Introduction to Applied Machine Learning

Abdullah Almaatouq
(amaatouq@mit.edu)

Abdulaziz Alhassan
(a.alhassan@cces-kacst-mit.org)

Ahmad Alabdulkareem
(kareem@mit.edu)
Tutorial Outline

• What is machine learning

• How to learn

• How to learn well

• Practical Session
Examples of Machine Learning
What is Machine Learning

• Given computers the ability to learn without explicitly being programmed. – Arthur Samuel 1959

• Machine learning is a computer program that improves its performance in a certain task with experience. – Tom Mitchell (1998)
What is Machine Learning

• Making predictions, based on learned patterns from historical data.

• Not to be confused with data mining
 – Data mining focuses on exploiting patterns in historical data.

• New field?
 – Statistical Generalization
 – Computational Statistics
Why Machine learning?

- Huge amounts of data !!!!

- Humans are expensive, computers are cheap.
 - 88ECU, 32CPU and 244GB RAM ≈ $3.50/h
 - Minimum worker wage in the US is $7.25/h

- Rule based is (often):
 - Difficult to capture all relevant patterns.
 - You can’t add rules to patterns you don’t know exist
 - Very hard to maintain
 - (often) doesn’t work well

- Psychic superpowers (sometimes!)
When to use Machine Learning

- There is a pattern to be detected
- You can NOT pin it mathematically
- You have data

$\text{Distance} = \text{r} \times \text{t}$
Types of Problems

• Supervised
 – Training from seen labeled examples to generalize to unseen new observations.
 – Given some input x_i predict ‘class/value’ of y_i

• Unsupervised
 – Find hidden structures in unlabeled data
Types of Problems

- Machine Learning problems
 - Supervised
 - Regression
 - Classification
 - Unsupervised
 - Clustering
 - Outlier Detection
Supervised Learning

• **Classification**
 – Binary: Given x_i find y_i in $\{-1, 1\}$
 – Multicategory: Given x_i find y_i in $\{-1, \ldots, K\}$

• **Regression**
 – Given x_i find y_i in \mathbb{R} (or \mathbb{R}^d)

Spam VS Not Spam

Images to digits

Beak depth prediction
Supervised Learning Framework

Unknown function f
$f: x \rightarrow y$

generates

Training Examples
(x_1y_1, \ldots, x_ny_n)

Hypothesis set

Optimization routines

Error function

Machine Learning

chooses

$h(x)$

input

produces

Known function g
$g \approx f$

value/category y

Predict

New observation x

input
Linear Regression

Linear form: $y = ax+b$

- Capture the collective behavior of credit officers
- Predict the credit line for new customers

Input $x =$

<table>
<thead>
<tr>
<th>Bias</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>23 years</td>
</tr>
<tr>
<td>Annual salary</td>
<td>$144000</td>
</tr>
<tr>
<td>Years in residence</td>
<td>4 years</td>
</tr>
<tr>
<td>Years in job</td>
<td>2 years</td>
</tr>
<tr>
<td>.....</td>
<td>...</td>
</tr>
</tbody>
</table>

$h(x) = \theta_1 x_1 + \ldots + \theta_d x_d + \theta_0 x_0$

Linear regression output: $h(x) = \sum_{i=0}^{d} \theta_i x_i = \theta^T x$
Linear Regression

• The historical dataset
 \((x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\)

• \(y_n \in R\) is the credit line for customer \(x_n\)

• How well our \(h(x) = \theta^T x\) approximate \(f(x)\)

 – Squared error \((h(x) - f(x))^2\)

 – \(E(h) = \frac{1}{N} \sum_{n=1}^{N} (h(x_n) - y_n)^2\)

• Goal is to choose \(h\) that minimizes the \(E(h)\)
Linear Regression

Illustration of 2d and 3d regression line and plane. It works the same in higher dimensions.
Setting-up the problem

\[E(h) = \frac{1}{N} \sum_{n=1}^{N} (h(x_n) - y_n)^2 \]

\[E(\theta) = \frac{1}{N} \sum_{n=1}^{N} (\theta^T x_n - y_n)^2 \]

