
Graphics Hardware (2005)
M. Meissner, B.- O. Schneider (Editors)

Hexagonal Storage Scheme for
Interleaved Frame Buffers and Textures

Yosuke Bando Takahiro Saito Masahiro Fujita

TOSHIBA Corporation
{yosuke1.bando, takahiro4.saito, masahiro1.fujita}@toshiba.co.jp

Abstract
This paper presents a storage scheme which statically assigns pixel/texel coordinates to multiple memory banks
in order to minimize frame buffer and texture memory access load imbalance. In this scheme, the pixels stored
in a particular memory bank are placed at the center and the vertices of hexagons packed in the frame buffer.
By making these hexagons close to regular so that the pixel placement is uniform and isotropic, frame buffer and
texture memory accesses are evenly distributed over the memory banks. The analysis of memory access patterns in
rendering typical 3D graphics scenes shows that the hexagonal storage scheme can reduce rendering performance
degradation due to bank conflicts by an average of 10% compared to the traditional rectangular storage scheme.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Parallel Processing

1
2 3
8 9

4 5
6 7
1213

1617
1819
2021

2425
2627
2829

1213
1415
4 5

8 9
1011

1

2829
3031
2021

2425
2627
1617

1011141522233031 6 7 2 3 22231819
2829
3031
2425

2021
2223
1617

1
2 3
4 5

8 9
1011
1213

1617
1819
2021

2425
2627
2829

1213
1415
8 9

4 5
6 7

1
26271819 6 7 1415222330311011 2 3
1213
1415
4 5

8 9
1011

1

2829
3031
2021

2425
2627
1617

6 7 2 3 22231819

1
2 3
8 9

4 5
6 7

1213

1617
1819
2021

2425
2627
2829

1011141522233031
1617
1819
2021

2425
2627
2829

1213
1415
8 9

4 5
6 7

1
222330311011 2 3

2829
3031
2425

2021
2223
1617

1
2 3
4 5

8 9
1011
1213

26271819 6 7 1415

0

0

0

0

0

0

0

0

0

0 1
8 9
1617

2 3
1011
1819

4 5
1213
2021

6 7
1415
2223

2425262728293031

0 1
8 9
1617

2 3
1011
1819

4 5
1213
2021

6 7
1415
2223

2425262728293031

0 1
8 9
1617

2 3
1011
1819

4 5
1213
2021

6 7
1415
2223

2425262728293031

0 1
8 9

1617

2 3
1011
1819

4 5
1213
2021

6 7
1415
2223

2425262728293031

0 1
8 9

1617

2 3
1011
1819

4 5
1213
2021

6 7
1415
2223

2425262728293031

0 1
8 9
1617

2 3
1011
1819

4 5
1213
2021

6 7
1415
2223

2425262728293031

0 1
8 9
1617

2 3
1011
1819

4 5
1213
2021

6 7
1415
2223

2425262728293031

1
8 9

1617

2 3
1011
1819

4 5
1213
2021

6 7
1415
2223

2425262728293031

Figure 1: The presented storage scheme assigns pixel coordinates to multiple (in this case 32) memory banks, by permuting the
bank IDs in each rectangle in a traditional rectangularly interleaved bank ID assignments (left), so that the pixels having the
same bank ID are placed at the center and the vertices of nearly regular hexagons packed in the frame buffer (right).

1. Introduction

Graphics processing units (GPU) have been endowed with
increasing parallelism in order to meet the demand for
greater graphics acceleration. Accordingly, the amounts of
pixel and texel data transfer per unit time have also been
increasing due to parallel updates of the frame buffer and
parallel texture fetches. Typically, this high memory band-
width requirement can be alleviated using multiple memory
banks, each of which stores disjoint portions of the frame
buffer or texture so that the multiple portions of the mem-
ory can be accessed in parallel. However, this configuration
incurs memory access load imbalance because each pixel is

stored in a fixed memory bank depending on its coordinate
on the 2D rectangular frame buffer, and therefore memory
accesses cannot be dynamically distributed to the memory
banks based on temporal load.

This paper presents a storage scheme which statically as-
signs pixel coordinates to memory banks in order to min-
imize memory access load imbalance resulting from one-
to-one correspondence between coordinates and banks. The
strategy is to distribute the pixels stored in a particular mem-
ory bank uniformly and isotropically on the frame buffer.
The ideal placement is to locate the pixels at the center and
the vertices of regular hexagons packed in the frame buffer.

c© The Eurographics Association 2005.

Bando, Saito, Fujita / Hexagonal Storage Scheme for Interleaved Frame Buffers and Textures

However, it is impossible to form regular hexagons by
choosing their vertices from a square grid of pixels. A trian-
gular or hexagonal grid of pixels [Gla94, Tyt00] may not be
subject to this problem, but GPUs with such shapes of pixels
have yet to become readily available commercially. There-
fore, we present our approach to finding an assignment of
square grid pixel coordinates to the memory banks in which
the pixels assigned to the same memory bank form nearly
regular hexagons. And we show the obtained assignments
for several variations of the number of memory banks. By
analyzing memory access patterns in rendering several typ-
ical 3D graphics scenes, we demonstrate that our storage
scheme distributes both frame buffer and texture memory
accesses over the memory banks more evenly than do other
non-hexagonal storage schemes.

