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Abstract

Coarse depth maps can be enhanced by using the shape

information from polarization cues. We propose a frame-

work to combine surface normals from polarization (here-

after polarization normals) with an aligned depth map. Po-

larization normals have not been used for depth enhance-

ment before. This is because polarization normals suffer

from physics-based artifacts, such as azimuthal ambiguity,

refractive distortion and fronto-parallel signal degradation.

We propose a framework to overcome these key challenges,

allowing the benefits of polarization to be used to enhance

depth maps. Our results demonstrate improvement with re-

spect to state-of-the-art 3D reconstruction techniques.

1. Introduction

Today, consumer 3D cameras produce depth maps that

are often noisy and lack sufficient detail. Enhancing 3D

depth maps obtained from compact sensors such as the

Kinect is therefore an increasingly popular research area.

One of the most promising solutions is to combine the cap-

tured, coarse depth map with surface normals obtained from

photometric stereo (PS) or shape-from-shading (SfS). This

depth-normal fusion is logical—the coarse depth map pro-

vides the geometric structure and the surface normals cap-

ture fine detail to be fused. There are dozens of papers

that combine low-quality depth maps with surface normal

maps obtained from SfS or PS. Well-regarded papers in-

clude [44, 14, 43] using SfS, and [31, 15] using PS. As a

complementary technique, we propose the first use of sur-

face normals from polarization to enhance depth maps.

The shape of an object causes small changes in the po-

larization of reflected light, best visualized by rotating a po-

larizing filter in front of a digital camera. Obtaining surface

normals through polarization has potential advantages over

SfS and PS, including:

• Passive capture: assuming light incident on an object

is unpolarized, the surface normals can be obtained by

rotating a polarizer at the imaging sensor.
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• Robustness to diffuse interreflections: unlike SfS and

PS, diffuse interreflections do not significantly corrupt

the estimated shape.

• Material invariant capture: the physics of the shape

from polarization problem hold for materials ranging

from dielectrics to metals to translucent objects.

• Lighting robust capture: if the incident light is unpolar-

ized shape estimation is robust and can be conducted

indoors, outdoors, or under patterned illumination.

However, obtaining surface normals through polarization is

not yet a mature technique. The obtained normals are dras-

tically distorted. Specific open problems [24, 3] include:

1. Ambiguity: The azimuth component of the surface

normal contains an ambiguity of π radians, which

leads to ambiguous flips in the 3D shape.

2. Refractive distortion: Obtaining the zenith compo-

nent of the surface normal requires knowledge of the

refractive index to estimate accurate 3D shape.

3. Fronto-parallel surfaces: When the zenith angle is

close to zero, the obtained normals are noisy.

4. Depth discontinuities: Even if the normals are ob-

tained correctly, integration of gradients must be per-

formed to recover the 3D shape.

5. Relative depth: Integrating surface normals obtains

only relative 3D shape, up to offset and scaling con-

stants.

In this paper, we address each of these challenges by start-

ing with a coarse depth map as a constraint to correct the

normals obtained from polarization. While we do not solve

all open problems, our correction is sufficient to use the po-

larization normals to enhance the depth map. An overview

of our approach is summarized in Figure 1.

1.1. Contributions

Conceptually, we propose the only technique that ex-

ploits normals from polarization cues to enhance the quality

of a coarse depth map. We devise a physics-based frame-

work, wherein the coarse depth map is used to resolve az-

imuthal ambiguity (addressing problem 1) and correct for
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Figure 1. Outline of proposed technique. (a) The Kinect depth of an object is combined with (b) three photos at different rotations of a

polarizing filter. (c) Integration of surface normals obtained from Fresnel equations. Note the azimuthal ambiguity (observed as a flip in the

shape) and distortion of the zenith angle (observed as flatness in the shape). (d) Integration of surface normals after correcting for azimuthal

ambiguity removes the flip, and the final result is shown in (e) after correcting for zenith distortion and using physics-based integration..

refractive distortion (solving problem 2). To recover 3D

shape, we propose a spanning tree integration scheme that

uses the degree of polarization as a weighting parameter.

