur size from a set of candidates for each region, and

means are also provided to correct the estimated blur size ina user-assisted manner.

Moreover, besides producing all-in-focus images as the result of defocus removal,

we provide users with means to interactively control the focus settings of pho-

tographs after they are captured, since defocus blur can serve to enhance artistic

impression of photographs.

2. Defocus Blur Removal using a Color-Filtered Aperture(Chapter 3): We propose

a method for estimating defocus blur sizes in each image region by placing red,

green, and blue color �lters in a camera lens aperture in order to facilitate defocus

blur removal. The camera modi�cation requires only inexpensive color �lters.

As a captured image will have depth-dependent color misalignment, the scene

depth can be estimated by solving a stereo correspondence problem between im-

ages recorded with different wavelengths. We devise a novelstereo correspondence

measure that can robustly identify disparities between theRGB color channels. The

disparities are directly related to the defocus blur sizes,and deblurred images can

be produced by deconvolving each region with the estimated blur size.

We also present a matting method for extracting an in-focus foreground object so

that the unblurred part of the scene can remain unaffected bythe deconvolution
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process. Color misalignment cues introduced by the �lters serve to constrain the

space of possible mattes that would otherwise contain erroneous mattes when fore-

ground and background colors are similar. We propose a novelmatting algorithm

exploiting the color misalignment cues to obtain better mattes than ones that can be

produced by the previous matting methods.

3. Motion Blur Removal using Circular Sensor Motion (Chapter 4): We propose

to move the camera image sensor circularly about the opticalaxis during exposure,

so that the attenuation of high frequency image content due to motion blur can be

prevented, facilitating motion blur removal. That is, although no object may be

photographed sharply at capture time, differently moving objects can be decon-

volved with similar quality. The proposed method may be implemented using a

sensor-shift system of an anti-camera shake mechanism.

We analyze the frequency characteristics of circular sensor motion in relation to

linear object motion, and show that this sensor motion nearly evenly distributes the

�xed frequency “budget” to different object speeds, meaning that the degradation

of image quality is equally reduced for all objects moving inarbitrary directions

with constant velocities up to some predetermined speed.

We also present a method for estimating motion blur based on the fact that, for a set

of PSFs resulting from circular sensor motion, deconvolution by wrong PSFs causes

ringing artifacts, which is not always the case for other image capture strategies.

This allows us to take a simple hypothesis testing approach for PSF estimation, and

we propose to detect such ringing based on image sparseness priors.

1.5 Organization

As listed in Sec. 1.4, Chapter 2 describes an image deblurringmethod that is purely based

on an image processing approach, and Chapters 3 and 4 present methods that exploit

camera optics modi�cations for defocus blur and motion blurremoval. Finally, conclusion

and future work are presented in Chapter 5.
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Chapter 2

Image Processing Approach to Image
Deblurring

This chapter explores a method for removing blur in images that is purely based on an

image processing approach. Although the goal of this dissertation is to facilitate the

deblurring process by modifying the capture process of traditional cameras, we would

�rst like to know the achievable performance without modi�cations of camera optics. To

this end, this chapter deals with defocus deblurring in the context ofdigital refocusing,

in which images are not only deblurred, but alsorefocusedas if they were focused to

different depths.

2.1 Introduction

Digital refocusing, a technique that generates photographs focused to different depths

(distances from a camera) after a single camera shot as shownin Fig. 2.1, is attracting

the attention of the computer graphics community and othersin view of its interesting

and useful effects. The technique is originally based on thelight �eld rendering [52, 32],

and exploits the fact that a photograph is a 2D integral projection of a 4D light �eld [69],

as was simulated by Isaksenet al. [37]. Ng et al. made this technique practical with

their hand-held plenoptic camera [70], eliminating the need for large and often expensive

apparatus such as a camera array or a moving camera that was traditionally required to

capture light �elds. Since then, other novel camera designshave been emerging in order to

improve the resolution of images and/or to reduce the cost ofoptical equipment attached

to a camera [31, 48, 54].

In an attempt to perform digital refocusing without modifying camera optics, in this

chapter we are interested in developing an image processingmethod for synthesizing

28



(a) (b) (c)

Figure 2.1: From a single input photograph, images focused to different depths can be
obtained. (a) A single input photograph, focused on the person in the left. (b) Created
image, refocused on the person in the middle. (c) Created image, refocused on the person
in the right.

refocused images from a single photograph taken with a conventional camera. If we had a

sharp, all-in-focus photograph with a depth map of the scene, it would be straightforward

to create depth-of-�eld effects by blurring the input photograph according to the depth,

as some of the existing image-editing software do (e.g., theLens Blur�lter of Adobe

Photoshop CS [2]). Therefore, we must �rst estimate “a sharp image with a depth map”

from an input photograph. In other words, we must �rst estimate and remove defocus blur

in a photograph.

To achieve this goal, we assume that spatially-variant defocus blur in an input photo-

graph can be locally approximated by a uniform blur, and we restore a sharp image by

stitching multiple deconvolved versions of an input photograph. And we also propose a

local blur estimation method applicable to irregularly-shaped image segments in order to

handle abrupt blur changes at depth discontinuities due to object boundaries. To create

desired refocusing effects, we present several means of determining the amount of blur

to be added to a restored sharp image based on the estimated blur, by which users can

change focus and depth-of-�eld interactively and intuitively.

2.2 Image Processing Flow

Fig. 2.2 shows a block diagram of our method. From an input defocused photograph

g(x;y), we �rst restore alatent image l(x;y), which would have been observed if defocus

blur had not been introduced by the camera lens system (i.e.,deblurred sharp image). We

use the standard pillbox PSF parameterized by radiusr of the circle of confusion, referred

to asblur radius, as a defocus blur model [11]:

h(x;y; r) =
�

1=pr2 for
p

x2 + y2 � r
0 otherwise

; (2.1)
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and we generate multiple differently deblurred imagesf j (x;y) by deconvolving an input

photograph with each of the predeterminedM + 1 blur radiif r j j j = 0;1; � � � ;Mg. That is,

we remove uniform defocus blur with blur radiusr j from g(x;y) to obtain f j (x;y). This

amounts to solving the image deconvolution problem

g(x;y) = h(x;y; r j ) � f j (x;y)+ n(x;y); (2.2)

whose solution is given in Sec. 2.3. TheM + 1 blur radii are arranged in ascending order

asr0 < r1 < r2 < � � � < rM, andr0 = 0 so thatf0(x;y) � g(x;y). We typically user j = 0:5j,

andrM = 10:0 (in pixels).

From the deblurred imagesf j (x;y), we locally select the “best” image and stitch them

together to obtain the latent imagel(x;y), the approach known assectional method[89].

More precisely, we �rst estimate a blur radius �eldrorg(x;y) which describes with what

blur radius the input photograph is originally blurred around each pixel location(x;y), as

described in Sec. 2.4. We then linearly blend the deblurred images as

l (x;y) =
r j+ 1 � rorg(x;y)

r j+ 1 � r j
f j (x;y)+

rorg(x;y) � r j

r j+ 1 � r j
f j+ 1(x;y); (2.3)

where j is appropriately chosen for each pixel(x;y) such thatr j � rorg(x;y) � r j+ 1.

Now that we obtained the latent imagel(x;y), we create an output refocused image

o(x;y) by blurring the latent image. The reason for �rst obtaining the latent image is that,

as convolution of two disc PSFs does not result in another disc PSF, refocused images

cannot be obtained by directly convolving/deconvolving aninput photograph. Sec. 2.5

presents a method for determining a new blur radius �eldrnew(x;y) to be added to the

latent image based onrorg(x;y) in order to meet desired refocusing effects. To perform

the synthesis in real-time, we again employ the sectional method, and we prepare multi-

ple differently blurred images asb j (x;y) = h(x;y; r j ) � l (x;y) in the preprocessing stage.

Again,b0(x;y) � l (x;y). In the interactive refocusing stage, we perform linear interpola-

tion similar to Eq. 2.3 for a new blur radius �eldrnew(x;y) and the blurred imagesb j (x;y)

andb j+ 1(x;y) as:

o(x;y) =
r j+ 1 � rnew(x;y)

r j+ 1 � r j
b j (x;y)+

rnew(x;y) � r j

r j+ 1 � r j
b j+ 1(x;y); (2.4)

where j satis�esr j � rorg(x;y) � r j+ 1 for each pixel(x;y).
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Figure 2.2: Block diagram of our defocus deblurring and digital refocusing process.
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2.3 Image Deconvolution

In Sec. 1.2.2 we brie�y reviewed the dif�culties lying in theimage deconvolution prob-

lem. Here we take a closer look. For notational convenience,this chapter uses a matrix-

vector version of Eq. 2.2 as follows [11].

g = Hf + n; (2.5)

whereg, f, andn are P-vectors representingg(x;y), f j (x;y), andn(x;y), respectively,

with lexicographic ordering ofP discretized pixel locations, andH is a P � P matrix

representing convolution by a PSFh(x;y; r j ). Dependence onj is omitted for brevity.

Since solving Eq. 2.5 forf as a least squares problem of minimizingkg � Hfk2 is

known to be ill-posed due to ill-conditioned matrixH, one needs prior knowledge about

which images are more likely to occur in nature. However, frequently-used Gaussian

smoothness priors are not suitable for restoring sharp (hence not necessarily smooth) im-

ages, even though they are computationally tractable. Therefore, recent methods exploit

so-calledheavy-tailed priors, according to which the distributions of band-pass �lter out-

puts of (sharp) natural images have a narrower peak and a broader foot than Gaussians as

shown in Fig. 2.3, allowing occasional discontinuities (such as edges) in restored images

[30, 15]. These methods usediscrete wavelet transform(DWT) as band-pass �lters, but

since restored images suffer from blocky artifacts arisingfrom the dyadic image parti-

tioning in DWT, they usetranslation-invariant DWT(TI-DWT) [24], also known assta-

tionary DWT, to reduce such artifacts at the cost of signi�cant increase in computational

complexity.

We avoid this problem by using derivative �lters instead of DWT, since they are

translation-invariant and do not involve dyadic image partitioning. Speci�cally, we bring

Bioucas-Dias's wavelet domain method (WaveGSM) [15] into the gradient domain, be-

cause theGaussian scale mixture(GSM) representation of heavy-tailed priors used in

WaveGSM is also applicable to speeding up the non-linear optimization involving heavy-

tailed priors in the gradient domain.

Following Tappenet al. [87], we use a generalized Laplacian distribution as a heavy-

tailed prior model for image gradients:

p(fx[i]) µ exp(�j fx[i]ja =b ) ; (2.6)

wherefx[i] denotes thei-th element of the derivative off with respect tox, andp(�) denotes

a probability density function of an argument variable. We seta = 0:3 andb = 0:085 with

pixel values in range [0, 1], so that Eq. 2.6 approximates sample gradient distributions as

shown in Fig. 2.3. We use the same prior fory derivatives,fy[i].
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Figure 2.3: (a) Sample sharp images. (b) Gradient distributions of the top image (red) and
of the bottom image (green), and the generalized Laplacian distribution we use (blue).
For visibility, these plots are horizontally displaced. They all actually peak at zero.

Taking derivatives of Eq. 2.5 leads to the following two gradient domain deconvolu-

tion equations:

gx = Hfx + nx; gy = Hfy + ny: (2.7)

For brevity, we will only deal with thex component in what follows. Assuming that

the noisenx in the gradient domain can be modeled as a Gaussian with variancew and

that the prior is independently applicable to each pixel locationi, the posterior distribution

of a latent gradientfx given an observationgx is given as

p(fxjgx) µ p(gxjfx)p(fx) µ exp
�

�
kgx � Hfxk2

2w

� P

Õ
i= 1

p(fx[i]): (2.8)

The latent gradient is estimated as the maximizer of (the logarithm of) Eq. 2.8 as

f 0
x = argmax

fx

(

�
kgx � Hfxk2

2w
+

P

å
i= 1

ln p(fx[i])

)

; (2.9)

leading to non-linear optimization because the prior term is not quadratic: lnp(fx[i]) =

�j fx[i]ja =b with a = 0:3 (see Eq. 2.6).

In order to solve Eq. 2.9 ef�ciently, we follow the WaveGSM approach, and we rep-

resent the heavy-tailed prior as a Gaussian scale mixture (GSM) as

p(fx[i]) =
Z ¥

0
p(fx[i]js)p(s)ds; (2.10)

where p(fx[i]js) is a zero-mean Gaussian with scale (or variance)s, weighted byp(s).

Regardings as a “missing variable,” Eq. 2.9 is turned into an expectation maximization

(EM) iteration as

f m+ 1
x = argmax

fx

(

�
kgx � Hfxk2

2w
+

P

å
i= 1

E m
i [ln p(fx[i]js)]

)

; (2.11)
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wheremis an iteration count, andE m
i [�] denotes the expectation with respect top(sjf m

x [i]),

the probability density of scales given the current (m-th) estimatef m
x [i] of the latent gra-

dient. Sincep(fx[i]js) is a Gaussian, the prior term in Eq. 2.11 now becomes

E m
i [ln p(fx[i]js)] = E m

i

�
�

(fx[i])2

2s

�
= �

(fx[i])2

2
E m

i

�
1
s

�
; (2.12)

which is quadratic with respect tofx[i] sinceE m
i [s� 1] is �xed during m-th EM iteration

(see [15] for more details):

E m
i

�
1
s

�
=

a
b jf m

x [i]j2� a : (2.13)

Now that the objective function to be maximized in Eq. 2.11 isquadratic, taking its

derivative with respect tofx and setting it to zero leads to the following system of linear

equations:

(HTH + wSm)fx = HTgx; (2.14)

whereHT is the transpose ofH, Sm is a diagonal matrix representing the prior term

whosei-th element is given by Eq. 2.13, andw serves as a weighting coef�cient for it,

which we treat as a user-speci�ed value (typically around 10� 3). The solution to Eq. 2.14

for fx becomes the next estimatef m+ 1
x , from whichSm+ 1 is computed, and this process is

iterated. Eq. 2.14 can be solved rapidly by thesecond-order stationary iterative method

[8], with the use offast Fourier transform(FFT) for matrix multiplication byH andHT .