2. Related Work

We focus on static storage schemes and do not cover adap-
tive or dynamic memory assignments, such as the MAHD
algorithms [Mue95] and the demand-paging algorithm used
in the VC-1 [NK96].

Static assignments of regions of the frame buffers to mem-
ory banks are often used in conjunction with sort-first and
sort-middle architectures defined in [MCEF94], where each
graphics processor is responsible for the regions of the frame
buffer stored in the associated memory bank as shown in
Figure 2(a). This configuration allows simple connections
between the graphics processors and the memory, but load
balancing of multiple graphics processors is directly affected
by the storage scheme in use.

In this context, two typical storage schemes are described
in [FvDFH90]: the one involves dividing the frame buffer
into N rectangular regions, and assigning each region to
one of the N memory banks; the other involves dividing the
frame buffer into many small regions and distributing them
to the memory banks in a finely interleaved manner. As tes-
sellations of 3D objects are getting finer [Dee93], the latter
storage scheme becomes preferable since it prevents primi-
tives from being drawn to one region.

In most of the existing static and finely interleaved pat-
terns found in literature [Fuc77, Par80, PH89, FvDFH90,
Mue95], the distribution of the regions assigned to the same
memory bank is aligned to the horizontal and vertical axes
of the frame buffer. One such example for N = 8 is shown in
the left hand side of Figure 7. However, this rectangular dis-
tribution somewhat lacks uniformity and isotropy [Gla94],
which can increase chances of bank conflicts.

The storage scheme used in Multiaccess Frame Buffer
(MFB) proposed by Harper [Har94] is one of a few exam-
ples of non-axis-aligned bank assignments. In MFB scheme,
pixels in any rectangle whose area is N/2 are assigned to
mutually different memory banks (however, it was shown
that this property is not always satisfied [Wei96]). Although

the major intention of this assignment is to permit parallel
frame buffer updates in units of constant area rectangles, this
storage scheme can be viewed as a variation of finely in-
terleaved patterns for memory access load balancing. How-
ever, no analysis of the memory access patterns based on
this scheme in rendering typical 3D graphics scenes is pre-
sented. This paper analyzes the memory access patterns re-
sulting from various storage schemes including typical axis-
aligned assignments, MFB scheme, and our hexagonal one,
and evaluates their differences.

Our storage scheme is applicable to frame buffers in a
sort-last architecture [MCEF94] shown in Figure 2(b) and
to textures in a shared texture memory architecture [IEH99]
shown in Figure 2(c) as long as pixels/texels are stored in the
memory banks in an interleaved manner as described above.
We show results for both frame buffers and textures.

B

frame buffer

B B B

R

sorting network

R

F

R

F

R

F

primitives

Fsorting network

B

frame buffer

B B B

R

F

R

F

R

F

R

F

primitives

sorting network

B

memory

F
IF

O

F
IF

O

F
IF

O

F
IF

O

B B B

tile stream generator

sorting network

B

texture

B B B

T T T T

F F F F

(a) (b) (c) (d)

Figure 2: Graphics subsystems with multiple memory banks.
R: rasterizer, F: fragment processor, T: texture unit, and B:
memory bank. (a) Sort-middle architecture where each F is
directly linked to one of the B’s. (b) Sort-last architecture
with a pixel sorting network between the F’s and the B’s. (c)
Shared texture memory architecture with a texel sorting net-
work between the T’s and the B’s. (d) A model for evaluating
performance of storage schemes.

3. Hexagonal Storage Scheme

The following explanation is for the case of frame buffers,
but it can be directly applied to the case of textures by sub-
stituting “texture” for “frame buffer,” and “texel” for “pixel.”

3.1. Preliminaries

We consider a frame buffer memory system with N memory
banks. We assume that N is a power of two. Each memory
bank has a serial number called bank ID ∈ {0,1, · · · ,N −
1}, and the frame buffer is divided into a number of small
disjoint square regions called tiles, each of which is assigned
a fixed bank ID. The tile size can be equal to the pixel size,
but pixels are often clustered into tiles for several reasons:
e.g., alignment with the units of data transfer or with the
cache line size; LOD calculation using adjacent fragments;
SIMD operations on fragments; fast clear of buffers; and tile-
based compression.

To simplify the calculation of a tile’s storage location

c© The Eurographics Association 2005.

Bando, Saito, Fujita / Hexagonal Storage Scheme for Interleaved Frame Buffers and Textures

within a memory bank, we cluster N tiles into a rectangle
called block. These N tiles have mutually different bank IDs.
In this configuration, a serial number for a block called block
ID corresponds to the location within each of the memory
banks where the tile in that block is stored. Block IDs can be
assigned in row-major order as shown in Figure 3. Alterna-
tively, block IDs can be swizzled [AMH02] if it is acceptable
to confine the buffer size to a power of two times the block
size, which is often the case with textures. An example of
swizzling applied to the pixel order is shown in Figure 3.