This approach, specifically designed for polarization nor-

mals, addresses problem 3. As is well-known, the general

fusion of depth and normals solves problems 4 and 5.

Taken together, the proposed technique is benchmarked

against ground truth data and state-of-the-art 3D enhance-

ment techniques [43]. The proposed technique demon-

strates clear improvement on a wide variety of scenes.

2. Related Work

Shape from Polarization (SfP) estimates surface nor-

mals by analyzing the polarization properties of reflected

light. An overview can be found in [36], which describes

how the degree of polarization and orientation of specu-

lar reflections can be used to obtain surface normals. The

information in specularly polarized light can also be ex-

tended to transparent objects [37, 25]. On the other hand

it is also possible to estimate the shape of dielectric objects

using the cues from diffusely polarized reflections [27, 3].

Taken together these papers illustrate the benefit of polar-

ization in a controlled, research setting, but—regardless of

which polarization technique is used—SfP cues alone re-

mains an ill-posed problem due to several ambiguities in

shape. These include, for example, a lack of unicity when

solving for the azimuth and zenith components of the esti-

mated surface normal. To solve such ambiguities, [2] use

two viewpoints to obtain polarization measurements. The

work by [27] instead opts to use priors on the distribution of

surface normals, which was extended to obtain rough shape

from space carving on multi-view data [26]. In compari-

son, we use the additional measurement of coarse depth to

sufficiently address major artifacts in classic SfP.

Combining depth and normal cues is, by now, a pop-

ular technique to obtain 3D information. Generally speak-

ing, prior art combines a geometric-based technique to ob-

tain rough depth with a photometric-based technique to ob-

tain surface normals. This fusion is very well-motivated:

(1) The geometric approach helps to remove the ambigui-

ties in photometric techniques, such as SfS or uncalibrated

PS; (2) The photometric approach helps in adding surface

details to the coarse depth map from the geometric data;

and (3) the rough depth map provides anchor points for the

surface-from-gradient problem, addressing the challenge of

non-integrable surfaces at depth discontinuities. There are

numerous existing works that partially or completely reflect

these three aspects. Combinations that have been explored

previously include: combining a laser scan with PS [31],

multi-view stereo with SfS [42] or PS [47, 19, 7], consumer

depth sensing with SfS [44, 14, 43], and consumer depth

sensing with PS [48, 15, 40]. If high-quality surface nor-

mals are not available, fusing a sequence of overlapping

depth maps is a popular approach to produce a smooth sur-

face for various interactive applications [17] or large-scale,

real-time surface reconstruction [32]. Tab. 1 summarizes

the benefits and limitations of our proposed approach.

Polarization in computational imaging: Some re-

searchers have exploited polarized spherical gradient illu-

mination patterns coupled with a polarizer in front of a cam-

era to capture the behavior of polarized light transport for

high-resolution facial scanning of static expressions [22],

estimation of specular roughness and anisotropy [9], infer-

ence of per-pixel surface reflectance parameters through cir-

cular polarization cues [10, 12], and for multi-view facial

performance capture [11]. Polarization cues are also widely

used in computational imaging applications, such as separa-

tion of diffuse and specular reflections [30, 49], dehazing of

images [38], image mosaicing and panoramic stitching [39],

illumination multiplexing [6] and camera [23, 18] or display

hardware [21]. In addition, polarization cues can be used to

recover shape of translucent objects [5], shape of the ocean

surface [46], or address scattering underwater [41].

3. Basics of shape from polarization

To provide a self-contained overview, we review the

shape from polarization problem in condensed form.



Table 1. Polarization allows depth enhancement on complex scenes, with shiny objects, interreflections, and uncontrolled lighting. Single-

shot capture is possible using a polarization camera. These cameras are sold with a sensor mosaic for multiple polarization channels.
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Figure 2. Capture setup. In (a) a standard camera with a polarizing

filter is used to photograph a diffuse sphere under different filter

rotations. The captured photographs in the bottom row look simi-

lar, but in (b), a sinusoidal pattern is observed when a single pixel

is plotted against filter angle. The phase encodes azimuth angle

and the amplitude and offset encode zenith angle.