\[= \frac{1}{N} \| X\theta - y \|_2^2 \]
Minimizing $E(h)$

$$E(\theta) = \frac{1}{N} \| X\theta - y \|^2$$

$$\nabla E(\theta) = \frac{2}{N} X^T (X\theta - y)$$

$$= \frac{2}{N} X^T (X\theta - y) = 0$$

$$= \frac{2}{N} (X^T X\theta - X^T y) = 0$$

$$\theta = (X^T X)^{-1} X^T y$$

Python:
theta = linalg.inv(X.T*X)*X.T*y

MATLAB:
theta = inv(X'*X)*X'*y

Inverse here is pseudo-inverse
Linear Regression
Supervised Learning Framework

Unknown function f

$f: x \rightarrow y$

generates

Training Examples
$(x_i, y_i) \ldots (x_n, y_n)$

Hypothesis set
$h(x) = ax + b$

Error function
Squared error

Optimization routines
chooses

Gradient decent

Machine Learning
Linear Regression
produces

Credit line officers

New applications

New observation x

Known function g
$g \approx f$

Predict

value/category y
Support Vector Machines

- Separating plane with maximum margin
- Margins are configurable with parameters to allow for mistakes
- Gold standard blackbox for many practitioners
Support Vector Machines

• Effective in high dimensional spaces

• effective even when #features > #observations

• It can uses different kernel functions

\[\phi \]
Supervised Learning Framework

Unknown function f

$f: x \rightarrow y$

generates

Training Examples

$(x_1, y_1), \ldots, (x_n, y_n)$

Hypothesis set

chooses

Optimization routines

$h(x)$

chooses

Error function

New observation x

input

Known function g

$g \approx f$

produces

input

Predict

value/category y
Types of Problems

Machine Learning problems

Supervised

Regression
Classification

Unsupervised

Clustering
Outlier Detection
Unsupervised Learning

• Trying to find hidden structure in unlabeled data.

• Clustering
 – Group similar data points in “clusters”

• k-means

• Mixture models

• hierarchical clustering
Unsupervised Learning

• K-means
• “Birds of a feather flock together”
• Group samples around a “mean”
 – Start with random “means” and assign each point to the nearest “mean”
 – Calculate new “means”
 – Re-assign points to new “means”...
Random initial means
Re-assign points to new means
Mean Recalculation
Re-assign points to new means.
Unsupervised Learning

• Mixture Models
 – Presence of subpopulations within an overall population
Anomaly Detection

• Detect abnormal data
• Whitelisting good behavior
Anomaly Detection

• Statistical Anomaly Detection

\[P(x) = p(x_1, \alpha_1, \mu_1) \cdot p(x_2, \alpha_2, \mu_2) \cdots p(x_n, \alpha_n, \mu_n) \]
Anomaly Detection

- Local Outlier Factor (LOF)
 - Local density
 - Locality is given by nearest neighbors
How to learn (well)
Initial critical obstacles

• Choosing Features:
 – By domain experts knowledge and expertise
 – Or by Feature extraction algorithms

• Choosing Parameters, for example:
 – Degree of the regression equation
 – SVM parameters (c, gamma)
 – Number of clusters
 • K-mean (pre)
 • Agglomerative (post)
A simple example: Fitting a polynomial

- The green curve is the true function (which is not a polynomial)

- We will use a loss function that measures the squared error in the prediction of $y(x)$ from x.
Some fits to the data: which is best?
which is best?
Occam's Razor

• “The simplest explanation for some phenomenon is more likely to be accurate than more complicated explanations.”
which is best?

$M = 3$

$M = 9$
A simple way to reduce model complexity

Add penalties

from Bishop
Example

• Mixture Models
Using a validation set

• Divide the total dataset into three subsets:

 – **Training data**: for learning the parameters of the model.

 – **Validation data** for deciding what type of model and what amount of regularization works best.

 – **Test data** is used to get a final, unbiased estimate of how well the algorithm works. We expect this estimate to be worse than on the validation data.
PCA

- Data visualization
- Noise reduction
- Data reduction
- Can help with the curse of dimensionality
- And more
What are PCA

- Orthogonal directions of greatest variance in data
Principal Components

• First PC is direction of maximum variance from origin

• Subsequent PCs are orthogonal to 1st PC and describe maximum residual variance
Principal Components

2nd Principal Component, y_2

1st Principal Component, y_1
Principal Components

x_{i2}

$y_{i,2}$

$y_{i,1}$

x_{i1}
PCA on real example

Original

PCA

r=4
64
256
3600
Thank you

• Make sure you have python and IPython notebook
 – Easiest way to get this running
 http://continuum.io/downloads

• Download the tutorial IPython notebook
 http://www.amaatouq.com/notebook.zip