We consider assigning a memory bank to each tile so that
the tiles stored in a particular memory bank are distributed
uniformly and isotropically over the frame buffer, since this
minimizes the chance that each bank is accessed multiple
times in a short period of time. Such distribution is achieved
by placing the tiles at the center and the vertices of regu-
lar hexagons packed in the frame buffer as shown in Fig-
ure 4(a), which maximizes the distances between the neigh-
boring tiles [CS98]. However, as Figure 4(b) shows, the tiles
would not fit in the grid since the positions of the tiles do not
fall on integer locations. Section 3.2 describes how we find
an assignment of bank IDs to the grid of tiles by which the
tiles labeled the same bank ID form nearly regular hexagons.

3

0 1 2 3
5 6 7 8
10 11 12 13
15 16 17 18 19

frame buffer

5 blocks (80 pixels)

4 blocks
(32 pixels)

9
14 0

2
1
3

4
6 7

block

0 1 4
6 7

9 1213
10111415

tile

5

4 tiles (16 pixels)

2 tiles
(8 pixels)

4 pixels

2
8

4

5

Figure 3: Example of blocks and tiles. A frame buffer is di-
vided into blocks, each of which is assigned a block ID. A
block is divided into tiles, each of which is assigned a bank
ID. The pixels in a tile in this figure are in a swizzled order.

(a) (b)

Figure 4: Example of regular-hexagonal placement of tiles.
16 tiles are stored in one memory bank for N = 16 with a
buffer size of 16×16 tiles. (a) Tiles (shown as small squares)
are placed at the vertices of regular hexagons. (b) The tiles
at the same location as in (a) do not fit in a square grid.

3.2. Search for Hexagonal Bank ID Assignment

Currently, we obtain the desired bank ID assignments by a
brute-force search. We evaluate uniformity of an assignment
by the side lengths of the Delaunay triangles formed by the
tiles having the same ID. We adopt the assignment with the
largest minimum side length. If there are multiple such as-
signments, we choose the assignment with the smallest av-

erage side length because it has sides of similar length and
is therefore isotropic.

An exhaustive search of possible bank ID assignments
is impractical due to combinatorial explosion: there are
(N!)k−1 combinations of assignments where k is the num-
ber of blocks. The reason for −1 in the exponent is because
we can fix the assignment in one block in order to elimi-
nate the redundant N! assignments resulting from bank ID
permutation. Unfortunately, we could not figure out whether
a polynomial-time algorithm exists for this optimization
problem. Therefore, we introduced the following three con-
straints to reduce the search space.

First, we search recursively based on the solution for a
smaller N. Given the assignment for N, we double its tile
size, and we consider placing four original size tiles labeled
4i,4i+1,4i+2, and 4i+3 in the double size tile labeled i(∈
{0,1, · · · ,N − 1}) in each block to obtain assignments for
4N (see Figure 5). This reduces the number of combinations
to (4!)N(k−1). The base cases (N = 1,2) for this recursion
are given in Figure 6. Since the block size is also doubled at
every step of the recursion, the block will always be a square
for an even n(= log2 N), and half of a square for an odd n.

Second, we only accept assignments that are equitable to
all memory banks: i.e., the pattern of the tiles with a partic-
ular bank ID on the frame buffer should be congruent with
that of the tiles with any other bank ID. Existence of such
assignments is guaranteed because one such assignment can
be achieved by placing the four tiles 4i,4i + 1,4i + 2, and
4i + 3 in the same order in the double size tile labeled i for
all the blocks. So far, the number of combinations is reduced
to (4!)k−1 since we have only to consider one quadruplet of
banks (e.g., bank 0, 1, 2, and 3 if we choose i = 0) and apply
the result to the other quadruplets.

Third, we reduce the number of blocks under consider-
ation by assuming periodicity of assignments. Specifically,
for an even n we search assignments that repeat every two
blocks both horizontally and vertically. For an odd n, we
search assignments that repeat every two blocks horizontally
and four blocks vertically so that the both periods have the
same length in tiles. In this way, the number of bank ID as-
signment combinations becomes (4!)3 or (4!)7 regardless of
the size of the frame buffer. Assuming periodicity also yields
some other advantages: the bank ID calculation is simplified
as upper bits of a pixel coordinate become irrelevant to the
bank ID; the equity property check and the uniformity eval-
uation can be performed for a constant number of tiles.

Thanks to the three constraints above, the number of pos-
sible bank ID assignments is at most (4!)7 ≈ 4G, which is
tractable and independent of N. And the total time complex-
ity is O(n) due to recursion. Although the assignments ob-
tained in this way are not guaranteed to be optimal, it is guar-
anteed that uniformity of the assignment for a larger N is
equal to or greater than that for a smaller N.

c© The Eurographics Association 2005.