3.1. Surface normals from polarization cues

A photograph is captured with a polarizer at an angle

φpol. At a single image point, the intensity can be written as

I (φpol) =
Imax + Imin

2
+

Imax − Imin

2
cos (2 (φpol − ϕ)) ,

(1)

where the three unknown variables in this equation are

Imax, Imin, and ϕ, shown in Fig. 2. Sampling different

values on the sinusoid amounts to taking pictures with dif-

ferent rotations of the polarizer angle.

Obtaining the azimuth of surface normal: By sampling

three values of φpol it is sufficient to characterize the ampli-

tude, phase, and offset of the received signal. The azimuth

angle, ϕ is encoded as the phase of the received signal.

However, note that the solution is not unique: two azimuth

angles, shifted apart by π radians cannot be distinguished

in the polarized images. Concretely, note that an azimuth

angle of ϕ and ϕ + π return the same value for Equation

1. In practice, this leads to disappointing results when us-

ing shape from polarization. Solving this ambiguity is one

focus of this paper.

Obtaining the zenith of surface normal: The degree of

polarization is based on the amplitude and offset of Equa-

tion 1 and can be written as

ρ =
Imax − Imin

Imax + Imin

. (2)

Substituting the Fresnel equations (see [16]) into Equation

2 allows the degree of polarization to be written as

ρ =

(
n− 1

n

)2
sin2θ

2 + 2n2 −
(
n+ 1

n

)2
sin2θ + 4 cos θ

√
n2 − sin2θ

,

(3)

where n denotes the refractive index and θ the zenith angle.

Assuming the refractive index is known, the zenith angle

can be estimated either in closed-form, or by numerical op-

timization.

Specular vs diffuse polarization: Equation 3 is robust

for dielectric surfaces, but cannot be used on non-dielectric

surfaces, such as mirrors or metals. These materials do not

reflect back any diffuse light, but the relation

ρspec =
2n tan θ sin θ

tan2 θ sin2 θ + |n∗|
2
, (4)

where |n∗|
2
= n2

(
1 + κ2

)
and κ is the attenuation index

of the material, allows the zenith angle to be found [28].

It is possible to identify whether to use Equation 3 or 4 to

obtain the zenith angle based on the degree of polarization

at a single pixel. Variants of the method thus described are

implemented in previous SfP work [2, 25, 27]. Due to the

limitations of SfP (see bullets 1-5 from Section 1), SfP has

never been considered as a robust alternative to SfS.

4. Framework for Depth-Polarization Fusion

Scenes are assumed to have the following properties: (1)

unpolarized ambient light; (2) no specular interreflections;

(3) only dielectric materials or low-frequency changes in

materials; and (4) diffuse-dominant or specular-dominant

surfaces.1 Refer to the supplement for assumption details.

4.1. Correcting normals from polarization

We use the obtained depth map to correct systematic dis-

tortions in the normals from polarization. Let D ∈ R
M×N

denote the obtained depth map. Our correction scheme op-

erates in the normal domain, so we find the surface normals

from the depth map, denoted as N
depth ∈ R

M×N×3. The

coarse depth map contains quantization errors and noise, so

1At first glance, assumption 4 may seem limiting, however practical

results are obtained on scenes with varying surface reflectivity (Fig. 9c

and 9d). By analyzing the interference of polarized light, we show in the

supplement that assumption 4 need not be strictly met to obtain results.
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Figure 3. A commonly used benchmark scene [13, 29]. Combining

polarization with Kinect results in improved performance. The top

row shows the 3D shape of a corner. The second row shows the

surface normals. The third row plots the estimated surface error in

millimeters and the fourth row depicts the estimated angular error

of surface normals in degrees w.r.t. the ground truth.

a robust method such as [24, 20] should be used to obtain

normals. Specifically, we choose the plane principal com-

ponent analysis technique introduced in [20] for its robust-

ness (see supplement for technical details).

4.1.1 Removing low-frequency azimuthal ambiguity

Consider the corner scene in Fig. 3. Using a coarse depth

sensor, a low-frequency version of the surface is acquired

(note the smoothness in the 3D shape in Fig. 3b). On the

other hand, the shape from polarized normals is very in-

accurate due to the azimuthal flip, but the high-frequency

detail can be recovered.