We set the observation as an initial estimate:f 0
x = gx. Following Welk et al. [95], for

better noise suppression in the early stage of deconvolution, we �rst run a few (around 3)

EM iterations withw being twice the user-speci�ed value, and then we run anotherfew

EM iterations with the original value. They part of Eq. 2.7 is solved similarly. After

obtaining estimated latent gradientsf 0
x andf 0

y, we reconstruct the deblurred imagef 0 by

solving a Poisson equation [74] with a multigrid solver. As we use FFT, periodic boundary

conditions are assumed. Edge tapering is performed to reduce boundary effects, and the

DC component lost by the derivative �lters is restored from the input photograph. As with

WaveGSM, positivity of pixel values is not enforced so far. We clamp any negative pixel

values to a small positive value (1/255), and run additional(around 10) Richardson-Lucy

iterations [58, 79] in the image domain.

The time complexity of our method isO(PlogP) in the numberP of pixels owing

to the use of FFT convolution for matrix multiplication, which remains the same as that

of WaveGSM. However, the amount of computation is signi�cantly reduced in two re-

spects as illustrated in the �owcharts shown in Fig. 2.4. First, we have onlyO(P) deriva-

tive coef�cients to be updated, in contrast toO(PlogP) TI-DWT coef�cients. Second,

WaveGSM performsO(PlogP) TI-DWT and its inverse for each iteration, whereas our

method performs derivative and its inverse (i.e., integral) operations only at the beginning

34



(by deriving Eq. 2.7 from Eq. 2.5) and at the end (by solving a Poisson equation) of the

whole deconvolution process.
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Figure 2.4: Processing �ows of deconvolution algorithms. (a) WaveGSM [15]. (b) Pro-
posed method.

2.4 Local Blur Estimation

Similar to the existing spatially-variant PSF estimation techniques, we divide an image

into segments, and we assume the blur to be uniform within each segment. However,

rectangular segmentation as in [72, 44] can produce segments that violate this uniformity

assumption, as the blur radius can change abruptly due to depth discontinuities at object

boundaries. Therefore, we perform color image segmentation [25] so that segments con-

form to the scene content. In what follows, we present a blur radius estimation method

that is applicable to non-rectangular segments.

Our approach is to select the blur radius from the predeterminedM + 1 candidate blur

radii f r jg that gives the “best” deblurred image for each segment. Unfortunately,focus

measures[84, 40] are not suitable for this selection criterion, because digitally decon-

volved images with wrong blur radii have different image statistics from optically mis-

focused images. Instead, we measure the amplitude of oscillatory artifacts in deblurred

images due to overcompensation of blur (examples can be seenin Fig. 2.11). For simplic-

ity, we explain this phenomenon using the 1D version of Eq. 2.2:

g(x) = h(x; r) � f (x)+ n(x); (2.15)
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where the PSF is given by the following box function:

h(x; r) =
�

1=2r for jxj � r
0 otherwise

: (2.16)

In the frequency domain, Eq. 2.15 is rewritten as

ĝ(w) = sinc(rw) f̂ (w)+ n̂(w); (2.17)

where thehat notation (such as ˆg) denotes the Fourier transform of a given signal, and

w denotes frequency. The Fourier transform ofh(x; r) is sinc(rw) [20]. Neglecting the

noise, an approximate solution to Eq. 2.17 can be given by thefollowing equation, known

as pseudo-inverse �ltering:

f̂ 0(w) =
sinc(rw)

sinc2(rw)+ e
ĝ(w); (2.18)

where e is a small number (around 10� 3) to avoid zero division atw = kp=r (k =

� 1; � 2; � � � ). If ĝ(w) is non-zero at these frequencies, it is overly ampli�ed (scaled by

1=e), which results in oscillation in the deblurred image. As itis often the case that

jĝ(w)j is a decreasing function with respect tojwj, major oscillation occurs atw = � p=r,

which emerges as striped artifacts with an interval of 2r pixels.

Suppose we deblur a signal that has been blurred with radiusr by a pseudo-inverse

�lter with radius R. Then at the major oscillation frequencyw = p=R, we obtain the

following equation from Eqs. 2.17 and 2.18 (similar forw = � p=R):

f̂ 0(p=R) =
1
e

�
sinc(pr=R) f̂ (p=R)+ n̂(p=R)

�
: (2.19)

Fig. 2.10(a) shows a plot ofj f̂ 0(p=R)j as a function ofR, assuming thatj f̂ (w)j is also

a decreasing function and thatjn̂(w)j is constant (white noise) and is small compared

to j f̂ (w)j except for high frequencies. From this plot we can expect to observe large

oscillation in deblurred images forR > r. Therefore, the maximum radius with which

pseudo-inverse �ltering does not produce large oscillation is estimated to be the true blur

radius. The above discussion is also applicable to the 2D case, as the Fourier transform

of Eq. 2.1 has a similar shape to circular sinc functions [20].

For each candidate radiusr j , we apply pseudo-inverse �ltering to an input photograph

with that radius, and we measure the amplitude of oscillation by the ratio of the number

of pixels within each segment whose values are out of range[qc;min� d;qc;max+ d], where

[qc;min;qc;max] is the original range of pixel values within that segment of an input pho-

tograph for each color channelc, andd is a small number around 0.1. Thisoscillation

measurecan be easily computed for arbitrarily-shaped segments. For reliability, however,
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we exclude too small or thin segments (e.g., under 100 pixels). From a set of blur radii

f r jg, we identify the maximum radius having the oscillation measure below a certain

threshold as the true blur radius. If this measure never exceeds the threshold, which typ-

ically occurs for segments with minimal color variance, we do not make an estimate for

those segments.

A blur radius �eld rorg(x;y) is obtained by stitching the estimated blur radii. Values

in segments where no estimate was made as described above areinterpolated from sur-

rounding segments. We apply some smoothing tororg(x;y) in order to suppress occasional

spurious estimates, and also to reduce step transitions that could lead to discontinuities in

refocused images.

From a blur radius �eldrorg(x;y) and deblurred imagesf j (x;y), we can reconstruct a

latent imagel(x;y) by Eq. 2.3. As we cannot guarantee the blur estimation to be perfect,

we provide users with a simple drawing interface in which pixel intensity corresponds to

the size of a blur radius as shown in Fig. 2.5, so that users caninteractively modify the

estimated blur radius �eld. Modi�cation to the blur radius �eld is immediately re�ected

in the latent image.

Figure 2.5: Screenshot of the blur �eld editing interface. The user draws on the grayscale
image on the right which represents a blur radius �eld. In this example, the user is increas-
ing the values around the upper right corner of the image, which are immediately re�ected
in the deblurred image on the left. The blur radius to be speci�ed and the magnitude with
which the speci�ed radius in�uences the blur �eld can be adjusted by the sliders on the
left.
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2.5 Interactive Refocusing

Since defocus blur can serve to enhance artistic impressionof photographs, in this section

we aim to provide users with means to interactively control the focus settings of pho-

tographs after they are captured, based on the deblurred image and estimated blur radius

�eld. Fig. 2.6 shows our example implementation of the proposed user interface. By the

sliders on the left, users can make the depth-of-�eld of an input photograph wider or nar-

rower, and the focused depth nearer or farther. They can alsoclick on the image to bring

the speci�ed point in focus, in analogy with auto-focusing of a real camera. The three

refocus modeson the top left will be explained later.

Figure 2.6: Screenshot of the interactive refocusing interface. The focused depth is im-
mediately adjusted to the point speci�ed by a mouse click.

To determine a new blur radius �eldrnew(x;y) to be applied to the latent image in order

to create desired refocusing effects, we associate a depth mapz(x;y) of the scene with the

original blur radius �eldrorg(x;y) through the ideal thin lens model [73] (see Fig. 2.7):

z(x;y) =
F0v0

v0 � F0 � qorg(x;y) f0
; (2.20)

F0; f0, andv0 are the original camera parameters, which represent the focal length, the f-

number, and the distance between the lens and the image plane, respectively, andqorg(x;y)

is the originalsignedblur radius �eld, such thatrorg(x;y) = jqorg(x;y)j. The sign of
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qorg(x;y) is related to the original focused depthz0 = F0v0=(v0 � F0) as: q(x;y) < 0 for

z(x;y) < z0, andq(x;y) > 0 for z(x;y) > z0.

v0z(x, y)

qorg(x, y)

(x, y)

image plane

lens
scene

Figure 2.7: Thin lens defocus model.

As we can only estimaterorg(x;y), we let users draw binary masks to specify the

sign as shown in Fig. 2.8. Rough masks seem suf�cient. If the scene depth is greater or

smaller than the focused depth everywhere, users have only to declare so. For other cases,

our drawing interface shown in Fig. 2.9 provides users with graph-cut image segmentation

capability [17], so that the user has only to draw strokes sparsely on the image.

Figure 2.8: Binary masks specifying the sign of blur radius �eld qorg(x;y). Top row: Input
photographs. Bottom row: Corresponding masks. White indicates negative (nearer than
the original focused depth), and black positive (farther).

Suppose that we change the camera parameters toF; f , andv, then a newsignedblur

radius �eld qnew(x;y) is derived by using Eq. 2.20 as

F0v0

v0 � F0 � qorg(x;y) f0
=

Fv
v� F � qnew(x;y) f

; (2.21)

where we eliminatedz(x;y) to directly associateqnew(x;y) with qorg(x;y). Solving Eq. 2.21

for qnew(x;y) leads to

qnew(x;y) =
f0vF
f v0F0

qorg(x;y)+
v0F0(v� F) � vF(v0 � F0)

f v0F0
; (2.22)
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(a) (b)

Figure 2.9: Screenshot of the signed mask speci�cation interface. Only the portion of
the panel enclosed by the red rectangle is used for this purpose. (a) The user drew some
strokes to roughly specify the regions nearer than the focused depth (blue) and those
farther (red). (b) The system automatically �ll in the otherregions using graph-cut image
segmentation [17].

from which a new (unsigned) blur radius �eld to be added to thelatent image is obtained

asrnew(x;y) = jqnew(x;y)j.

The original camera parametersF0; f0; andv0 may be obtained from EXIF data [38]

embedded in JPEG �les created by most of the recent digital cameras. However, some pa-

rameters are often unavailable, and EXIF data itself may notbe available from converted

or edited image �les. In addition, it is not necessarily intuitive to manipulate the actual

values when handling an image, not a camera. Therefore, we present three simpli�ed

versions of Eq. 2.22, in which relative camera parameters are used.

Constant Focal Lengthassumes the focal length to be constant:F = F0. Then Eq. 2.22

simpli�es to

qnew(x;y) =
1
fr

(vr qorg(x;y)+ A0(vr � 1)) ; (2.23)

where fr � f =f0 is a relative f-number,vr � v=v0 is a relative image plane distance, and

A0 � F0=f0 is the original aperture. This equation has a good analogy tochanging focus

using a real camera.

Simple OffsetassumesvF = v0F0. Eq. 2.22 becomes

qnew(x;y) =
1
fr

(qorg(x;y)+ qo f s); (2.24)

whereqo f s � ((v� F) � (v0 � F0))=f0 is a blur radius offset. Though it is not realistic to

change the parameters in this manner when handling a real camera, this equation provides
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users with a simple and intuitive way of manipulating blur.

Fixed Max Blur assumesv� F = v0 � F0. Then,

qnew(x;y) =
1
fr

(ur qorg(x;y)+ qmax(1� ur )) ; (2.25)

whereur � vF=v0F0, andqmax � (v0 � F0)=f0 is the maximum blur radius, corresponding

to z = ¥ in Eq. 2.20. This equation is useful for refocusing among near objects while

keeping far objects from becoming too sharp or blurry.

Using any one of the above threerefocusing modes, users can interactively do the

following three types of refocusing operations.

Changing depth-of-�eld. This operation can be done by changing relative f-numberfr .

Increasingfr extends the depth-of-�eld, whereas decreasingfr makes it shallower.

Changing focus.This can be done by changingvr , qo f s, orur depending on the refocusing

mode in use. The other parametersA0 andqmax can also be adjusted, which we typically

set to maxf rorg(x;y)g for good refocusing effects.

Auto-focusing. Users can simply specify a point in a photograph which they want to be in

focus. An appropriate value is automatically computed for the parameter of the selected

refocusing mode so thatqnew(x;y) = 0 at the speci�ed point(xs;ys) as:

vr = A0=(A0 + qorg(xs;ys)) ;

qo f s = � qorg(xs;ys); (2.26)

ur = qmax=(qmax� qorg(xs;ys)) :

In summary, from the user's point of view, the user will take the following steps to

perform refocusing.

1. The user inputs a photograph. The system automatically produces a blur radius

�eld and a set of deblurred images. This takes about 20 minutes for an image size

of 512� 512.