Bando, Saito, Fujita / Hexagonal Storage Scheme for Interleaved Frame Buffers and Textures

Figure 6 shows the assignments obtained up to N = 32.
The bank ID for N, denoted by bankIDN , is calculated from
tile coordinates (tx, ty) by the following equations, where tile
coordinates are pixel coordinates divided by the tile size.

bankID1 = 0 bankID2 = tx[0]⊕ty[0]

bankID4[1] = ty[0] bankID4[0] = tx[0]⊕ty[1]

bankID8[2] = tx[1]⊕ty[1]

bankID8[1] = ((ty[1]∧(tx[1]⊕tx[0]))∨(ty[1]∧ty[0]))⊕tx[2]⊕ty[2]

bankID8[0] = ((ty[1]∧(tx[1]⊕ty[0]))∨(ty[1]∧tx[0]))⊕tx[2]⊕ty[2]

bankID16[3] = ty[1] bankID16[2] = tx[1]⊕ty[2]

bankID16[1] = ty[0]⊕tx[2]⊕(ty[2]∧(tx[0]⊕tx[1]))

bankID16[0] = tx[0]⊕ty[2]

bankID32[4] = tx[2]⊕ty[2]

bankID32[3] = ((ty[2]∧(tx[2]⊕tx[1]))∨(ty[2]∧ty[1]))⊕tx[3]⊕ty[3]

bankID32[2] = ((ty[2]∧(tx[2]⊕ty[1]))∨(ty[2]∧tx[1]))⊕tx[3]⊕ty[3]

bankID32[1] = ty[0] bankID32[0] = tx[0]

where “ ·”, “∧”, “∨”, and “⊕” mean logical NOT, AND,
OR, and XOR operations, respectively, and expression a[i]
denotes the ith least significant bit of a. These equations can
be derived by logic reduction.

1

0

1

0

1

0 1

1 0

0 1

1 0

0 1

1 0

0 1

1 0

0

1

0

1

0 1 0 1 0

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

period period

pe
rio

d

pe
rio

d

tiles

fixed

also fixed due to periodicity

(a) (b)

Figure 5: Reduced search space for N = 8. (a) The assign-
ment for N = 2 in double size. (b) In each of the tiles la-
beled 0 in (a), we place four tiles 0-3. In each of the tiles
labeled 1 in (a), we place four tiles 4-7. We have only to
consider either of these two quadruplets of tiles (we choose
0-3). We fix the assignment in one block (in this figure the
upper left block), and consider placing tiles in the painted
area in seven blocks. The assignment for the other blocks is
determined automatically thanks to the periodicity.

4. Evaluation Method

This section describes a method we adopt in order to evalu-
ate performance of various storage schemes including ours.

4.1. Evaluation Model

Evaluating storage schemes based on numerous types of
graphics system architectures and their possible combina-
tions of parameters is impractical. Therefore, we use a

0
2

1
3

8 9

4
6
12

0
2

1
3

8
10

9
11

4
6
12
14

2
0

20
22

4
6

5
7

12
14

13
15

8
10

16
18

16
18

17
19

20
22

21
23

24
26

24
26

25
27

28
30

29
31

28
30

0
2

1
3

8 9

4
6

5
7

1213

16
18

17
19

2425

20
22

21
23

2829

28
30

29
31

0 14 5

8
10

9
11

12
14

13
15

16172021

24
26

25
27

8
10

9
11

0
2

1
3

4
6

5
7

12
14

13
15

0
2

1
3

8
10

9
11

4
6

5
7

12
14

13
15

16
18

17
19

24
26

25
27

20
22

21
23

28
30

29
31

0
2

2

2
0

0

1

1

1
3

3

3

4

4

5

5

6

6 7

7
12

12

14
13
15

14
13
15

24
26

25
27

20
22

21
23

28
30

29
31

0
2

1
3

2
0 1

3
4
6

5
7

8
10

9
11

8
10

9
11

4
6

5
7

12
14

13
15

12
14

13
15

12
14

13
15

12
14

13
15

4
6

5
7

2
0 1

3

4
6

5
7

8
10

9
11

8
10

9
11

8
10

9
11

8
10

9
11

16
18

17
19

16
18

17
19

16
18

17
19

16
18

17
19

16
18

17
19

16
18

17
19

16
18

17
19

20
22

21
23

20
22

21
23

20
22

21
23

20
22

21
23

20
22

21
23

20
22

21
23

24
26

25
27

24
26

25
27

24
26

25
27

24
26

25
27

24
26

25
27

24
26

25
27

28
30

29
31

28
30

29
31

28
30

29
31

28
30

29
31

28
30

29
31

28
30

29
31

012 23 3456 7

0

0

0

0

0

0

0

0

0
0

0

051

1

1
1

1
1

1

1

1

1

1

12
2

2
2

2

2

2

2
2

2

2

3

3

3

3

3

3

3

3

3

3

3

4

4

4

4

4

44

4

4
4

4

5
5

5

5

5

5

5

5

5
5

6

6

6

6

6

6
6

6

6

6

6

7

7

7

7

7

77

7

7

7
7

00 1 0 1

0
1
0
1

0 1
1 0

0 1
1 0

0 1
1 0

0 1
1 0

0 0
0 0
0 0

0
0
0

N = 1

N = 2

N = 4

N = 8

N = 32 N = 16

47 1 231 2 06547

14
1215

13
9
11 8

10
5 6

47
0

1 2
3

0

12

51

14

02
13

3

15

24

10
11
9

8

6

10

7
8

13

0

12
1

51

14
15

02
13

12

3
3

15

2

14

4

10
5

11
9

4

8

6

10

7

11
7

9

6

8

0

12

51

14

02
13

3

15

24

10
11
9

8

6

10

7
8

13

0

12

3

15

1

0

14

51

14
1

12 13
2

15
02

13
12

14

2

3

1
15

3

15
0

12

2

14

3

13

4

10

7

5

11

4
89

9
4

8

5

11

6

10

6

10

7

11

6

8 9

5

7

9
4

6

8

7

1110

5

15
13
7
5

1
2
0

2
0

1
3

01101 0
322 3 2 3
1

1
3

2
0

010 10

2
0

1
3

1
2 3
0 1

2 3
0

1
2 3
01

23
0

Figure 6: Bank ID assignments for up to N = 32. Hexagonal
patterns appear for N ≥ 4, though when N = 16 the pattern
also appears pentagonal or heptagonal.

generic model shown in Figure 2(d). In this model, a stream
of tiles is input, and each tile is sent, via the sorting network,
to the appropriate memory bank depending on its tile coor-
dinate. Each bank has a tile FIFO that can smooth out some
of the imbalance in the number of input tiles.