Let Npolar denote the normal map obtained from polar-

ization cues. The goal is to find an operator A that relates

N
polar and N

depth, which can be expressed numerically as

Â = argminA
∥∥Ndepth −A

(
N

polar
)∥∥2

2
. Without any addi-

tional constraints, this optimization is ill-posed. However,

to resolve polarization ambiguity we are only interested in

representing A as a binary, linear operator. The two states

correspond to rotating the azimuth angle by π, or not. Since

the goal is to solve low-frequency ambiguity, we impose an

additional constraint that A is a smooth operator in the sense

of total variation. Taken together, this can be expressed as a

total variation minimization problem:

Â =argmin
A

∥∥Ndepth −A
(
N

polar
)∥∥2

2
+ γ

∥∥∥∇A
∥∥∥
1

subject to A ∈
{
0, 1

}
,

(5)

where the parameter γ controls the (piecewise) smoothness

of the solution. Many well-known solvers exist to solve this

optimization program. Since the decision variable is binary,

we use graph-cuts, which is often used to segment an image

into foreground and background patches. After obtaining Â
we can correct low-frequency changes in the ambiguity by

applying the operator to the polarization normal:

N
corr = Â

(
N

polar
)
. (6)

After correcting for low-frequency ambiguity, we can re-

turn to the physical experiment on the corner. By apply-

ing the techniques introduced in this section we have tra-

versed from the ambiguous normals in Fig. 3g to the cor-

rectly flipped normals in Fig. 3h. For this example, the am-

biguity was low-frequency in nature, so the coarse depth

map was sufficient.

4.1.2 Removing high-frequency azimuthal ambiguity

If the depth map is coarse, consisting of low-frequency in-

formation, then it cannot be used to resolve regions with

high-frequency ambiguity. To address this challenge we

force these regions of the surface to be closed.

Fig. 4a illustrates a conceptual example with a high-

frequency V-groove on a plane. The normals are disam-

biguated correctly on the plane, but the ridge cannot be dis-

ambiguated using the method from Section 4.1.1. In par-

ticular, observe that the high-frequency ridge can take one

of six forms. To constrain the problem, we define an an-

chor point at the start of the high frequency region and a

pivot point at the center of the ridge. The anchor point rep-

resents the boundary condition for the high-frequency ridge

and the pivot point occurs on a fronto-parallel part of the

surface, i.e., where the zenith angle is close to zero.

Given the anchor and pivot points, we define a facet as

the set of points between the anchor and pivot points (see

Fig. 4b). A facet can form a planar or nonplanar surface.

Assuming there are K facets, there are 2×2K −V possible

surface configurations, where V is the number of possible

closed surfaces. This surface has two facets and two closed

configurations, and therefore six possible surface configura-

tions. Four of these are not closed, i.e., the high-frequency

region has a discontinuity at an anchor point. The discon-

tinuity is physically possible—i.e., the V-groove could ac-

tually be a ramp in the real world—but it is less likely that
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Figure 4. Addressing high-frequency ambiguity. Consider a planar

surface with a high-frequency pit. (a) Anchor and pivot points are

identified to group points on the ambiguity region into (b) facets.

(c) Each facet can be rotated by π radians, creating ambiguities.

the high frequency detail has such a discontinuity exactly at

the anchor point. Therefore, we assume the high-frequency

surface is closed.

Of the two closed surfaces, one is concave and the other

is convex. There is no way to distinguish between these sur-

faces using polarization cues. This is not unique to polariza-

tion enhancement: the convex/concave ambiguity applies to

the entire surface from SfS [33] and uncalibrated PS [45].