2. The user edits the blur radius �eld if it has noticeable errors, using the interface

shown in Fig. 2.5. This typically takes a few to ten minutes.

3. The user draws a signed mask via the interface shown in Fig.2.9. This takes less

than a minute.

4. The user can now interactively refocus the photograph using the interface shown in

Fig. 2.6.
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2.6 Results

All of the input photographs shown in this paper were taken with a Canon EOS-1D Mark

II camera and a Canon EF 28-70mm wide aperture (F2.8) lens. Theimage format was

JPEG with sRGB color space (gamma-corrected withg = 2:2). We inverted this gamma-

correction during deconvolution and blur estimation.

2.6.1 Estimation and Removal of Uniform Blur

We �rst demonstrate the performance of our blur estimation and deconvolution methods

for uniform defocus blur. For the images shown in Figs. 2.12(a)(f), in which the scenes

have approximately uniform depths, we plotted their oscillation measure in Fig. 2.10(b),

treating the whole image as one segment. The arrows show the estimated blur radii with a

threshold of 0.01, which are 11 pixels for Fig. 2.12(a) and 7 pixels for Fig. 2.12(f). These

results conform to visual inspection as shown in Fig. 2.11. Fig. 2.11 also shows that the

number of out-of-range pixels (see Sec. 2.4) begins to increase as the pseudo-inverse �lter

radius exceeds the true blur radius.
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Figure 2.10: (a) Plot of the amplitude of oscillationj f̂ 0(p=R)j as a function of pseudo-
inverse �lter radiusR. (b) Plots of the oscillation measure for Fig. 2.12(a) (red)and
Fig. 2.12(f) (green), treating the whole image as one segment. The arrows show the
estimated blur radii with a threshold of 0.01.

Based on the estimated blur radii, we applied our deconvolution method, along with

other methods including Richardson-Lucy [58, 79], WaveGSM with ordinary DWT, and

that with TI-DWT. Fig. 2.12 shows the results. Since Richardson-Lucy does not exploit

explicit image priors, it produced less sharp images with noise (between the alphabets

in Fig. 2.12(b)) and halo artifacts (around the hair and facein Fig. 2.12(g)). WaveGSM

with DWT resulted in blocky images as expected (see Sec. 2.3).Our method produced
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9 pixels 10 pixels 11 pixels 12 pixels 13 pixels

5 pixels 6 pixels 7 pixels 8 pixels 9 pixels

Figure 2.11: Results of pseudo-inverse �ltering for Figs. 2.12(a)(f) with different blur
radii. The out-of-range pixels are shown in red in the right half of each image.

better (for the alphabet image) or comparable (for the face image) results as compared to

WaveGSM with TI-DWT, running about 10 times faster.

Since our deconvolution method does not assume a speci�c form of a PSF, we also ap-

plied it to the removal of camera shake from a photograph. Ferguset al. used Richardson-

Lucy deconvolution to remove the camera shake PSF estimatedby their method [28], and

we replaced Richardson-Lucy by our deconvolution algorithm. Our method appears to

produce less noisy results as shown in Fig. 2.13. In this example, we estimated the PSF

by extracting the trajectory of a bright small object in the input photograph (not shown in

the �gure).

2.6.2 Estimation of Spatially-Variant Blur

Next, we show several local blur estimation results in Fig. 2.14. The input photographs are

shown in Figs. 2.1(a), 2.16(a), 2.17(a), 2.18(a), and 2.19(a). We performed relatively �ne

segmentation to ensure estimation locality. The estimatedradii approximately correspond

to the scene depths. For comparison, we applied the spatially-variant blur estimation

method byÖzkanet al. [72]. This method is based on local Fourier transform, hence it

employs rectangular segmentation. The results are shown inFigs. 2.15(a)(d). It failed in

regions around object boundaries and also failed to identify small blur radii, leading to

noisy latent images as shown in Figs. 2.15(b)(e). The corresponding latent images based

on our blur estimation are shown in Figs. 2.15(c)(f).
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2.6.3 User Intervention for Blur Estimation

Next, we show an example of user intervention for the estimated blur radius �eld men-

tioned in Sec. 2.4. Fig. 2.16(b) shows an image representingthe estimated blur radius

�eld after smoothing. Users can draw on this image to locallyincrease/decrease the val-

ues as shown in Fig. 2.16(c), for better visibility (Fig. 2.16(g) top) and ringing reduction

(Fig. 2.16(g) middle and bottom). This can be done in an aesthetic sense to obtain a vi-

sually pleasing latent image, and the edited blur radius �eld needs not correspond to the

scene depth. This user editing operation took from a few to ten minutes for our examples

shown below.

2.6.4 Refocusing Results

Finally, we show several refocusing examples in Figs. 2.17,2.18, and 2.19, in which

we changed the depth-of-�eld and moved the focus nearer to orfarther from the camera.

Out-of-focus objects became sharp after they were brought into focus, as can be seen in

the �oret symbol at the bottom of the red crayon in Fig. 2.17(c) and the furry texture of

the nearer marmot in Fig. 2.19 right.

When synthesizing Fig. 2.17(c) from Fig. 2.17(a), we used therefocusing equation

Eq. 2.23, which simulates focus changes of a real camera (seeSec. 2.5). We obtained

the synthesis result that well approximates a real photograph shown in Fig. 2.17(d). For

Fig. 2.1, we used Eq. 2.24 for simple manipulation of blur radii. For Figs. 2.18 and 2.19,

we used Eq. 2.25 to keep distant objects unaffected as they are too blurry to be fully

restored.

For an image size of 512� 512, our deconvolution described in Sec 2.3 took about 1

minute for each blur radiusr j , and the blur estimation 15 seconds on an Intel Pentium4

3.2GHz CPU. Although the theoretical time complexity isO(PlogP), it seemsO(P) com-

putation is dominant, and the deconvolution took 16 minutesand the blur estimation 4

minutes for a 4Mpixel image. Refocusing can be performed in real-time.

2.7 Summary

This chapter has presented a method for removing defocus blur in images in the context

of digital refocusing, in which the goal is not only to perform deblurring but also to

create images with different focus settings. This chapter has focused exclusively on an
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image processing approach without camera optics modi�cations, in order to set a baseline

performance achievable without modifying the image capture process.

For image deconvolution, we have proposed a method for speeding up deconvolution

computation while taking into account heavy-tailed priorsfor image derivative distribu-

tions. The proposed method achieves similar image quality with 1/10 computation time

by taking derivatives beforehand and by working in the gradient domain. The proposed

method can also be used for removing blur other than defocus blur.

For blur estimation, we have proposed a method which can handle abrupt blur changes

at depth discontinuities due to object boundaries. Our method uses color image segmen-

tation rather than the traditional rectangular segmentation to better divide the image into

uniformly blurred regions, and the largest blur radius thatdoes not cause ringing after

deconvolution is selected for each region. Although the proposed method was shown to

outperform the previous method, the estimated blur radius �elds still needed to be re-

touched to obtain better deblurring and refocusing results.

For creating refocusing effects, we have presented severalmeans of determining the

amount of blur to be added to a restored sharp image based on the estimated blur, with

which users can interactively control the focus settings ofphotographs after they are cap-

tured. While we have reduced the burden for the user by providing intuitive refocusing

parameters and “auto-focusing” capability, it is still necessary for the user to draw a signed

mask before performing refocusing operations.

In summary, we have found that we can achieve desired refocusing effects by ex-

clusively relying on an image processing approach, but we had to introduce some user

intervention, indicating that image processing alone is still not suf�cient for making de-

blurring and refocusing processes completely automatic.
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(a) Input photograph (b) Richardson-Lucy (c) WaveGSM (DWT)
240� 240 pixels, grayscale 20 sec. 4 sec.

(d) WaveGSM (TI-DWT) (e) Our method
48 sec. 5 sec.

(f) Input photograph (g) Richardson-Lucy (h) WaveGSM (DWT)
240� 240 pixels, color 35 sec. 7 sec.

(i) WaveGSM (TI-DWT) (j) Our method
103 sec. 12 sec.

Figure 2.12: Comparison of four deconvolution methods and their computation times.
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(a) (b) (c)

Figure 2.13: (a) Photograph spoiled by camera shake. The estimated PSF is shown in the
top left corner. (b) Result of Richardson-Lucy deconvolution. (c) Result of our deconvo-
lution method.

(a) (b)

(c) (d) (e)

Figure 2.14: Results of our local blur estimation shown in gray-level. The maximum
intensity (white) corresponds to a blur radius of 10 pixels.The blue regions indicate that
no estimate was made there. The black lines show the segmentation boundaries.
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(a) (b) (c)

(d) (e) (f)

Figure 2.15: Comparison with the existing blur estimation method [72]. (a) Estimation
result for the teapot image shown in Fig. 2.16(a). (b) Latentimage based on (a). (c) Latent
image based on our estimate shown in Fig. 2.14(b). (d) Estimation result for the crayon
image shown in Fig. 2.17(a). (e) Latent image based on (d). (f) Latent image based on
our estimate shown in Fig. 2.14(c).
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(a) (b) (c)

(d) (e) (f) (g) (h)

Figure 2.16: Example of user intervention for a blur radius �eld. (a) Input photograph.
(b) Blur radius �eld after �lling in the unde�ned (blue) regions in Fig. 2.14(b) and after
smoothing. (c) Edited blur radius �eld. The red circles indicate the edited regions. (d)
Latent image based on (b). This is the same as Fig 2.15(c). (e)Latent image based on (c).
(f) Magni�ed crops from the red rectangles in (d) (before editing). (g) Magni�ed crops
from the corresponding red rectangles in (e) (after editing). (h) Refocused image, created
by using the image (e) as a latent image.

(a) (b) (c) (d)

Figure 2.17: (a) Input photograph, focused on the brown crayon. (b) Created image with
a shallow depth-of-�eld. (c) Created image, refocused on theorange crayon. (d) Ground
truth photograph, focused on the orange crayon.
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(a) (b)

Figure 2.18: (a) Input photograph, focused on the �ower in the center. (b) Created image,
refocused on the �ower in the top right corner.

(a) (b)

Figure 2.19: (a) Input photograph, focused on the farther marmot. (b) Created image,
refocused on the nearer marmot.
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Chapter 3

Defocus Blur Removal using a
Color-Filtered Aperture

The previous chapter has shown that automatic defocus deblurring that is solely based

on image processing is still not feasible, and user intervention for blur estimation was

necessary. This chapter describes a method for defocus deblurring consisting of a camera

lens modi�cation with color �lters and associated image processing techniques in order

to achieve automatic defocus blur estimation.

3.1 Introduction

Wide aperture lenses are ef�cient in increasing the amount of incoming light so as to

improve the signal-to-noise ratio of captured images. However, they make the depth-of-

�eld shallow, and only objects located at a limited range of depth can be focused sharply.

In this chapter we intend to obtain an all-in-focus image by removing defocus blur

whose size is dependent on the scene depth. While coded aperture techniques [48, 90]

facilitate both blur estimation and deconvolution, the blur estimation has to rely solely on

defocus cues, requiring some manual intervention and also resulting in ambiguity between

depths farther and nearer than the focused depth (this ambiguity was also present in Chap-

ter 2, and we let the user draw a mask as shown in Fig. 2.8). Instead, we propose to use

a color-�ltered aperture mask to exploit parallax cues which escape the above-mentioned

depth ambiguity.

By dividing the aperture into three regions through which only light in one of the RGB

color bands can pass, we can acquire three shifted views of a scene in the RGB planes

of a captured image in a single exposure. This allows us to take stereo correspondence
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between the RGB planes to estimate the scene depth, which is directly related to the

defocus blur size. A challenge we must address in using a color-�ltered aperture is that,

as a scene is captured with three different bands of wavelength, corresponding points

in the RGB planes generally have different signal intensity levels. We develop a color

alignment measure to �nd correspondence between such RGB signals. Moreover, we

propose a method for extracting the matte of an in-focus foreground object, so that the

extracted foreground will be free from possible degradation due to deconvolution. Color

misalignment cues introduced by the color �lters serve to constrain the space of possible

mattes that would otherwise contain erroneous mattes when foreground and background

colors are similar.

The proposed imaging system is portable, and it only requires off-the-shelf color �l-

ters for cameras as additional optical elements. The downsides of using a color-�ltered

aperture are that objects having only a single pure R, G, or B color cannot be handled,

and that the visual quality of images is spoiled by color misalignment. We will show,

however, that our method can handle many real-world objects, and we also present how

to reconstruct color-aligned images using extracted depthand matte.

3.2 Color-Filtered Aperture

Fig. 3.1(a) shows our prototype camera lens with color �lters in the aperture. We arranged

the RGB regions so that their displacement with respect to theoptical center of the lens

aligns with the X and Y axes of the image sensor, as indicated by the arrows in Fig. 3.1(b).

By this arrangement, a scene point farther than the focused depth is observed with a

rightward shift in the R plane, an upward shift in the G plane,and a leftward shift in

the B plane. A scene point nearer than the focused depth will be shifted in the opposite

directions. Note that these color shifts come from geometric optics, not from chromatic

aberration. Fig. 3.2 illustrates this phenomenon in 2D where the aperture is split into two

(R and G) regions.

(a) (b)

Figure 3.1: (a) Camera lens with color �lters placed in the aperture. (b) Filter arrange-
ment.
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image sensor
lens

focused
object

background color filters

image sensor
lens

background color filters

(a) (b)

Figure 3.2: 2D illustration of the interactions between light rays from a scene point and a
color-�ltered aperture. (a) For a scene point at the focuseddepth, light rays in the R band
and those in the G band converge to the same point on the image sensor. (b) For a scene
point off the focused depth, light rays in the two bands reachdifferent positions on the
image sensor, resulting in a color shift.