For frame buffers, a tile stream is generated by the ras-
terizer. From the viewpoint of the memory banks, it is only
the order of input tiles that affects load balancing. Therefore
we set aside rasterization parallelism and types of architec-
ture, and change the order of input tiles only by algorithms
used by a single rasterizer. For this purpose, we chose the
following three rasterization algorithms as representatives.
The rasterization granularity is tiles rather than pixels.

• RowMajorOrder: This classical algorithm rasterizes
from the top of a triangle toward right along a scanline,
and returns to the left edge on the next scanline.

• BlockedOrder: This algorithm traverses blocks in row-
major order and rasterizes within each block again in row-
major order. This improves frame buffer and texture ac-
cess locality [MM00].

• HilbertOrder: This algorithm rasterizes along a Hilbert
curve [MWM01], which has high spatial locality.

We evaluate performance of storage schemes with and
without a frame buffer cache. When the cache is enabled,
the tile stream generator outputs a tile only when a cache
miss occurs. The evaluation without a cache serves as an
analysis of load imbalance of multiple graphics processors
in sort-first and sort-middle architectures because a pair of
a graphics processor and a memory bank (R, F, and B) in
Figure 2(a) can be collectively regarded as a memory bank
(B) in Figure 2(d), and a cache does not exert a strong influ-
ence over the graphics processors’ load when a heavy pixel
shader is used.

c© The Eurographics Association 2005.

Bando, Saito, Fujita / Hexagonal Storage Scheme for Interleaved Frame Buffers and Textures

Sea Station Stegosaurus Mouth Tank Cave Waterfall

Figure 8: Scenes used to evaluate performance of storage schemes.

For textures, on the other hand, a tile stream is generated
by the texture unit. Similar to the case of frame buffers, we
do not deal with texturing parallelism. A single rasterizer
generates a stream of tiles of fragments, and each fragment
provides a texture coordinate to the texture unit. The texture
unit has a cache, and when a cache miss occurs, it fetches
the tile containing the specified texel from the appropriate
memory bank (in this sense we had better use the term “tile
request stream”). Again, variations of the order of tiles in a
tile request stream is controlled by rasterization algorithms.

Based on the previous work [HG97, IEP98, IEH99], we
use a 16KB two-way set associative cache with an LRU re-
placement policy and with a cache line size equal to the data
size of a tile. We calculate the address A of a tile as follows.

A = B+(blockID ·N +bankID) ·4T 2

where B is the base address, and T is the tile size. We set the
data size of a pixel/texel to be 4 bytes.

4.2. Counterpart Storage Schemes

In order to evaluate how much our hexagonal storage scheme
improves memory access load balance, we compare it with
the three storage schemes described below. An example of
the assignments for each scheme is shown in Figure 7.

• Rectangular: In this commonly used storage scheme, the
assignment does not change block to block, and the pat-
tern is rectangular.

• MFB: The aim of the Multiaccess Frame Buffer [Har94]
is to assign N banks so that no bank ID coincides in any
rectangle whose area is N/2. Though some pairs of tiles
having the same ID are close to each other contrary to this
aim [Wei96], the assignment is fairly uniform.

• Flipped: This storage scheme is based on Rectangular
scheme, but it improves uniformity by simply flipping
bank IDs in the left half of a block and those in the right
half for every other row of blocks.

2 3
6 7

0
5
12 3

46 7

0
5
1 2 3

4 6 7
54 6 7

0 1 2 3
2 3 0 1 6 7 54
6 7 54 2 3 0 1
1 0 3 2 5 4 67
5 4 67 1 0 3 2
3 2 1 0 67 5 4

67 5 4 3 2 1 0
0

5
1 2 3

4 6 7
54 6 7

0 1 2 3

0
5
1

4
2 3
6 7
1 0
5 4
3 2

67
0

5
1

4

0
5
1 2 3

4 6 7
0

5
1 2 3

4 6 7
0

5
1 2 3

4 6 7
0

5
1 2 3

4 6 7
0

5
1 2 3

4 6 7
0

5
1 2 3

4 6 7
0

5
1 2 3

4 6 7
0

5
1 2 3

4 6 7
0

5
1 2 3

4 6 7
0

5
1 2 3

4 6 7

0
5
1

4
0

5
1

4
0

5
1

4
0

5
1

4
0

5
1

4

0
5
1 2 3

4 6 7
0

5
1 2 3

4 6 7
0

5
12 3

46 7
0

5
1 2 3

4 6 7
0

5
1 2 3

4 6 7

0
5
1 2 3

4 6 7
0

5
1 2 3

4 6 7

0
5
1

4

0
5
1

4

0
5
1

4

2 3
6 7

0
5
12 3

46 7
0

5
12 3

46 7

Rectangular MFB Flipped

Figure 7: Counterpart bank ID assignments for N = 8.