4.1.3 Correcting for refractive distortion

Recall that estimation of the zenith angle requires knowl-

edge of the refractive index. For materials within the di-

electric range, deviation in the estimated zenith angle is

only a minor source of error (Fig. 5). However, for non-

dielectrics, the zenith angle surface normal will be distorted,

which when integrated, causes distortions to the 3D shape.2

To undistort the zenith angle, we first find the regions of

the depth map that provide a good estimate of the coarse

object shape. Specifically, we define a binary mask as

M = 1 if ∇T
N

depth ≤ ǫ and∇T
N

corr ≤ ǫ, M = 0 o.w.,

(7)

where ǫ is a smoothness threshold. Intuitively, the mask

takes the value of 1 in confident regions, where the object

lacks high-frequency detail (as determined by the polariza-

tion normals) and zero otherwise. For the corner in Fig. 3,

observe that the sharp point of the corner—where the Kinect

data is inaccurate due to multipath—is masked out since the

divergence in N
corr is high.

Let θ
depth and θ

corr denote the zenith components

of N
depth and N

corr from section 4.1.1. Within each

patch, we rotate the corrected normals, i.e., R̂ =

argminR

∥∥∥M⊙ θ
depth −R (θcorr)

∥∥∥
2

2

. To correct for re-

fractive index, the normals are updated by applying the ro-

tation operator

N
corr := R̂ (Ncorr) . (8)

2Zenith distortion could also occur when assumption 4 is violated. In

such a case, model mismatch occurs because a mixed diffuse and specular

surface does not conform to either Equation 3 or 4. Because a deviation

is observed only in the zenith angle, Equation 8 serves a dual purpose of

correcting both refractive distortion and model mismatch error.
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Figure 5. Within the dielectric range (n=1.3 to 1.8), refractive dis-

tortion has little effect on shape reconstruction (simulated exam-

ple). We simulate a scene with three spheres, each having differ-

ent material properties but geometrically identical. If the refractive

index is unknown—and a hard-coded threshold is used—the esti-

mated surface normals shown in the bottom row of (a)-(c) exhibit

slight distortion. When the surfaces are integrated, shown in the

upper row of (a)-(c), the shape changes slightly, shown in (d).

4.2. Corrected normals from polarization to en­
hance the coarse depth map

Given the corrected normals, it is possible to integrate to

obtain the 3D shape. Unfortunately, surface normal integra-

tion is known to be a challenging task due to depth discon-

tinuities [1, 48]. To recover plausible 3D shape, we develop

an integration scheme that incorporates the input depth map

(D) and physical intuition from polarization (Ncorr) to re-

cover the depth coordinates of the surface D̂ ∈ R
M×N .

4.2.1 Spanning tree constraint

The standard way to integrate surface normals uses the well-

known Poisson equation, written as ∇2
D̂ = ∇T

N
corr for

our problem. This is the optimal solution in the sense of

least squares and works well when the noise model is asys-

tematic.

For the polarization problem, the surface normals have

systematic error. Intuitively, it is desirable to avoid integra-

tion using unreliable surface normals. In particular, the sur-

face can be recovered in closed form by using only the min-

imum spanning tree over a weighted, 2D graph (the span-

ning tree is found using Kruskal’s algorithm). The optimal

solution is written as

∇2

SD̂ = ∇T
SN

corr, (9)

where S denotes the set of gradients used in the reconstruc-

tion and ∇2

S and ∇T
S represent Laplace and divergence op-

erators computed over S. For accurate integration, the set S

includes a spanning tree of the graph. Let Wx,y denote the

weights of the 2D grid. To find the weights, most previous

work uses either random sampling, gradient magnitudes, or

constraints on integrability [1, 8].

The physics of polarization are used to motivate the se-

lection of graph weights. Specifically, the polarization nor-



mals are considered to be noisy when the degree of polariza-

tion ρ is low.3 A low degree of polarization most commonly

occurs when the zenith angle is close to zero (i.e. fronto-

parallel surfaces). For the depth map, the mask operator M,

defined in section 4.1.3, provides a weight of confidence.

We initialize S, the set of gradients used in the integra-

tion, as the empty set. The first gradients that are added to

S are those that lie on the minimum spanning tree of the

weighted graph with weights

W = ρ if ρ > τ andM = 0, W = τ otherwise, (10)

where τ reflects the level of confidence in the polarization

vs depth normals. We then update S by using the iterative

α-approach described in [1], with the additional inclusion

of both N
corr and N

depth in the update process. Finally, we

update the corrected normals as

N
corr
x,y := N

depth
x,y if Wx,y ≤ τ. (11)

4.2.2 Depth fidelity constraint

When integrating surface normals, only a relative 3D shape

up to an uknown offset and scaling is obtained. Here, the

depth fidelity constraint serves to preserve the global co-

ordinate system and enforce consistency between the in-

tegrated surface and accurate regions of the depth map.