Fig. 3.3 shows an example photograph and its separated RGB planes. Due to the

higher transmittance of the R �lter, captured images are relatively reddish.

Figure 3.3: Example photograph taken with our lens, and its separated RGB planes. The
white lines are superimposed to highlight the background color shifts. See Fig. 3.16(a)
for a closeup view.
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3.3 Defocus Blur Estimation

The RGB planesIr ; Ig, andIb of a captured imageI correspond to three views of a scene. If

we take a virtual center view (cyclopean view) as a reference coordinate system, the R, G,

and B planes are shifted to rightward, upward, and leftward according to the arrangement

of the aperture color �lters. Meanwhile, the defocus PSF foreach color plane is an oblique

square corresponding to the �lter shape shown in Fig. 3.1. Since the size of the PSF mea-

sured by the half diagonal of the square (the length of the arrows in Fig. 3.1(b)) is equal to

the disparity between the RGB planes, we can estimate blur sizes as a stereo correspon-

dence problem between the RGB planes. Therefore, lettingd be a hypothesized disparity

at (x;y), we need to measure the quality of a match betweenIr (x+ d;y); Ig(x;y� d), and

Ib(x� d;y).

Clearly, we cannot expect these three values to have similar intensities because they

are recorded with different bands of wavelength. To cope with this issue, inspired by

Levin et al.'s matting approach [50], we exploit the tendency of colorsin natural images

to form elongated clusters in the RGB space (color lines model) [71]. We assume that

pixel colors within a local windoww(x;y) around(x;y) belong to one cluster, and we use

the magnitude of the cluster's elongation as a correspondence measure. More speci�cally,

we consider a setSI (x;y;d) of pixel colors with hypothesized disparityd asSI (x;y;d) =

f (Ir (s+ d;t); Ig(s;t � d); Ib(s� d;t)) j (s;t) 2 w(x;y)g, and search ford that minimizes the

following color alignment measure:

L(x;y;d) =
l 0l 1l 2

s 2
r s 2

gs 2
b

; (3.1)

where l 0; l 1, and l 2 (l 0 � l 1 � l 2 � 0) are the eigenvalues of the covariance matrix

S of the color distributionSI (x;y;d), ands 2
r ;s 2

g , ands 2
b are the diagonal elements of

S. Note that the dependence on(x;y;d) of the right-hand side of Eq. 3.1 is omitted

for brevity. L(x;y;d) is the product of the variances of the color distribution along the

principal axes, normalized by the product of the variances along the RGB axes. It gets

small when the cluster is elongated (i.e.,l 0 � l 1; l 2) in an oblique direction with respect

to the RGB axes, meaning that the RGB components are correlated. In fact, this measure

can be interpreted as an extension ofnormalized cross-correlation(NCC) [53] so that it

is applicable to three images simultaneously (see AppendixA). L(x;y;d) is in the range

[0, 1], with the upper bound given by Hadamard's inequality [33], sincel 0l 1l 2 = det(S).

To illustrate the effect of this measure, we use a sample image shown in Fig. 3.4(a),

taken with a conventional camera lens. Since its RGB planes are aligned, the true dispar-

ity is d = 0 everywhere, and colors within the local window indicated by the red rectangle
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in Fig. 3.4(a) actually form an elongated cluster, as shown in Fig. 3.4(c). If we deliber-

ately misalign the RGB planes byd = 1;3, and 5 pixels, the distribution becomes more

isotropic, and the color alignment measure becomes larger,as shown in Figs. 3.4(d-f).

Now that we can evaluate the quality of a match between the RGB planes, we can

�nd the disparityd that minimizesL(x;y;d) at each pixel(x;y), from a predetermined set

of disparity values (-5 to 10 in our implementation). As local estimates alone are prone

to error, we use the standard energy minimization frameworkusing graph-cuts [16] to

impose spatial smoothness constraints.
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(d) d = 1;L = 0:11 (e)d = 3;L = 0:39 (f) d = 5;L = 0:54

Figure 3.4: (a) Sample photograph taken with a conventionalcamera lens. (b) Closeup
of the local window indicated by the red rectangle in (a). (c-f) Plots of the pixel colors
within the local window in the RGB space. The valuesd andL shown below each plot
are the simulated disparity and the value of Eq. 3.1.
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3.4 Matting

This section describes a method for extracting the matte of an in-focus foreground object,

so that the extracted foreground will be free from possible degradation due to deconvolu-

tion. Matting is a problem of solving for foreground opacitya (x;y) at each pixel(x;y) in

the followingmatting equation.

I (x;y) = a (x;y)F(x;y)+ ( 1� a (x;y))B(x;y); (3.2)

which models an observed imageI as a convex combination of a foreground colorF and

a background colorB. By capturing an image so that a foreground object is in focus,we

can assume thata (x;y) is aligned between the RGB planes. More precisely, regions with

fractional alpha values (i.e., the silhouette of a foreground object) should be within the

depth-of-�eld of the lens. Slight violation of this assumption however does not lead to

severe degradation of extracted mattes, as will be shown in Sec. 3.6.

Solving Eq. 3.2 based only on the observationI is an under-constrained problem,

since we have only three measurements (Ir , Ig, andIb) for seven unknowns (a , Fr , Fg,

Fb, Br , Bg, andBb) at each pixel. Therefore, to incorporate additional constraints, we use

a trimap which we automatically generate from the disparitymap, and we also leverage

the difference in misalignment between foreground and background colors to iteratively

optimize the matte.

3.4.1 Matte Optimization Flow

Algorithm 3.1 shows our iterative matte optimization procedure. For initialization, we

�rst roughly divide the image into foreground and background regions by thresholding

the disparity map, and we dilate their border to construct a trimap having a conservatively

wide “unknown” region (50-70 pixels in our implementation), as shown in Fig. 3.5(a).

We then initialize the alpha values using a trimap-based matting method, for which we

used Levinet al.'s Closed-Form Matting[50]. While this often gives already good results,

errors can remain where foreground and background colors are similar (see Fig. 3.12(a) as

an example). We detect and correct these errors in the subsequent iterative optimization

using color misalignment cues. To determine how the foreground and background colors

are misaligned in the “unknown” region, we make a two-layer assumption for the scene

around the foreground silhouette. And we propagate the disparity values from the “strictly

foreground” region to obtain foreground disparity mapdF (x;y) as shown in Fig. 3.5(b).

Similarly we obtain background disparity mapdB(x;y) from the “strictly background”

region (Fig. 3.5(c)).
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In the iterative optimization, lettingn denote an iteration count, we �rst estimate fore-

ground and background colorsFn andBn based on the current mattean, by minimizing a

quadratic cost functionå (x;y) jj I (x;y) � an(x;y)Fn(x;y) � (1� an(x;y))Bn(x;y)jj2 derived

from Eq. 3.2, plus smoothness constraints on foreground andbackground colors, similar

to [50]. These estimated colorsFn andBn have errors in the same regions asan has errors.

We detect these erroneous regions by measuring how consistent the estimated colors are

with the foreground and background disparity mapsdF (x;y) anddB(x;y), as we will de-

scribe in Sec. 3.4.2. We then correct the alpha values aroundthe detected regions to obtain

the mattean+ 1 for the next iteration (Sec. 3.4.3). We iterate this processuntil change in

the matte is suf�ciently small. Fig. 3.6 illustrates each step of the iterative optimization.

Algorithm 3.1: Matte optimization algorithm.

Initialization

1. Construct a trimap from the disparity map.

2. Find an initial mattea0 based on the trimap.

3. Propagate the disparity values to obtain foreground
and background disparity mapsdF anddB.

Iterative optimization

1. Estimate foreground colorFn and background colorBn
based on the currentan.

2. Compute consistency measuresCFn andCBn (Sec. 3.4.2).

3. Updatean+ 1 based onCFn andCBn (Sec. 3.4.3).

4. Repeat until convergence.

3.4.2 Measuring Consistency with Disparity Maps

Similar to the color alignment measure in Eq. 3.1, we consider a setSF (x;y;d) of pixel col-

ors within a local windoww(x;y), in this case for the foreground colorF(x;y), not for the

input imageI(x;y) asSF (x;y;d) = f (Fr (s+ d;t);Fg(s;t � d);Fb(s� d;t)) j (s;t) 2 w(x;y)g

with hypothesized disparityd, and we de�ne a foregroundcolor lines model erroras

follows.

eF (x;y;d) =
1
N

N

å
i= 1

l2i ; (3.3)
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(a) (b) (c)

Figure 3.5: (a) Trimap for the toy dog image in Fig. 3.3, constructed from the disparity
map shown in Fig. 3.10(a) top. White: strictly foreground. Black: strictly background.
Gray: unknown. (b) Propagated foreground disparity mapdF (x;y). Blue indicates an
unde�ned region. (c) Propagated background disparity mapdB(x;y).

whereN = jSF (x;y;d)j, andl i is the distance of thei-th color inSF (x;y;d) from the line

�tted to the elongated color cluster (i.e., the �rst principal axis). Intuitively, we examine

whether the colors in a local window �t the color lines model.Therefore,eF (x;y;d)

becomes large whend is a wrong disparity. We de�ne the background color lines model

erroreB(x;y;d) similarly. See Appendix B for more details.

As we have two possible disparitiesdF (x;y) anddB(x;y) at each pixel(x;y) in the

“unknown” region, we de�ne foreground and backgroundcolor consistency measuresby

incorporating two values of color lines model errors at these two disparities:

CF (x;y) = exp
�

(eF (x;y;dF ) � eF (x;y;dB))=ks
	

;

CB(x;y) = exp
�

(eB(x;y;dB) � eB(x;y;dF ))=ks
	

;
(3.4)

whereks is a scale parameter. If the estimated foreground color around(x;y) erroneously

contains the (true) background color,CF (x;y) will be large around that region because

eF (x;y;dF ) will be large andeF (x;y;dB) will be small. The effect of the background

counterpartCB(x;y) can be similarly explained.

3.4.3 Solving for the Matte

Following Wang and Cohen'sRobust Mattingapproach [93], we solve fora (x;y) as a

soft graph-labelingproblem, where each pixel (regarded as a node in a graph) hasdata

weights WF (x;y) andWB(x;y), and each pair of neighboring pixels has anedge weight

We(x0;y0;x1;y1). The data weightWF (x;y) is responsible for pullinga (x;y) toward 1,

whereasWB(x;y) pulls it toward 0. The edge weights impose spatial smoothness con-

straints on alpha values by theMatting Laplacian[50]. This formulation is bene�cial in

that it can be solved as a sparse linear system [34], not graph-cuts, and that it guarantees

a (x;y) to be in the range [0, 1] without additional hard constraints.
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While Wang and Cohen [93] used color samples gathered from the “strictly fore-

ground” and “strictly background” regions to set the data weights, we instead iteratively

update the data weights according to the consistency measuresCFn(x;y) andCBn(x;y)

computed for the current estimate of the foreground and background colorsFn andBn, as

follows.

WFn(x;y) = ka an(x;y) + kc(CBn(x;y) � CFn(x;y)) ;

WBn(x;y) = ka (1� an(x;y))+ kc(CFn(x;y) � CBn(x;y)) ;
(3.5)

whereka andkc are constants. We clampWFn(x;y) andWBn(x;y) at 0 to keep them non-

negative. When the foreground consistency measureCFn(x;y) is smaller (i.e., more con-

sistent) than the background counterpartCBn(x;y), the foreground data weightWFn(x;y)

is increased while the background data weightWBn(x;y) is decreased, so thata (x;y) is

pulled toward 1 from the current valuean(x;y). Conversely,a (x;y) will be pulled toward

0 if CFn(x;y) > CBn(x;y).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.6: Synthetic toy example demonstrating how our matte optimization works. (a)
Ground truth foreground color. (b) Ground truth backgroundcolor. (c) Ground truth
matte. (d) Composite image from (a-c) with the background color misaligned by 5 pixels.
This image is input to our matting algorithm. (e) Trimap. In this example we manually
drew it in order to leave a wide “unknown” region. (f) Initialized mattea0. The center
image region has large errors because the foreground and background colors are similar.
These errors will be corrected in the subsequent steps usingcolor misalignment cues from
the `x' shaped textures. (g) Estimated foreground colorF0 based ona0 in (f). Blue in-
dicates an unde�ned region. (h) Estimated background colorB0 based ona0 in (f). (i)
Foreground color consistencyCF0 computed forF0 in (g). The disparity of (g) around
the top center region is 5, which is inconsistent with the true foreground disparity of 0.
Therefore,CF0 became large around there. (j) Background color consistencyCB0 com-
puted forB0 in (h). The disparity of (h) around the bottom center region is 0, which is
inconsistent with the true background disparity of 5. Therefore,CB0 became large around
there. (k) Updated matte. The alpha values were pulled toward 0 whereCF0 in (i) is large,
and toward 1 whereCB0 in (j) is large. (l) Final matte after convergence, which is close to
the ground truth matte (c).
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3.5 Camera Hardware Implementation

For a prototype camera lens, we cut out a disc with a triple-square-shaped hole from a

piece of black cardboard, glued color �lters (Fuji�lter SC-58, BPB-53, and BPB-45) to

it, and attached it immediately in front of the aperture diaphragm of a Canon EF 50mm

f/1.8 II lens (see Fig. 3.7). This fabrication was done in a few hours with a box cutter and

a micro screwdriver. We used an unmodi�ed Canon EOS40D DSLR asa camera body.