4.3. Scenes

We used the seven scenes shown in Figure 8. All primitives
are texture mapped with mipmaps. Thus each fragment re-
quires eight texels under texture minification, and four texels
under magnification. The frame buffer size is 512×512.

5. Results

In order to limit the number of combinations of parameters,
we show the results for N = 8, 16, and 32 with a tile size
of 4× 4 pixels. For N < 8, the assignments of our storage
scheme are equivalent to those of Rectangular or Flipped
scheme. A frame buffer cache is enabled for the following
results if not otherwise specified. From experiment, both of
the frame buffer and texture cache hit ratios are almost inde-
pendent of storage schemes.

Figure 9 shows the overall imbalance of the number of ac-
cesses to the memory banks for frame buffers and textures.
Thanks to fine interleaving, frame buffer accesses are evenly
distributed to the banks regardless of storage schemes, al-
though some variations can be seen for Stegosaurus scene.
On the other hand, texture access load imbalance is relatively
large, and is dependent on storage schemes for most of the
scenes. This is because textures are accessed more irregu-
larly. We can see that the overall imbalance of texture ac-
cesses for Hexagonal scheme is almost always smaller than
that for Flipped and Rectangular schemes, and it is compet-
itive (smaller for some scenes, and larger for some scenes)
with that for MFB scheme.

Even if the overall imbalance is small, there are possibili-
ties of strong temporal imbalance. Thus we measure imbal-
ance of the number of accesses to the memory banks during
some period of time, assuming that the tile stream generator
provides one tile per cycle. Figure 10 shows the time devel-
opment of such imbalance for Mouth scene as an example.
The temporal imbalance of the frame buffer accesses can ex-
ceed 150% for all the storage schemes contrary to the overall
balanced memory accesses. For both frame buffers and tex-
tures, we can see that the graph for Rectangular scheme has
higher peaks than those for the other storage schemes.

Since we cannot trace the whole time development of the
temporal imbalance for each scene, we count the intervals
in cycles between two consecutive tiles that a memory bank
receives. Figure 11 shows the histograms of such intervals.
The histograms for the frame buffer have some spikes that

c© The Eurographics Association 2005.

Bando, Saito, Fujita / Hexagonal Storage Scheme for Interleaved Frame Buffers and Textures

correspond to the spatial intervals between the tiles having
the same bank ID along the trace of a given rasterizer. The
histograms for the textures are smoothed out since textures
are traversed more arbitrarily. For both frame buffers and
textures, the histogram for Rectangular scheme is strongly
shifted to the left, and those for MFB and Flipped schemes
are slightly shifted to the left compared to that for Hexag-
onal scheme. High occurrence of small intervals suggests
there would be high peak memory access load imbalance.
We take the standard deviation of the intervals as a mea-
sure of the temporal imbalance for the entire scene, which is
shown later.

We also estimate the performance degradation due to bank
conflicts. We assume that each of the N memory banks is
busy for N cycles after receiving a tile. The system is bal-
anced because the memory has potential ability to receive
N tiles in N cycles while the tile stream generator outputs
N tiles. If another tile is sent to a busy memory bank, it is
queued in the tile FIFO of that bank. If the FIFO is full, the
tile stream generator stalls. The performance measure is the
total cycles required to render the entire scene divided by the
number of tiles. Figure 12 shows the performance degrada-
tion for Mouth scene. Naturally, the values decrease as the
number of FIFO stages increases, but the ratio of the value
for one storage scheme to that for another is approximately
maintained. The graphs show that Hexagonal scheme has the
least performance degradation of the four schemes.

Figure 13 summarizes the standard deviation of the inter-
vals and the performance degradation for all combinations
of the storage schemes, scenes, rasterization algorithms, and
the number of memory banks. The standard deviation is nor-
malized by N for comparison. A graph of the standard devia-
tion and the corresponding graph of the performance degra-
dation are similar in shape, which supports the use of the
standard deviation of tile intervals as a measure of tempo-
ral load imbalance. As the overall tendency, the lines in the
graphs slope upward from left to right, meaning that Hexag-
onal scheme is less subject to temporal load imbalance than
the other storage schemes are. The major exception to this
tendency is the relationship between Hexagonal and MFB
schemes when N = 16, which can be attributed to the fact
that the assignment of Hexagonal scheme for N = 16 is not
quite close to regular hexagons as shown in Figure 6.

Finally, Table 1 summarizes the performance gain ob-
tained by using Hexagonal scheme over the other storage
schemes. We evaluate the number of cycles reduced by us-
ing Hexagonal scheme relative to the total cycles required
by using a given storage scheme, and simply average these
values for all the scenes. These figures show that Hexago-
nal scheme can improve performance by an average of 10%
compared to Rectangular scheme, and that it is advantageous
over MFB and Flipped schemes except for MFB for N = 16,
though the differences may be small in some cases.