Specifically, the depth constraint takes the form of
∥∥∥M⊙

(
D̂−D

)∥∥∥
2

2

, (12)

where we have used element-wise multiplication with the

mask to enforce fidelity only where the depth map is reli-

able. Both the depth fidelity and spanning tree constraints

are incorporated into a sparse linear system
[

λM⊙ I

∇2

S

]
VEC

(
D̂

)
=

[
λVEC (M⊙D)
∇T

S (Ncorr)

]
, (13)

where VEC denotes the vectorization operator, I is the iden-

tity matrix of size MN×MN and λ is a scalar parameter to

adjust the tradeoff between spanning tree and depth fidelity

constraints. Refer to the supplement for solver details.

5. Assessment and Results

Previous techniques in shading enhancement have lim-

ited success under challenging material or lighting condi-

tions. The proposed technique, using polarization, is able to

handle more complicated scenes.

5.1. Robustness in the wild

Robustness to lighting conditions: Assuming unpolar-

ized incident light, the proposed technique is robust to vary-

ing lighting conditions. As shown in Fig. 6, depth enhance-

ment is shown to be near-identical for three lighting condi-

tions: (Fig. 6b) indoor lighting; (Fig. 6c) under interfering

3Estimation of the sinusoidal parameters from Equation 1 becomes un-

stable when there is little contrast between Imin and Imax.
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Figure 6. Polarization enhancement works in a range of lighting

conditions (real experiment). (a) ToF Kinect, due to multipath,

fails to capture an accurate corner. (b) Polarization enhancement

indoors. (c) Polarization enhancement under disco lighting. The

disco ball casts directional uneven lighting into the corner and in-

troduces caustic effects. (d) Polarization enhancement outdoors on

a partly sunny, winter day.
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Figure 7. Polarization enhancement works for varied material con-

ditions. A noisy depth skeleton is used as the depth template and

the refinement technique recovers the sphere for all materials.

illumination from a disco ball; and (Fig. 6d) even outdoors.

The last two conditions violate lighting assumptions of SfS.

Robustness to material properties: As shown in Fig. 7

the proposed technique is evaluated on three materials: (1)

diffuse; (2) glossy; and (3) mirror-like. Polarization en-

hancement is consistent for each material, though slightly

worse for the mirror-like object. Comparison papers that

use shading enhancement can only work on Lambertian sur-

faces [44, 14, 43, 34].

Robustness to diffuse multipath: Diffuse multipath has

been an active challenge in the ToF community [35, 13, 29].

The proposed technique of polarization enhancement drasti-

cally outperforms a state-of-the-art technique for multipath

correction, while using fewer images [29]. Refer to the cap-



tion of Fig. 8 for details.

5.2. Results on various scenes

Additional results are shown in Fig. 9, along with the

qualitative comparisons to shading refinement, directly per-

formed by Wu et al [43].

Diffuse face scene: The mannequin scene, shown in Fig.

9a, was selected to compare the best-case performance of

shading enhancement with our proposed technique of polar-

ization enhancement. Specifically, the mannequin is coated

with diffuse paint and lit by distant lighting to conform to

SfS assumptions. Even under ideal conditions for shad-

ing refinement, the proposed technique using polarization

leads to slightly improved 3D reconstruction. As shown in

the close-up, the concave eye socket causes challenges for

shading refinement due to diffuse interreflections.

Coffee cup scene: Fig. 9b shows depth reconstruction for

a coffee cup made of Styrofoam. Such a surface is not Lam-

bertian, and causes artifacts in shading refinement. The pro-

posed technique is dramatically better than shading refine-

ment, and as shown in the close-ups, is able to cleanly re-

cover the grooves (300 micron feature size). For this scene,

the proposed technique outperforms a laser scan of the ob-

ject (see supplement for comparison).