Fig. 3.8 shows the point-spread function (PSF) of the prototype lens, which is an image

of a defocused point light source. The square shape of each �lter is observed mostly as-

is, with only slightly rounded corners at the horizontal extremities due to occlusion by

the lens housing. Fig. 3.8 also shows that the three color bands are well separated. We

achieved this by applying a linear transform to RGB sensor response so as to minimize

crosstalk between the aperture �lters and the image sensor (see Appendix C for details).

(a) (b) (c) (d)

Figure 3.7: Prototyping process of a color-�ltered aperture lens. (a) Original Canon EF
50mm f/1.8 II lens. (b) The aperture part of the disassembledlens. (c) Color �lters are
attached to the aperture. (d) The lens after reassembly.

Color Red Green Blue

Figure 3.8: Point-spread function of our lens and its RGB components. The positions
of the R and B regions are opposite to those in Figs. 3.1 and 3.7(d), as the viewpoint is
behind the lens in this �gure.

To align the RGB regions with the image sensor axes, manual adjustment was suf-

�cient. Once this is done, pixel disparities will always align with the X and Y axes of

captured images, requiring no further calibration and recti�cation at capture time or dur-

ing post-processing.
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3.6 Results

For all of the results shown below, we set the local window size to 15� 15 pixels,ks = 0:1,

ka = 0:01, andkc = 0:02. The matte optimization converged in about 20 iterations. The

computation time for a 720� 480 image was 10 sec. for blur estimation, and 2 min. for

matting on an Intel Pentium 4 3.2GHz with 2GB RAM. We usedsummed-area tables[26]

to rapidly compute covariance matrices in local windows.

3.6.1 Blur Estimation Results

We �rst demonstrate the performance of our RGB correspondence measure used for dis-

parity/blur estimation. We compare our disparity estimation results with those of the pre-

vious methods [6, 21] in Figs. 3.9(a-c). In order to reveal raw performance, we show local

window estimates without graph-cut optimization. As Amariand Adelson's method [6]

relies on high-pass �ltering, it mostly failed to detect disparities of the defocused scene

backgrounds (Fig. 3.9(b)). Changet al.'s method [21] performed better, but it handled

color edges and gradations poorly, presumably because these may not be accounted for

by a single intensity normalization factor within a local window (Fig. 3.9(c)). Our method

produced better results than the previous methods (Fig. 3.9(a)).

(a) (b) (c)

Figure 3.9: Comparison of correspondence measures between the RGB planes (local es-
timate). Larger intensities indicate larger disparities.Top row: results for the toy dog
image in Fig. 3.3. Bottom row: results for the woman image in Fig. 3.17. (a) Our method.
(b) Amari and Adelson [6]. (c) Changet al. [21].

We also compare our results with a mutual information-basedmethod by Kimet al.

[41], which can handle broad types of intensity relationships between images. Since their

method is coupled with iterative graph-cut optimization, our results after (single) graph-
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cut optimization are also shown in Fig. 3.10(a). Because their correspondence measure

is de�ned for two images, we take the average of the values forthe three pairs of RGB

planes (RG, GB, and BR). Their method performed well in view of thefact that it does

not assumea priori knowledge of the intensity relationships. However, some portions of

the foreground objects were not detected (Fig. 3.10(b)).

(a) (b)

Figure 3.10: Comparison of correspondence measures betweenthe RGB planes (global
estimate). Larger intensities indicate larger disparities. Top row: results for the toy dog
image in Fig. 3.3. Bottom row: results for the woman image in Fig. 3.17. (a) Our method
(after graph-cut optimization). (b) Kimet al. [41].

3.6.2 Matting Results

Next we show our matting results. Fig. 3.11(a) shows the extracted matte for the toy dog

image in Fig. 3.3. The hairy silhouette was extracted successfully. We can use this matte

to re�ne the boundary of the foreground and background regions in the disparity map

as shown in Fig. 3.11(b), by compositing the foreground and background disparity maps

shown in Figs. 3.5(b, c). In Fig. 3.12, we applied existing natural image matting methods,

Closed-Form Matting [50] and Robust Matting [93], with the trimap given by our method.

These results are not for comparison because the previous methods are designed for color-

aligned images, but the matte errors seen in Fig. 3.12 are indicative of the importance of

our color consistency measure in suppressing them.

For proper comparison, we used a ground truth matte shown in Fig. 3.13(a) obtained

by capturing an object in front of a simple background and by using Bayesian Matting

[23], followed by manual touch-up where needed. We created asynthetic “natural” image

as shown in Fig. 3.13(b) by compositing the object over a new background image. We

also created its color-misaligned version as shown in Fig. 3.13(c) by shifting the back-
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(a) (b)

Figure 3.11: (a) Extracted matte for the toy dog image in Fig.3.3. (b) Re�ned disparity
map. Compare this with Fig. 3.10(a) top.

(a) (b)

Figure 3.12: Results of existing natural image matting methods. (a) Closed-Form Matting
[50]. (b) Robust Matting [93].

ground color by 3 pixels before composition. We applied the previous methods to the

color-aligned synthetic image, and our method to the color-misaligned one. Though not

perfect, our method produced a better matte as shown in Figs.3.13(d-f). For quantitative

evaluation, we conducted the same experiment for �ve more examples shown in Fig. 3.14,

and we computed the mean squared errors (MSE) against the ground truth mattes, which

we plotted in Fig. 3.15. Our method reduced MSE values by 33-86% compared to the

other two methods.

3.6.3 Defocus Deblurring Results

We show defocus blur removal results based on the estimated blur and matte. First, we

restore a color-aligned image as shown in Fig. 3.16(b), by re-compositing the foreground

and background colors after canceling their color misalignment based on the foreground

and background disparity maps. Speci�cally, if the foreground disparity at(x;y) is d, the

aligned foreground color at that point is restored as:(Fr (x+ d;y);Fg(x;y� d);Fb(x� d;y)) .

We then restore an all-in-focus background color by stitching deconvolved images based

on the estimated blur size as illustrated in Fig. 2.2, and compose it with the extracted

foreground as shown in Fig. 3.16(c). In addition, by reblurring the deblurred image dif-

ferently as was done in Chapter 2, we can synthetically refocus the image as shown in

64



(a) (b) (c)

(d) (e) (f)

Figure 3.13: Comparison using a ground truth matte. (a) Ground truth matte. (b) Synthetic
natural image. (c) Color-misaligned version of (b). (d) Closed-Form Matting (applied to
(b)). (e) Robust Matting (applied to (b)). (f) Our method (applied to (c)).

Fig. 3.16(d). In the presence of hairy foreground objects, alpha mattes are indispensable

for the above operations to give plausible results. Fig. 3.17 shows another deblurring

result for an outdoor photograph.

3.6.4 Additional Results

Fig. 3.18 shows additional color misalignment cancellation results.

Fig. 3.19 shows an example where a portion of the foreground object (the hip of the

sheep) is slightly out of the depth-of-�eld of the lens, violating the assumption thata (x;y)

is aligned between the RGB planes in Eq. 3.2. However, degradation of the extracted

matte around the region was small, as shown in Fig. 3.19(d).

The extracted mattes can also be used for composing the foreground objects onto

different background images as shown in Fig. 3.20.

Due to the use of color �lters, our method cannot handle entirely pure-red objects (as

well as entirely pure-green or pure-blue objects). But this does not mean that objects must

not be mostly red. To prove that our method works for mostly red objects, we applied our

method to a photo of a red chair. This chair is mostly red but not entirely pure-red because:

1) it is not entirely red as it has a silver frame, 2) it is not purely red as this orangish red
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Man Girl Flower Giraffe Tree

Figure 3.14: Synthetic natural images and their ground truth mattes.
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Figure 3.15: MSE values of the mattes produced by our method and the previous methods
for the images shown in Figs. 3.13 and 3.14.

has a suf�cient green component. Our method indeed worked, as shown in Fig. 3.21.

Fig. 3.22 shows additional results for a photograph of two big names in the computer

graphics community.

Using the rapid shooting capability of the camera, we also performedvideo matting

as shown in Fig. 3.23. We applied our method to each frame in the video independently

without taking into account temporal coherence.

3.7 Summary

This chapter has presented a method for estimating defocus blur sizes by placing red,

green, and blue color �lters in a camera lens aperture. By dividing the aperture into three
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(a)

(b)

(c)

(d)

Figure 3.16: Defocus blur removal and refocusing. The rightcolumn shows closeup views
of the left one. (a) Captured image. The colors are misaligned. (b) Color misalignment
canceled. (c) Defocus blur removed. (d) Refocused.

regions through which only light in one of the RGB color bands can pass, we can acquire

three shifted views of a scene in the RGB planes of a captured image in a single exposure.

This allows us to take stereo correspondence between the RGB planes to estimate the

scene depth, which is directly related to the defocus blur size. We have also presented a

matting method for extracting an in-focus foreground object so that the unblurred part of

the scene can remain unaffected by the deconvolution process. Our method only modi�es

a camera lens with off-the-shelf color �lters, and utilizesthe RGB planes of the image

sensor of a conventional camera body to capture multi-view images in a single exposure.

We have proposed an effective correspondence measure between the RGB planes, and a

method for employing color misalignment cues to improve thematte. By showing results

for outdoor scenes and/or hairy foreground objects, we havedemonstrated the portability
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(a) (b) (c)

(d) (e)

Figure 3.17: Defocus blur removal for an outdoor scene. (a) Captured image. (b) Ex-
tracted matte. The estimated blur/disparity map is shown inFig. 3.10(a) bottom. (c)
Deblurred image. The reddish color shade seen in (a) due to the aperture �lters is also
corrected. (d) Closeup of (a). (e) Closeup of (c).

(a) (b) (c)

Figure 3.18: More color misalignment cancellation results. (a) Restored images. (b)
Closeups of (a). (c) Closeups of the original.

of our device and the effectiveness of our method in defocus blur removal, as well as in

post-exposure image editing including digital refocusingand composition over different

backgrounds.
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(a) (b) (c) (d)

Figure 3.19: Results for a sheep. (a) Captured image. (b) Blur/disparity map. (c) Matte.
(d) Closeup from the red rectangle in (c).

Figure 3.20: Composition onto different background images.

(a) (b)

(c) (d)

Figure 3.21: Results for a red chair. (a) Captured image. (b) Estimated depth. (c) Ex-
tracted matte. (d) Composite image, where the extracted chair is added back to the input
image multiple times.
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(a) (b)

(c) (d)

Figure 3.22: Results for two big names in the computer graphics community. (a) Captured
image. (b) Estimated depth. (c) Extracted matte. (d) Composite image.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.23: Some frames from a video matting result, from left to right. (a) Captured
images. (b) Depth maps. (c) Trimaps. (d) Alpha mattes. (e) Composition over a blue
background. (f) Composition over another video.
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Chapter 4

Motion Blur Removal using Circular
Sensor Motion

So far, this dissertation has dealt with defocus blur. This chapter focuses on motion blur,

and describes a method for motion deblurring exploiting a modi�ed image capture process

which involves translation of the camera image sensor during exposure.

4.1 Introduction

Motion blur, while being useful for depicting object motionin still images, often spoils

photographs by losing image sharpness. The frequency band that can be recovered by de-

convolution easily becomes narrow for fast object motion ashigh frequencies are severely

attenuated and virtually lost.

Follow shot, a photographing technique in which a photographer pans a camera to

track an object during exposure, can capture sharp images ofa moving object as if it were

static. However, there are cases where follow shot is not effective: 1) when object motion

is unpredictable; 2) when there are multiple objects with different motion. This is because

follow shot favors particular motion that a photographer has chosen to track, as much as

a static camera favors “motion” at the speed of zero (i.e., static objects): objects moving

differently from favored motion degrade.

This chapter explores camera sensor motion during exposurethat treats a wide range

of in-plane linear object motion in any direction and up to some predetermined speed.

That is, although no object may be photographed sharply at capture time, differently

moving objects can be deconvolved with similar quality. This idea is inspired by Levin

et al. [51], who proved that constantly accelerating 1D sensor motion can render motion
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blur invariant to 1D linear object motion (e.g., horizontal motion), and showed that this

sensor motion evenly distributes the �xed frequency “budget” to different object speeds.

We intend to extend their budgeting argument to 2D (i.e., in-plane) linear object motion

by sacri�cing motion-invariance. We propose to translate acamera sensor circularly about

the optical axis, and we analyze the frequency characteristics of circular sensor motion in

relation to linear object motion.

By losing motion-invariance, we inevitably reintroduce twoissues inherent to the clas-

sical motion deblurring problem, which [51] resolved for 1Dmotion. Firstly, we need to

estimate a point-spread function (PSF) of motion blur as it depends on object motion.

Fortunately, for a set of PSFs resulting from circular sensor motion, deconvolution by

wrong PSFs causes ringing artifacts, which is not always thecase for other image capture

strategies. This allows us to take a simple hypothesis testing approach for PSF estimation.

Secondly, we need to segment an image into regions with different motion in order for

deconvolution to be applicable. This is still a challengingproblem which has only been

partially addressed by state-of-the-art methods (e.g., [47] for 1D motion), and this chapter

assumes user-speci�ed motion segmentation.

4.2 Circular Image Integration

Fig. 4.1(a) shows the proposed motion of a camera image sensor. Wetranslatethe sensor

along a circle perpendicular to the optical axis while keeping its orientation. We use the

phrase “circular motion” to emphasize that we do notrotatethe sensor itself.