100%

120%

140%

160%

180%

200%

H M F R H M F R H M F R H M F R H M F R H M F R

Sea Station Stegosaurus Mouth Tank Cave Waterfall

frame buffer texture

N = 8 N = 16 N = 32 N = 8 N = 16 N = 32

H: Hexagonal M: MFB F: Flipped R: Rectangular

Figure 9: Overall imbalance of memory accesses. The y-
axis shows the percentage of the maximum number of tiles
given to a memory bank to the average number of tiles per
bank. This graph is for a RowMajorOrder rasterizer, but the
graphs for the other two rasterizers have a similar tendency.

100%

150%

200%

 0 20000 40000 60000

Hexagonal
MFB

Flipped
Rectangular

100%

150%

200%

 0 20000 40000 60000
cycles

Hexagonal
MFB

Flipped
Rectangular

1

Figure 10: Time development of temporal imbalance of
memory accesses to the frame buffer (top) and to the tex-
tures (bottom) for Mouth scene, N = 8, and HilbertOrder.
Each data point is windowed by 128 cycles.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 5 10 15 20
interval

Hexagonal
MFB

Flipped
Rectangular

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 0 5 10 15 20
interval

Hexagonal
MFB

Flipped
Rectangular

1

Figure 11: Histograms of the intervals between two consec-
utive tiles sent to the same memory bank of the frame buffer
(left) and of the textures (right) for Mouth scene, N = 8, and
HilbertOrder. The vertical lines show the ideal interval of 8.

100%

110%

120%

130%

140%

150%

32168421
FIFO stages

Hexagonal
MFB

Flipped
Rectangular

100%

110%

120%

130%

140%

150%

160%

170%

32168421
FIFO stages

Hexagonal
MFB

Flipped
Rectangular

1

Figure 12: Performance degradation due to imbalance of
memory accesses to the frame buffer (left) and to the textures
(right) for Mouth scene, N = 8, and HilbertOrder. Several
variations of the number of FIFO stages are shown. The y-
axis shows the percentage of the number of cycles required
to render the entire scene to the total number of tiles.

c© The Eurographics Association 2005.

Bando, Saito, Fujita / Hexagonal Storage Scheme for Interleaved Frame Buffers and Textures

Table 1: Performance gain obtained by using the hexagonal
storage scheme over the other three storage schemes.

Compared to N = 8 N = 16 N = 32
Frame MFB 1.1% −8.6% 0.2%
buffer Flipped 6.3% 10.4% 8.2%

(with cache) Rectangular 11.5% 11.7% 14.4%
Frame MFB 1.9% −3.6% 2.8%
buffer Flipped 3.8% 7.4% 4.5%

(w/o cache) Rectangular 10.3% 9.3% 10.6%
MFB 3.0% −0.3% 0.6%

Texture Flipped 3.1% 3.3% 1.6%
Rectangular 11.2% 7.2% 11.9%

6. Conclusion

This paper has presented a storage scheme which statically
assigns pixel/texel coordinates to multiple memory banks,
conforming to the shape of nearly regular hexagons. Us-
ing several typical 3D graphics scenes, we have shown that
our storage scheme distributes memory access load over the
memory banks more evenly than the other representative
schemes. Although the performance gain is modest (even
marginal compared to MFB scheme), the results support the
validity of our strategy for reducing bank conflicts.

Our hexagonal bank ID assignment appears complex, but
thanks to the power-of-two block size and repeat period,
bank ID calculation can be simplified. It requirs only a few
additional logical operations, if any, compared to the other
storage schemes, which has a minimal impact upon silicon
area in hardware implementation.

In future work, we intend to ascertain whether better as-
signments exist for large N. Also, we intend to consider
some other possible applications of our hexagonal assign-
ment, such as antialiasing.

Acknowledgments

We would like to thank Prof. Tomoyuki Nishita and Shigeo
Takahashi (The University of Tokyo) for their useful sugges-
tions. We would also like to thank Shingo Yanagawa, Kat-
sundo Nagashima, and Satoyuki Inaba for the scenes.

References

[AMH02] AKENINE-MÖLLER T., HAINES E.: Real-Time
Rendering (second edition). A K Peters, Ltd., 2002. 3

[CS98] CONWAY J. H., SLOANE N. J. A.: Sphere Pack-
ings, Lattices and Groups (3rd edition). Springer-Verlag,
New York, 1998. 3

[Dee93] DEERING M. F.: Data complexity for virtual real-
ity: where do all the triangles go? In IEEE Virtual Reality
Annual International Symposium (1993), pp. 357–363. 2

[Fuc77] FUCHS H.: Distributing a visible surface algo-
rithm over multiple processors. In the ACM Annual Con-
ference (1977), pp. 449–451. 2

[FvDFH90] FOLEY J. D., VAN DAM A., FEINER S. K.,
HUGHES J. F.: Computer Graphics: Principles and Prac-
tice (2nd edition). Addison-Wesley, 1990. 2

[Gla94] GLASSNER A. S.: Principles of Digital Image
Synthesis. Morgan Kaufmann Publishers, Inc., 1994. 2

[Har94] HARPER, III D. T.: A multiaccess frame buffer
architecture. IEEE Trans. Comput. 43, 5 (May 1994),
618–622. 2, 5

