How to Move Canon EF Lenses

Yosuke Bando

Preface

- This instruction is intended to be helpful to those who are interested in making modifications to camera lenses to explore/reproduce focus sweep, focal stack, and other related imaging techniques for research purposes.
- But we disclaim any responsibilities for the consequences of your following this instruction, so do it at your own risk!

Outline

- Overview & preparation
- Lens modification
- Wiring
- Software
- Putting them together

Outline

- Overview & preparation
- Lens modification
- Wiring
- Software
- Putting them together

The Lens in This Instruction

- Canon EF-S 18-55mm f/3.5-5.6 IS II
 Comes with a Canon EOS Rebel camera kit
- Any Canon EF lenses may be used

The Goal

- The lens has motors and control circuits inside, and operates according to commands from a camera body
- All you need is to intercept such communications and send "move focus" commands to the lens

Lens Pin-out

Protocol: SPI (serial peripheral interface)
– 8 data bits, 1 stop bit

VBAT: 6V power for lens motors P-GND: Ground for lens motors

- VDD: 5.5V power for digital logic
- DCL: Data from camera to lens (MOSI)
- DLC: Data from lens to camera (MISO)
- CLK: Clock

D-GND: Ground for digital logic

MOSI: MISO:	master output, slave input master input, slave output
master:	camera in this case
slave:	lens in this case

Rough Schematic

Rough Schematic

Tools & Parts

Outline

- Overview & preparation
- Lens modification
- Wiring
- Software

Lens Modification

 Our sub-goal here is to wire the pins from outside so that we can send commands from an external board

Remove the Screws 1/2

 Remove the two micro screws beside the pins

Remove the Screws 2/2

 Remove the four screws on the back side of the lens

FYI

- Those four screws are tight
- You might want to use pliers to unscrew them

Detach the Back Cover

This cable is for image stabilization (anti-camera shake). You can remove it if it gets in your way.

Insert Wires

- Drill six holes in the lens housing under the pins
- Pass six wires through the holes

Solder the Wires

- Make sure to keep track of which wire goes to which pin
- Make sure they are electrically connected using a circuit tester
 For ease of soldering, we directly attached

For ease of soldering, we directly attached wires on top of the pins, making the lens unable to talk with a camera body any more. We could instead solder wires to the lower part of the pins, in which case the lens can still be used as a normal lens.

Reassemble

- Squeeze the wires into the lens housing
- Put the cover back with the screws

Tricks to Fit the Wires

 Cut out portions of the cover and housing with nippers

To make room for the wired/soldered pins

A few wires can be laid through this gap

Tape the Pins

• To make sure that the lens is electrically disconnected from the camera body

Outline

- Overview & preparation
- Lens modification
- Wiring
- Software
- Putting them together

Overall View of Wiring

Hot Shoe Pin-out

 Shutter release can be detected from flash trigger signal (FLA) at the hot shoe, which can be used for synchronizing lens control

Attach Wires to the Hot Shoe

- Cut out a square piece of plastic with two holes and insert in the hot shoe with wires
- Or just directly solder wires to the pins

Plastic piece

Arduino Pin Assignment

Full Schematic

Outline

- Overview & preparation
- Lens modification
- Wiring
- Software
- Putting them together

Arduino Code

```
const int HotShoe Pin = 8;
const int HotShoe Gnd = 9;
const int LogicVDD_Pin = 10;
const int Cam2Lens_Pin = 11;
const int Clock Pin = 13;
void setup() // initialization
  pinMode(HotShoe Pin, INPUT);
  digitalWrite(HotShoe Pin, HIGH);
  pinMode(HotShoe_Gnd, OUTPUT);
  digitalWrite(HotShoe Gnd, LOW);
  pinMode(LogicVDD Pin, OUTPUT);
  digitalWrite(LogicVDD_Pin, HIGH);
  pinMode(Cam2Lens Pin, OUTPUT);
  pinMode(Clock Pin, OUTPUT);
  digitalWrite(Clock_Pin, HIGH);
  delay(100);
  send_signal(0x??);
  delay(100);
  send_signal(0x??);
```

```
void loop()
  if(digitalRead(HotShoe_Pin) == LOW) // upon shutter release
     send_signal(0x??); // move focus to infinity
     delay(1000);
     send_signal(0x??); // move focus back to nearest
     delay(1000);
void send_signal(byte signal) // SPI command generator
  unsigned int i;
  for(i = 0; i < 16; i++)
     digitalWrite(Clock_Pin, i & 1);
     if(i % 2 == 0)
       digitalWrite(Cam2Lens Pin, (signal >> (i / 2)) & 1);
```

We are asked not to disclose the commands in public. Please email me to get the values shown as ??.

Outline

- Overview & preparation
- Lens modification
- Wiring
- Software
- Putting them together

Put Them Together

- Attach the modified lens to the camera body
- Connect the wires
- Turn on the camera
- Turn on the battery
- Turn on the Arduino

- This step can be skipped from next time, as the code stays on the board
- Press the shutter button
 - The lens should move

Make it Portable (optional)

• The 6V battery can also be used for supplying power to the Arduino

Schematic for Portable Setting

Mount Everything

The rubber cover can be ripped off and the parts can be screwed into the camera body