During exposure timet 2 [� T;+ T], the sensor undergoes one revolution with constant

angular velocityw = p=T. Letting the radius of circular motion beR, the sensor moves

along the circle with constant speedRw, which corresponds to the target object speedS

in the image space. The corresponding object speed in the world space (i.e., actual speed

in a scene) is determined by the camera optics and the distance to the object from the

camera. Given exposure time 2T and the target object speedS, the appropriate radius is

thereforeR= ST=p. Taking anxy plane on the sensor, the sensor motion goes through a

spiral in thexyt space-time volume as shown in red in Fig. 4.1(b).

Fig. 4.2 shows simulated motion blur PSFs and their power spectra of various object

motions observed from a static camera, the coded exposure camera [75], the motion-

invariant camera [51], and our circular motion camera. As can be seen in the �gure,

while the power spectrum for a static object observed from a static camera is perfectly

broadband, those for moving objects become quickly narrowband as the object speed in-

creases. The coded exposure camera makes power spectra broadband at the cost of losing

73



Optical axis

Lens

Sensor

x

y t
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Exposure
time 2T

RadiusR
(a) (b)

Figure 4.1: Circular sensor motion. (a) The sensor is translated circularly about the optical
axis. (b) Trajectory of the sensor motion in the space-time volume (shown in red).

light blocked by the shutter, but the tendency of bandwidth narrowing for faster motion

remains. The motion-invariant camera produces similarly broadband power spectra for

horizontal motions (they are not completely identical due to thetail clipping effect [51]),

but vertical frequencies are sacri�ced as motion directiondeviates from horizontal. The

circular motion camera produces power spectra that extend to high frequency regions in

all cases. Although they have striped frequency zeros, these zeros facilitate PSF estima-

tion as described in Sec. 4.4.

We evaluated the quality of these PSFs in a similar way to [103] by simulating mo-

tion blur for a set of 12 natural images, and by measuring the mean squared errors

(MSE) between the deconvolved images (using pseudo-inverse deconvolution) and the

original unblurred images. Fig. 4.3 plots the deconvolution noise increase in decibels

as 10log10(MSE=s 2), where we assumed noise corruption for motion blur to be Gaus-

sian of standard deviations = 10� 3 for [0, 1] pixel values. As shown in the plots, the

motion-invariant camera shows excellent constant performance for horizontal motion up

to the target speedS, but for other motion directions, deconvolution noise increases for

faster object motion. The coded exposure camera and ours do not have such directional

dependence. The coded exposure camera performs almost as perfectly as a static camera

for static objects, and deconvolution noise gradually increases for faster object motion.

The circular motion camera also maintains stable performance for all directions up to

and slightly beyondS. It moderately favors the target object speedS, where it has lower

deconvolution noise than the other cameras except for the motion-invariant camera for

horizontal object motion. The downside of our image capturestrategy is the increased

deconvolution noise for static objects.

74



(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(a) (b) (c) (d) (e) (f) (g)

Figure 4.2: Motion blur PSFs and their corresponding log power spectra. Rows: (1) PSFs
and (2) power spectra for a static camera. (3)(4) For the coded exposure camera. (5)(6)
For the motion-invariant camera. (7)(8) For the circular motion camera. Columns: (a)
Static object. (b)(c) Horizontal object motion at different speeds. (d)(e) Oblique object
motion. (f)(g) Vertical object motion.

Fig. 4.4 demonstrates the above-mentioned trade-offs, showing synthetically motion

blurred objects and their deblurred images.
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Figure 4.3: Plots of deconvolution noise increase for different object speeds and direc-
tions. Pseudo-inverse deconvolution is used. The exposuretime is 1 sec for all the cam-
eras. The vertical gray lines indicate the target (maximum)object speedS= 50 pixels/sec
for the motion-invariant camera and ours. The length 50 codecontaining 25 `1's [5] was
used for the coded exposure camera (half the light level).
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(1)

(2)

34.3 dB 34.8 dB 35.3 dB4.8 dB

(3)

(4)

31.0 dB 32.3 dB 31.9 dB11.1 dB

(5)
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(7)

(8)

26.7 dB 26.1 dB 25.6 dB28.1 dB

(a) (b) (c) (d)

Figure 4.4: Simulated motion blurred images of a colorful soccer ball and their pseudo-
inverse deconvolution results. The values indicate deconvolution noise increase. Rows:
(1) Blurred and (2) deblurred images for a static camera. (3)(4) Coded exposure camera.
(5)(6) Motion-invariant camera. (7)(8) Circular motion camera. Columns: (a) Static
object. (b)(c)(d) Horizontal, oblique, and vertical object motion at the target speedS.
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4.3 Analysis of Circular Sensor Motion

Levin et al. [51] proved that constantly accelerating 1D sensor motion(going through a

parabolax = at2 in xt space-time) is the only sensor motion that makes PSF invariant to

1D linear object motion. Based on this �nding, we can derive the following proposition.

Proposition 1: There is no sensor motion that makes PSF invariant to 2D linear

object motion.

Proof: Suppose there exists such sensor motionm(t) = ( mx(t);my(t)) . As it is invari-

ant to 2D linear object motion, for any constant object velocity v = ( sx;sy), there must

existc andd such that

m(t) � vt = m(t + c)+ d; (4.1)

which means that the object motion only translates the sensor motion pathm(t). Differ-

entiating Eq. 4.1 and rearranging, we have:

¶m(t + c)
¶t

�
¶m(t)

¶t
= v: (4.2)

From this equation we can see that both¶mx(t)=¶t and¶my(t)=¶t are linear functions of

t, and thereforemx(t) andmy(t) are parabolas. However, lettingmx(t) = at2 andmy(t) =

bt2, Eq. 4.1 cannot be satis�ed because

mx(t) � sxt = a
�

t �
sx

2a

� 2
�

s2
x

4a
; (4.3)

mt(t) � syt = b
�

t �
sy

2b

� 2
�

s2
y

4b
; (4.4)

andc does not exist unlesssx=2a = sy=2b, leading to a contradiction. Q.E.D.

Hence, we must abandon motion-invariance, and we seek to extend Levinet al.'s

another �nding that their sensor motion evenly and nearly optimally distributes the �xed

frequency “budget” to different object speeds.

The intuitive explanation for optimality of constant camera acceleration for 1D case is

as follows. Fig. 4.5(a) shows the range of speed[� S;+ S] that must be taken care of. We

can cover the entire range by accelerating a camera beginning at speed� Suntil it reaches

+ S. The camera tracks every speed at one moment during exposure. By extending to

2D, the range ofvelocity(speed + direction) we must cover becomes a disc as shown in

green in Fig. 4.5(b). We are no longer able to �ll the entire disc by a �nite sensor motion

path, and we opt to trace only the circumference of the disc (shown in blue), which can

be achieved by moving a sensor circularly. The reasons for doing so are threefold.
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1. It makes theoretical analysis easier. Although full frequency analysis of 3Dxyt

space-time is dif�cult, we were able to draw some insights offrequency character-

istics of circular sensor motion.

2. Tracing the circumference alone can be shown to deal with velocity in the interior

of the disc fairly well.

3. It makes implementation of camera hardware easier.

As for Reason 2, we have already seen empirically in Fig. 4.3 that the circular sensor

motion favors the target speed but this tendency is not too pronounced. To further treat

different object speeds evenly, one can consider sampling the interior of the velocity disc

by a set of concentric circles. However, this does not bring in signi�cant improvement of

PSF power spectra, since the phases of the Fourier transformof multiple circular motions

cancel each other when superimposed, resulting in a qualitatively similar set of power

spectra to the one shown in the bottom row of Fig. 4.2 (see Appendix D).

sxsx
+S–S S0

sy

O

(a) (b)

Figure 4.5: The range of velocity(sx;sy) that must be covered by sensor motion for (a)
1D case and (b) 2D case (shown in green). We trace only the circumference of the disc
(shown in blue).

4.3.1 Frequency Budgeting

Now we review the frequency budgeting argument of [51] for the case of 2D object mo-

tion.

We consider a camera path in thexyt space-time volume.

p(x;t) =
�

d(x � m(t)) for t 2 [� T;+ T]
0 otherwise

; (4.5)

wherex = ( x;y), m(t) speci�es the camera position at timet, andd(�) is a delta function.

We would like to consider its 3D Fourier transform, denoted by p̂:

p̂(f; ft) =
Z

W

Z + T

� T
d(x � m(t))e� 2p i(f�x+ ftt)dtdx; (4.6)
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wheref = ( fx; fy) is a 2D spatial frequency,ft is a temporal frequency, andWspans the

entirexyplane.

It can be shown that the 2D Fourier transform of a motion blur PSF for object velocity

v is a 2D slice of ˆp(f; ft) along the plane offt = � v � f = � sx fx � sy fy (Fourier projection-

slice theorem [18], see Appendix E). Therefore, given a maximum speedS, the volume

in the 3D fx fy ft frequency domain that these slices can pass through is con�ned to the

outside of the cone asj ft j � Sjfj, as shown in blue in Fig. 4.6(a). We would likej p̂(f; ft)j

to have as large value as possible within this volume, so thatmotion blur PSFs up toS

have large power spectra. However, the budget is exactly 2T along each vertical linef = c

(the line shown in red and green in Fig. 4.6(a)) for any given spatial frequencyc: i.e.,
R

j p̂(c; ft)j2d ft = 2T (see Appendix F).

To assign the 2T budget so that any 2D linear object motion belowS has the same

amount of PSF spectral power, we consider the following two criteria.

Effectiveness: The budget should be assigned as much as possible within the line

segment offt 2 [� Sjcj;+ Sjcj] which is shown in red in Fig. 4.6(a). In other words, we

would like to avoid assigning the budget to the other portions of the line (shown in green

in Fig. 4.6(a)) as they correspond to object speeds beyondSand the budget will be wasted.

Because the budget is exactly 2T unless we close the shutter during exposure, less assign-

ment to some portion means more assignment to the other.

Uniformity: The budget should be distributed evenly across the line segment, so that

every object motion PSF has an equal amount of spectral power.

Therefore, optimal assignment in which both effectivenessand uniformity are perfect

givesT=Sjcj to each point on the line segment.

4.3.2 Spectrum of Circular Sensor Motion

We take the 3D Fourier transform of the circular sensor motionm(t) = ( Rcoswt;Rsinwt),

a spiral in thexyt space-time as shown in Fig. 4.1(b). By integrating Eq. 4.6 with respect

to t, we obtain:

p̂(f; ft) =
Z

W

�
d(jxj � R)

Rw
e� 2p i ftm� 1(x)

�
e� 2p if�xdx; (4.7)

since the integrand is non-zero only atjxj = Rand att = m� 1(x). Jacobianjdm(t)=dtj =

Rw is introduced in the denominator. By using polar coordinatesasx = r cosq andy =
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Figure 4.6: (a) The cone de�ning the volume (shown in blue) whose slices passing through
the origin correspond to the power spectra of motion blur PSFs below the speedS. (b)
Discreteft slices. (c)fy slices. The hyperbolic intersections with the cone are shown in
purple. (d) Plots of Bessel functionsJk(z) of the �rst kind for somek, which correspond
to the slices in (b).

r sinq,

p̂(f; ft) =
Z

W

�
d(r � R)

Rw
e� 2p i ftq=w

�
e� 2p if�xdx: (4.8)

This is a hard-to-integrate expression, but we can proceed if we focus on a set of discrete

ft slices wherek = 2p ft=w is an integer as shown in Fig. 4.6(b), as (see Appendix G):

j p̂(f; ft)j2 = 4T2J2
k (2pRjfj); (4.9)

whereJk(z) is thek-th order Bessel function of the �rst kind [94, 62], which is plotted for

somek in Fig. 4.6(d).

We show theeffectivenessanduniformityof this distribution as described in Sec. 4.3.1.

For effectiveness, we showj p̂(f; ft)j2 is small inside the conej ft j � Sjfj, shown in white

in Fig. 4.6(a). By simple algebraic manipulation, we have 2pRjfj < k inside the cone.

As can be observed in Fig. 4.6(d) particularly clearly fork = 10 and 20, Bessel functions
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Jk(z) start from zero at the origin (except fork = 0), and remain small until coming close

to the �rst maximum value, which is known to be aroundz= k+ 0:808618k1=3 > k [94].

Therefore,Jk(z) is small forz< k, which meansj p̂(f; ft)j2 is small inside the cone.

Next, we show the uniformity of the distribution. For suf�ciently largez � k2, the

Bessel function can be approximated as

Jk(z) �

r
2
pz

cos
�

z�
kp
2

�
p
4

�
: (4.10)

Using this approximation, Eq. 4.9 can be written as:

j p̂(f; ft)j2 �
4
p

T
Sjfj

cos2
�

2pRjfj �
kp
2

�
p
4

�
: (4.11)

This equation indicates that, at any given spatial frequency f which is suf�ciently large,

j p̂(f; ft)j2 is a sinusoidal wave with an amplitude of(4=p)(T=Sjfj) irrespective of tem-

poral frequencyft . Hence, although undulating, the distribution is uniform along the ft
direction on an average. The amplitude is greater than the optimal assignmentT=Sjfj

as described in Sec. 4.3.1, and by averaging the cosine undulation in Eq. 4.11, we can

see that the assigned frequency power is(2=p)(T=Sjfj) on an average, meaning that the

circular sensor motion achieves 2=p (about 64%) of the optimal assignment (it achieves

more around the target speed).