[HG97] HAKURA Z. S., GUPTA A.: The design and anal-
ysis of a cache architecture for texture mapping. In the
24th Annual International Symposium on Computer Ar-
chitecture (1997), pp. 108–120. 5

[IEH99] IGEHY H., ELDRIDGE M., HANRAHAN P.: Par-
allel texture caching. In SIGGRAPH/Eurographics Work-
shop on Graphics Hardware (1999), pp. 95–106. 2, 5

[IEP98] IGEHY H., ELDRIDGE M., PROUDFOOT K.:
Prefetching in a texture cache architecture. In SIG-
GRAPH/Eurographics Workshop on Graphics Hardware
(1998), pp. 133–142. 5

[MCEF94] MOLNAR S., COX M., ELLSWORTH D.,
FUCHS H.: A sorting classification of parallel rendering.
IEEE CG&A 14, 4 (July 1994), 23–32. 2

[MM00] MCCORMACK J., MCNAMARA R.: Tiled poly-
gon traversal using half-plane edge functions. In SIG-
GRAPH/Eurographics Workshop on Graphics Hardware
(2000), pp. 15–21. 4

[Mue95] MUELLER C.: The sort-first rendering architec-
ture for high-performance graphics. In the Symposium on
Interactive 3D Graphics (1995), pp. 75–85. 2

[MWM01] MCCOOL M. D., WALES C., MOULE K.:
Incremental and hierarchical Hilbert order edge equa-
tion polygon rasterization. In SIGGRAPH/Eurographics
Workshop on Graphics Hardware (2001), pp. 65–72. 4

[NK96] NISHIMURA S., KUNII T. L.: VC-1: A scalable
graphics computer with virtual local frame buffer. In SIG-
GRAPH 96 (1996), pp. 365–372. 2

[Par80] PARKE F. I.: Simulation and expected perfor-
mance analysis of multiple processor z-buffer systems.
Computer Graphics 14, 3 (July 1980), 48–56. 2

[PH89] POTMESIL M., HOFFERT E. M.: The Pixel Ma-
chine: A parallel image computer. Computer Graphics 23,
3 (July 1989), 69–78. 2

[Tyt00] TYTKOWSKI K. T.: Hexagonal raster for com-
puter graphic. In IEEE International Conference on In-
formation Visualization 2000 (2000), pp. 69–73. 2

[Wei96] WEI B.: Comments on “a multiaccess frame
buffer architecture”. IEEE Trans. Comput. 45, 7 (July
1996), 862. 2, 5

c© The Eurographics Association 2005.

Bando, Saito, Fujita / Hexagonal Storage Scheme for Interleaved Frame Buffers and Textures

fra
m

e
bu

ffe
r w

ith
ou

t c
ac

he
te

xt
ur

e
st

an
da

rd
 d

ev
ia

tio
n

fra
m

e
bu

ffe
r w

ith
 c

ac
he

st
an

da
rd

 d
ev

ia
tio

n
pe

rf
or

m
an

ce
 d

eg
ra

da
tio

n
pe

rf
or

m
an

ce
 d

eg
ra

da
tio

n
st

an
da

rd
 d

ev
ia

tio
n

pe
rf

or
m

an
ce

 d
eg

ra
da

tio
n

0

0.5

1

1.5

2

2.5

3

H M F R H M F R H M F R H M F R H M F R H M F R H M F R H M F R H M F R

N = 16N = 8 N = 32

RowMajor RowMajor RowMajorBlocked BlockedBlockedHilbert Hilbert Hilbert

100%

150%

200%

250%

300%

350%

H M F R H M F R H M F R H M F R H M F R H M F R H M F R H M F R H M F R

N = 16N = 8 N = 32

RowMajor

RowMajor
RowMajor

Blocked BlockedBlockedHilbert Hilbert Hilbert

0

0.5

1

1.5

2

2.5

H M F R H M F R H M F R H M F R H M F R H M F R H M F R H M F R H M F R

N = 16N = 8 N = 32

RowMajor RowMajor RowMajorBlocked BlockedBlockedHilbert Hilbert Hilbert

100%

150%

200%

250%

300%

350%

400%

450%

500%

550%

H M F R H M F R H M F R H M F R H M F R H M F R H M F R H M F R H M F R

N = 16N = 8 N = 32

RowMajor RowMajor RowMajorBlocked BlockedBlockedHilbert Hilbert Hilbert

0

0.5

1

1.5

2

2.5

H M F R H M F R H M F R H M F R H M F R H M F R H M F R H M F R H M F R

N = 16N = 8 N = 32

RowMajor RowMajor RowMajorBlocked BlockedBlockedHilbert Hilbert Hilbert

100%

150%

200%

250%

300%

H M F R H M F R H M F R H M F R H M F R H M F R H M F R H M F R H M F R

Sea Station Stegosaurus Mouth Tank Cave Waterfall

N = 16N = 8
N = 32

RowMajor RowMajor RowMajorBlocked BlockedBlockedHilbert Hilbert Hilbert

H: Hexagonal M: MFB F: Flipped R: Rectangular

Figure 13: Normalized standard deviation of the intervals between two consecutive tiles sent to the same memory bank, and
the performance degradation due to imbalance of memory accesses with one FIFO stage.

c© The Eurographics Association 2005.