To verify the above argument, we show a numerically computedpower spectrum of a

spiral in Fig. 4.7 by threefy slices as shown in Fig. 4.6(c), along with the power spectra

of the other camera paths. The motion-invariant camera nearly optimally assigns the bud-

get for the fy = 0 slice corresponding to horizontal object motion, but it fails to deliver

the budget uniformly for other cases. Our circular motion camera distributes the budget

mostly evenly within the volume of interest, with condensedpower around the cone sur-

face corresponding to the maximum value of Bessel functions,which results in a tendency

to favor the target speed.

4.4 Motion Blur Estimation

As shown in the bottom row of Fig. 4.2, the power spectra of PSFs resulting from circular

sensor motion have different frequency zeros depending on object motion, serving as cues

for PSF estimation [48]. As a result, deconvolution with wrong PSFs will result in ringing

artifacts as shown in Fig. 4.8, which we detect by the following equation:

E(v) =
1
N å

j

�
logq

�
¶d j (v)

¶x

�
+ logq

�
¶d j (v)

¶y

��
; (4.12)
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(1)
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(4)
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Figure 4.7: Camera paths in the space-time and 2D slices of their 3D log power spectra.
Purple curves show the intersections with the cone of targetspeedS. Rows: (1) Static
camera. (2) The coded exposure camera. (3) The motion-invariant camera. (4) The
circular motion camera. Columns: (a) Camera path in thext space-time. See Fig. 4.1(b)
for the circular sensor motion path. (b) Slice atfy = 0. (c)(d) Slices off thefx ft plane
( fy 6= 0).

whereN is the number of pixels,j is a pixel index,d(v) denotes a deconvolved image

with pseudo-inverse �ltering using the PSF corresponding to object motionv, andq(�) is

a sparseness prior for natural image derivatives learned from sample images. Images with

ringing artifacts have many large derivative values inconsistently with the prior, making

Eq. 4.12 small. We search all possible (discretized) objectmotion directions and speeds

up to 1:5S, and pick the motionv (equivalently the PSF) that gives the largest value for

Eq. 4.12 as a true PSF.

As shown in Fig. 4.8, the simple hypothesis testing approachdescribed above is valid

only for the circular motion camera PSFs. Figs. 4.8(c)(e) also show that our PSF estima-

tion can clearly distinguish opposite motion directions.
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(1)

6.13 4.92 4.93 3.09 4.93

(2)

5.96 4.19 4.54 3.42 4.13

(3)

4.95 4.56 4.49 3.78 4.49
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2.44 2.54 4.08 2.95 2.91
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Figure 4.8: Deconvolution results for a synthetically motion-blurred ball and their cor-
responding values of the sparseness prior Eq. 4.12. The largest value for each camera
is written in cyan, which identi�es the correct PSF only for the circular motion camera.
Rows: (1) Static camera. (2) Coded exposure camera. (3) Motion-invariant camera. (4)
Circular motion camera. Columns: (a) Deconvolution results with static object PSFs, (di-
rection, speed) =(0� ;0). (b) Incorrect speed,(45� ;S=2). (c) Correct PSF,(45� ;S). (d)
Incorrect direction,(90� ;S). (e) Opposite direction,(225� ;S).

4.5 Camera Hardware Implementation

While we believe that circular sensor motion can be implemented with sensor shift mech-

anisms for image stabilization, they are not currently accessible to users, and we made the

following two prototypes by taking different approaches toimplementing circular motion.

For the �rst prototype shown in Fig. 4.9, we opt to translate the entire camera body

mechanically using stepper motors. The circular motion radius is R = 1.1cm, and the

exposure time is set to 2T = 1.0sec. Translation of the whole camera body makes the

target object speedSequal toRw in the world space(about 7cm/sec in our case), and the

size of PSFs becomes depth-dependent (i.e., far objects arenot affected by the camera

motion). Therefore, this prototype only works for scenes upto 50cm away from the
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camera. Precision issues also kept us from using it for farther scenes, because the PSF for

static objects deviates from a circle as the optical axis slightly tilts during circular motion.

To overcome the above-described issues, for the second prototype, we place a tilted

acrylic plate inside the camera lens mount as shown in Fig. 4.10, androtate it so that

refracted light rays move circularly. The plate is 3mm thickwith a refraction index of

1.49, and the tilt angle is 7.7 degrees, making the circular motion radiusR to be 0.13mm.

This radius corresponds to 5 pixels in our experiments, and hence the target object speed

is S= 31.4 pixels/sec with the exposure time 2T = 1.0 sec. We used this second prototype

for all of the results shown below.

Micro-controller
and batteries

Stepper motors

to PC
USB ports

Camera

Figure 4.9: Prototype camera based on a Canon PowerShot SX110. The whole camera
body is translated by two stepper motors.

4.6 Results

For deblurring, we performed the PSF estimation described in Sec. 4.4 for each user-

segmented object, and applied deconvolution with the estimated PSF. In order to reduce

ringing due to boundary effects, we made a rectangular imagecontaining a cropped object,

and smoothly �ll in the outside of the object region with periodic boundary condition

similarly to [57]. The deblurred objects and the backgroundare blended back together.

The PSF estimation using a multi-resolution approach similar to [28] took 20 min for

a 512� 512 image on a desktop PC with an Intel Pentium 4 3.2GHz CPU and 2GB

RAM. User intervention for motion segmentation took less than a minute. An example of

segmentation can be seen in Fig. 4.13(d).
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Motor
Worm gear

Ring gear + acrylic plate
Sensor

Camera
body

Side view

Figure 4.10: Prototype camera based on a Canon EOS 40D DSLR, where the lens is
detached to reveal the modi�ed lens mount. We attach an ordinary Canon EF 50mm f/1.8
lens for image capture. After passing through the lens, incoming light (shown in red) is
displaced via the tilted acrylic plate, and the displacement sweeps a circle on the sensor
while the plate rotates (yellow arrow).

4.6.1 Motion Deblurring Results

Fig. 4.11 shows an example of multiple objects moving in different directions and at dif-

ferent speeds. The digits and marks on the cars are visible inthe deblurred image. For

comparison, we also show closeups of the deconvolution results in Fig. 4.12 for both the

static camera image and the circular motion camera image. Note that, for Fig. 4.12, we

used simpler, pseudo-inverse deconvolution to better demonstrate high frequency preser-

vation. As shown, more details are recovered for the circular motion camera image with

less deconvolution noise.

(a) (b) (c)

Figure 4.11: Toy cars. (a) From a static camera. (b) From the circular motion camera. (c)
Deblurring result of (b).
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(a) (b) (c) (d)

Figure 4.12: Comparison of pseudo-inverse deconvolution results for the toy car example.
(a)(c) Results for the static camera image. (b)(d) Results forthe circular motion camera
image.

Fig. 4.13 shows an example of an object whose parts are movingdifferently. Fig. 4.13

(d) shows the user-speci�ed motion segmentation. The regions overlap in order to stitch

them smoothly at the borders after deconvolution. Details such as �ngers and wrinkles on

the clothes were recovered.

(a) (b) (c) (d)

Figure 4.13: Squat motion. (a) From a static camera. (b) Fromthe circular motion camera.
(c) Deblurring result of (b). (d) User-speci�ed motion segmentation. Four regions are
enclosed by differently-colored lines.

Fig. 4.14 shows an example with a textured background. Due toocclusion boundaries,

artifacts can be seen around the silhouettes of the people, but the deblurred faces are

clearly recognizable. It is worth mentioning that the circular motion camera tells us that

the man was moving downward while the woman was moving leftward (not upward or

rightward), which is unavailable information from the static camera image in Fig. 4.14(a)

and also from the other capture strategies. We also note that, as the sensor partially tracks

object motion during exposure, details such as facial features are already visible in the

captured image even before deconvolution as shown in Fig. 4.14(b). To demonstrate this,

we applied a facial feature point detector [102] to Figs. 4.14(a-c). As shown in Fig. 4.15,

facial feature points were successfully detected without deconvolution. These motion

identi�cation and recognizable image capture capabilities may be useful for surveillance
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purposes.

(a) (b) (c)

Figure 4.14: Moving people in front of a textured background. (a) From a static camera.
(b) From the circular motion camera. (c) Deblurring result of (b).

(a) (b) (c) (d) (e) (f)

Figure 4.15: Results of facial feature point detection [102]for Fig. 4.14. (a)(d) Detection
failed for the static camera image in Fig. 4.14(a), as the faces are severely blurred. (b)(e)
Detection succeeded for the circular motion camera image inFig. 4.14(b) even before
they were deblurred, since the facial features are already visible. (c)(f) Detection also
succeeded for the deblurred image in Fig. 4.14(c).

Fig. 4.16 shows an example of a license plate of a motorbike. The digits and characters

are legible in the deblurred image Fig. 4.16(c). The motorbike is identi�ed as moving

rightward (not leftward), which is unavailable information from the static camera image

in Fig. 4.16(a). This information may be useful for traf�c accident investigation (e.g.,

to identify whether the motorbike crashed into another car on the left or it was trying to

avoid being hit by that car).

(a) (b) (c)

Figure 4.16: License plate of a motorbike. (a) From a static camera. (b) From the circular
motion camera. (c) Deblurring result of (b).
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4.6.2 Comparisons using a High-speed Camera

For comparison with the other capture strategies, we used high-speed camera images of

a horizontally moving resolution chart provided online [5]. Blurred images are simulated

by averaging 150 frames from the 1,000 fps video, resulting in a 39-pixel blur. The length

50 code was used for the coded exposure camera, spending 3 msec for each chop of

the code. For fair comparison, the motion-invariant and circular motion cameras were

targeted to an object speed of 50 pixels (not 39 pixels) per exposure time. We tilted the

camera by 90� to simulate the “vertical” object motion relative to the camera. As shown

in Fig. 4.17, the coded exposure deblurring produced a less noisy image than the static

camera, although oblique streaks of noise can still be seen.The motion-invariant camera

produced an even less noisy image for horizontal object motion, but the result for vertical

object motion exhibits severe noise. The circular motion camera produced clean images

for both motion directions, although they are not artifact-free, either.

We also used high speed camera images to demonstrate the recognizability of captured

images even before deconvolution, as compared to the other image capture strategies.

Examples of a vertically moving face are shown in Fig. 4.18. The facial feature point

detection succeeded only for the circular motion camera image of Fig. 4.18(d), as shown

in Fig. 4.18(e).

Fig. 4.19 shows examples of a license plate. They are also simulated from high speed

camera images (note that Fig. 4.16 is a real example, not a simulated one). Large digits

“72-14” are legible for all of the capture strategies, but the characters above these digits

are hard to recognize in the static and coded exposure imagesshown in Figs. 4.19(a)(b).

Legibility for the motion invariant camera image (c) is not as good as that for the circular

motion camera image (d) as the motion direction is slightly off the horizontal.

4.7 Summary

This chapter has proposed a method for removing motion blur by translating a camera

sensor circularly about the optical axis during exposure, so that high frequencies can

be preserved for a wide range of in-plane linear object motion up to some target speed.

We analyzed the frequency characteristics of circular sensor motion in relation to linear

object motion, and investigated its trade-offs between other capture strategies. We have

also presented a blur estimation method that can be applied to a set of PSFs resulting from

circular sensor motion, based on a simple observation that deconvolution by wrong PSFs

causes ringing artifacts, which is not always the case for other image capture strategies.
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Static camera Coded exposure

Motion-invariant (horizontal) Motion-invariant (vertical)

Circular (horizontal) Circular (vertical)

Figure 4.17: Comparison using high-speed camera images. Foreach pair of shown im-
ages, the left one is a simulated blurred image, and the rightone is its deconvolution
result.

(a) (b) (c) (d) (e)

Figure 4.18: Motion-blurred face simulated from high speedcamera images. (a) Static
camera. (b) Coded exposure camera. (c) Motion-invariant camera. (d) Circular motion
camera. (e) Facial feature point detection succeeded for the circular motion camera image
(d) without deconvolution (and failed for the others (a-c)).
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(a) (b) (c) (d)

Figure 4.19: Motion-blurred license plate simulated from high speed camera images. (a)
Static camera. (b) Coded exposure camera. (c) Motion-invariant camera. (d) Circular
motion camera.

We have shown deconvolution results for simulated images aswell as real photographs

captured by our prototype camera, and demonstrated that objects moving in different

directions at different speeds can be deblurred equally well.
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Chapter 5

Conclusions and Future Work

This dissertation has proposed methods for removing defocus and motion blurs in pho-

tographs. Since deblurring is generally an ill-posed problem, the proposed method in-

cludes modi�cations of camera optics that alter the image capture process of traditional

cameras in order to achieve high frequency preservation andto facilitate blur kernel iden-

ti�cation. Aiming at applications to consumer digital cameras, this dissertation proposed

low cost hardware implementation which adopted small modi�cations to existing cameras

and mechanisms that can be directly derived from existing ones.

5.1 Common Issues

This section describes several issues common to various parts of the proposed methods,

which result from our assumption that spatially-variant blur in an input photograph can be

locally approximated by a uniform blur. This directly leadsto the following limitations,

which we would like to address in the future.

First, in order for blur estimation to be reliable, objects in a photograph should be

larger than the blur size around them, so that local segmentscontain a uniform blur with

enough sample pixels. Hence, estimation can be erroneous for small or thin objects (e.g.,

a strand of hair).

Second, since blur is locally modeled as convolution by a single PSF, translucent

objects are not accounted for. A similar problem occurs around occlusion boundaries [7],

which we alleviated by blending deblurred images. The quality of deblurred images will

degrade particularly if occlusion boundaries frequently appear in a scene (e.g., bars of a

cage).
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Third, sources of image degradation other than blur, such asimage compression arti-

facts can disrupt our blur estimation and deconvolution algorithms. Over/under-exposures

also lead to loss of information, breaking the linear relationship between pixel values and

captured light intensities. Blur estimation can still be conducted by excluding affected

regions, but deconvolution will produce artifacts around there as shown in Fig. 5.1. Trans-

parent objects and specular highlights will also induce similar artifacts as they distort the

PSF shape.

(a) (b)

Figure 5.1: (a) Saturated input photograph. (b) Result of deblurring.

5.2 Image Processing Approach to Image Deblurring

We have presented a method for removing defocus blur in images in the context of digital

refocusing, in which the goal is not only to perform deblurring but also to create im-

ages with different focus settings. The proposed method relies exclusively on an image

processing approach without camera optics modi�cations, in order to set a baseline per-

formance achievable without modifying the image capture process. The proposed method

consists of a fast image deconvolution method for ef�cient deblurring, a local blur estima-

tion method which can handle abrupt blur changes at depth discontinuities due to object

boundaries, and a set of user interfaces for interactive refocusing.

Although the gradient domain approach made the deconvolution process faster, we

are no longer able to directly impose positivity constraints on variables, which are known

to be effective in regularizing the solution. Currently we �xvalues after bringing them

back to the image domain, but we would like to seek a way to incorporate such constraints

into the deconvolution process. The degree of ringing suppression of our deconvolution

method depends on the choice of parameterw, which is related to the image noise level.

We would like to consider determining the parameter automatically based on noise esti-

mation methods [56].

We used a simple pillbox PSF model, which seems suf�cient forthe defocus blur of
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the lens we used. Nevertheless, it is worth considering the use of more complex models

and calibrated PSFs depending on a target imaging system.

It would be interesting to consider applying heavy-tailed priors also to blur estima-

tion, which we did not because we knew that the defocus PSF wasa pillbox, which is

much stronger prior knowledge about the PSF shape; and we assumed the blur to be uni-

form within each segment, which may be interpreted as a heavy-tailed prior that allows

discontinuities in a blur radius �eld occasionally at segment boundaries. For better blur

estimation, it would also be useful to improve segmentationquality.

We provided a means of modifying a blur radius �eld to �x ringing artifacts that

may still remain. Skilled retouching software users could further improve the quality by

directly working on the latent images. We would like to consider developing example-

based touch-up tools for ordinary users.

5.3 Defocus Blur Removal using a Color-�ltered Aper-
ture

We have presented a method for estimating defocus blur sizesand for extracting the alpha

matte of an in-focus foreground object in order to facilitate defocus blur removal. Our

method only modi�es a camera lens with off-the-shelf color �lters and utilizes the RGB

planes of the image sensor of a conventional camera body to capture multi-view images

in a single exposure. We have proposed an effective correspondence measure between the

RGB planes, and a method for employing color misalignment cues to improve the matte.

The major limitation of our approach is that it does not work for objects having only a

single pure R, G, or B color. Combining with depth-from-defocus methods may partially

solve this problem. However, this does not mean that objectsmust have achromatic colors

all over. For example, the disparity of the red box in Fig. 3.3is correctly identi�ed as

shown in Fig. 3.10(a), thanks to the alphabets and the pictures of chocolates printed on

the box. Therefore, our requirement is that objects must notbe purely coloredentirely,

and we think there are many real-world objects satisfying this requirement. We would

like to further investigate this limitation.

In our imaging system, the f-number is �xed to 1.8 (full aperture of our prototype lens)

because a large aperture increases disparities and thus increases depth resolution. Since

disparities also increase when the lens is focused near, oursystem typically works well for

foreground objects at 0.5 to 2.5 meters away from the camera with a suf�ciently distant

(about twice as far away) background. For farther scenes, depth resolution will gradually
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decrease, and the matte quality will also deteriorate as difference between foreground

and background color misalignment will be small. At a certain point, there will be no

disparity, and the system will not work at all.

By introducing color �lters, the amount of incident light is decreased. Increasing the

aperture �lter area to compensate for this introduces more defocus. While this degrades

depth estimation accuracy at defocused regions, it suppresses background clutters, which

is bene�cial for matting. Color �lters may also affect color demosaicing for the image

sensor, although we did not observe any loss of quality in ourexperiments, mainly because

we downsampled the captured images for tractable computation time.

While our blur estimation works fairly robustly, our mattingfails when the foreground

and background colors are similar with little texture, as shown in Fig. 5.2(b), since we

have few color misalignment cues. Another failure mode is that, as we use a relatively

large window (15� 15), we cannot recover small/thin features such as hair strands and

holes in foreground objects, once they are missed in the course of optimization, as shown

in Fig. 5.2(d). We would like to address the above issues in the future.

(a) (b) (c) (d)

Figure 5.2: Failure cases of the proposed matting algorithm. Major errors are indicated by
the arrow and circles. (a) Captured image. (b) Matte from (a).(c) Closeup of the ground
truth matte for the girl image in Fig. 3.14. (d) Our result.

5.4 Motion Blur Removal using Circular Sensor Motion

We have proposed to translate a camera sensor circularly about the optical axis during

exposure, so that high frequencies can be preserved for a wide range of in-plane linear

object motion up to some target speed. We analyzed the frequency characteristics of

circular sensor motion in relation to linear object motion,and investigated its trade-offs

between other capture strategies.

Our camera prevents capture-time loss of frequency contentof images and also facili-

tates blur estimation. However, another issue of classicalmotion deblurring remains. That

is, motion segmentation is left an open problem, for which weassumed user-intervention
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in this dissertation. We also con�ned ourselves to considering only in-plain linear object

motion. We would like to address these limitations in the future.

Another issue of our method is that static objects are also blurred. One way to alleviate

this is to pause the sensor for a fraction of exposure time before or after the circular

motion. We intend to investigate ways to control the degree to which static and moving

objects are favored relative to each other.

5.5 Future Directions

In this dissertation we have presented two types of camera modi�cations. One is to place

color �lters in the camera lens aperture, and the other is to move the camera image sensor

circularly. Both of the modi�cations have large design spaces. For the color-�ltered

aperture, we could change the square shape of each �lter areainto other shapes such as

circles and hexagons, or we could change relative positionsof the �lters. For the circular

sensor motion, we could move the sensor multiple times, moveit with acceleration, or

move it along a whorl-like path. We would like to investigatethe pros and cons of various

designs for each of the two modi�ed image capture processes.

Another future direction is that, as we have focused on compact and low-cost imple-

mentation of camera hardware modi�cations, we are interested in making the existing

computational photography techniques (including the oneswe have proposed in this dis-

sertation) more common to ordinary people. The �rst step we would like to take is to im-

plement multi-sensor consumer digital cameras for light-�eld capture, which can leverage

the abundant �ndings and knowledge from the recent advancesin this �eld.
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Appendix

A Color Alignment Measure and Normalized Cross Cor-
relation

An equivalent of Eq. 3.1 in 2D (e.g., in the RG space) would be:

L(x;y;d) = l 0l 1=s 2
r s 2

g : (A.1)

Let s rg be the covariance between the R and G components, then byl 0l 1 = det(S) =

s 2
r s 2

g � s 2
rg, we obtain:

L(x;y;d) = 1� s 2
rg=s 2

r s 2
g (A.2)

Since normalized cross-correlation (NCC) is given as NCC= s rg=s rsg 2 [� 1;1], and

jNCCj 2 [0;1] indicates the magnitude of correlation, the 2D version of the color align-

ment measureL has a one-to-one correspondence tojNCCj.

B Computing the Color Lines Model Error

Letting ci be thei-th color in SF (x;y;d), m be the mean color, andv0 be a unit vector

of the �tted line (the �rst principal eigenvector), trigonometry gives the distancel i of the

point ci from the line as:

l2i = jci � mj2 � ((ci � m)Tv0)2: (B.1)

The average of the �rst term is, by de�nition, the variance:

1
N

N

å
i= 1

jci � mj2 = s 2
r + s 2

g + s 2
b : (B.2)
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For the second term, we have:

1
N

N

å
i= 1

((ci � m)Tv0)2 =
1
N

N

å
i= 1

((ci � m)Tv0)T((ci � m)Tv0)

=
1
N

N

å
i= 1

vT
0 (ci � m)(ci � m)Tv0

= vT
0

 
1
N

N

å
i= 1

(ci � m)(ci � m)T

!

v0

= vT
0 Sv0 = vT

0 (l 0v0) = l 0(vT
0 v0) = l 0;

(B.3)

by the de�nitions of the covariance matrixS and the eigenvectorv0. Therefore, the color

lines model error can be computed as follows.

eF (x;y;d) = s 2
r + s 2

g + s 2
b � l 0: (B.4)

This turns out to be similar to the color alignment measure ofEq. 3.1, but we found it more

effective for matting to use this unnormalized, direct error measure. Since estimation

errors of background disparities are typically larger thanthose of foreground disparities,

we discounteB(x;y;d) by scaling it by around 0.7-0.9.

C Color Crosstalk Suppression

Let cr , cg, andcb be the mean image colors of a sheet of white paper through the R,G,

and B �lters, respectively. For our prototype,

cr = ( 1:000;0:335;0:025)T ;

cg = ( 0:153;1:000;0:162)T ; (C.1)

cb = ( 0:007;0:190;1:000)T ;

where the values are normalized with respect to the maximum component. LettingM =

(cr ;cg;cb), we can decompose an observed colorco into the three aperture �lters' contri-

butions byM� 1co.

D Multiple Revolutions of the Sensor

For the velocity disc shown in Fig. 4.5(b), we trace only the circumference of the disc by

circularly moving the sensor once during exposure. Here we consider additionally tracing

the interior of the disc by concentric circles as shown in Fig. D.1, meaning that the sensor
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undergoes circular motion multiple times with different speeds during exposure. This

may seem to �ll in the frequency zeros of the motion blur PSF power spectra seen in the

bottom row of Fig. 4.2. However, frequency zeros remain as shown in Fig. D.2 as the

phases of the Fourier transform of PSFs each corresponding to a single revolution cancel

each other when superimposed. Moreover, as the number of revolutions increases, PSFs

become more like the ones resulting from a static camera or the coded exposure camera,

and begin to favor static objects.

sx

S

sy

O

Figure D.1: Example of two circles (shown in blue) for sampling the velocity disc.

E The Slicing Relationship

As we are interested in motion blur PSF, we consider an objectas a point light source

moving at velocityv asd(x � vt). An image of this object (i.e., PSF) observed from a

camera moving according tom(t) during exposure time[� T;+ T] is given as:

h(x) =
Z + T

� T
d(x � vt + m(t))dt: (E.1)

Taking its 2D Fourier transform leads to

ĥ(f) =
Z

W

Z + T

� T
d(x � vt + m(t))e� 2p if�xdtdx: (E.2)

By changing variable asx0= vt � x, we obtain:

ĥ(f) =
Z

W

Z + T

� T
d(m(t) � x0)e� 2p if�(� x0+ vt)dtdx0; (E.3)

and integrating with respect tox0 leads to:

ĥ(f) =
Z + T

� T
e� 2p if�(� m(t)+ vt)dt: (E.4)

Meanwhile, by integrating Eq. 4.6 with respect tox, we obtain:

p̂(f; ft) =
Z + T

� T
e� 2p i(f�m(t)+ ftt)dt: (E.5)

Comparing this equation to Eq. E.4, we see thatĥ(f) = p̂(� f; f � v), meaning that the

Fourier transform of a motion blur PSF is a 2D slice of ˆp(f; ft) along the plane offt =

� v � f.
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Figure D.2: Motion blur PSFs and their corresponding log power spectra. Rows: (1) PSFs
and (2) power spectra resulting from two-revolution circular sensor motion. (3)(4) Five-
revolution. (5)(6) Ten-revolution. Columns: (a) Static object. (b)(c) Horizontal object
motion at different speeds. (d)(e) Oblique object motion. (f)(g) Vertical object motion.

F The Amount of the Frequency Budget

From Eq. E.5, we see that ˆp(c; ft), when viewed as a function offt , is the (1D) Fourier

transform of the following function:

b(t) =
�

e� 2p ic�m(t) for t 2 [� T;+ T]
0 otherwise

: (F.1)

Therefore, using the Parseval's theorem,

Z + ¥

� ¥
j p̂(c; ft)j2d ft =

Z + ¥

� ¥
jb(t)j2dt

=
Z + T

� T
1 dt = 2T: (F.2)
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G Fourier Transform of a Spiral

According to [83], 2D Fourier transform of a functiong(r)e� ikq is given asG( fr )e� ikf ,

where(r;q) and( fr ; f ) are the polar coordinates in the primal and frequency domains,

respectively (i.e.,fr = jfj � j ( fx; fy)j), and we have:

G( fr ) = 2p i� k
Z ¥

0
g(r)Jk(2p fr r)rdr: (G.1)

Applying this theorem to Eq. 4.8 leads to:

p̂(f; ft) = 2p i� ke� ikf
Z ¥

0

1
Rw

d(r � R)Jk(2p fr r)rdr

= 2p i� ke� ikf 1
w

Jk(2pR fr ): (G.2)

Hence we have:

j p̂(f; ft)j2 = 4p2 1
w2J2

k (2pR fr )

= 4T2J2
k (2pRjfj): (G.3)
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