Two-face scene: To illustrate robustness to mixed-

materials, Fig. 9c shows a mannequinn, painted with two

paints of different pigments and specularities. Shading en-

hancement cannot handle the shininess of the face, so the

entire reconstruction is poor. Moreover, at the point of ma-

terial transition, local artifacts are visible (best seen in the

close-up). In comparison, the proposed technique of polar-

ization enhancement recovers the surface well, and is ro-

bust to material change (see close-up). Note that the lack

of artifacts at the point of material transition verifies that

assumption 4 need not be strict (since the paints have dif-

ferent proportions of diffuse and specular reflectivity).

Trash can scene: Fig. 9d depicts a scene for everyday

objects under natural lighting. The scene consists of a

hard, plastic trash can with a shiny, plastic liner in a well-

illuminated machine shop with windows. This is a challeng-

ing scene for depth enhancement, with uncontrolled light-

ing, mixed materials and specular objects. The proposed

technique performs drastically better than shading refine-

ment. In particular, the reconstruction from shading refine-

ment contains holes in the recovered surface that correspond

to specular highlights in the image. Furthermore, since the

liner is highly specular, shading refinement cannot resolve

the ridges. In comparison, the proposed technique recon-

structs many of the ridges in the liner.

5.3. Quantitative analysis of enhancement

Tab. 2 shows the mean absolute error wrt. a laser scan for

a sampling of scenes from this paper. Since shading-based
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Figure 8. The proposed technique can correct multipath interfer-

ence in ToF sensors. Comparing the proposed technique against

Naik et al. [29], which combines ToF with structured illumination

patterns from a projector. The technique by Naik et al. uses 25

coded illumination photographs. With 3 photographs from a po-

larizer and the Kinect depth map, the proposed technique preserves

the sharp edge of ground truth.

Table 2. Mean absolute error (mm) with respect to a laser scanner.

Init. Depth Shading [43] Proposed

Corner, Fig. 3 5.39 4.78 3.63

Mirror Ball, Fig. 7 8.50 17.58 8.25

Diffuse Face, Fig. 9a 18.58 18.30 18.28

Coffee Cup, Fig. 9b 3.79 3.84 3.48

techniques [43] cannot handle shiny objects like the chrome

sphere or glossy coffee cup, the error actually increases wrt.

the input depth. In contrast, the proposed technique of po-

larization reduces error for all scenes. Because polarization

can handle interreflections (which the Kinect cannot), po-

larization shows the most improvement on the corner scene.

Refer to Fig. 3 for additional metrics.

To verify the resolution enhancement of the proposed ap-

proach, we used a precision caliper to measure the grooves

of the cup in Fig. 9c at 300 microns. The proposed tech-

nique can resolve finer detail than some laser scannners.

5.4. Implementation details

As shown in Fig. 2, the capture setup includes the fol-

lowing: a Canon Rebel T3i DSLR camera with standard

Canon EF-S 18-55mm f/3.5-5.6 IS II SLR lens, a linear po-

larizer with quarter-wave plate, model Hoya CIR-PL. Cal-

ibration is performed on the polarizer’s transmission axis.

Values for τ and ǫ are the same for all scenes. The lat-

est model of Microsoft Kinect is used to obtain most depth

maps. Normal maps and depth maps are registered using the

intrinsic parameters of the Kinect and relative pose (trans-

lation only). To measure polarization cues the sensor re-

sponse must be linear, enforced by preprocessing CR2 raw

files from the camera. Ground truth is obtained using a

multi-stripe, triangulation, laser scanner and benchmarks

are obtained through ICP alignment.4 Source code, datasets

and runtime details can be found on the project webpage

(www.media.mit.edu/˜achoo/polar3D/).

4Laser Scanner: nextengine.com/assets/pdf/scanner-techspecs.pdf

www.media.mit.edu/~achoo/polar3D/
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Figure 9. Various captures, ranging from controlled scenes to complex scenes. Please zoom in using PDF viewer.

6. Discussion

In summary, we have proposed the first technique of

depth enhancement using polarization normals. Although

shading refinement is an established area, with incremental

progress each year, the proposed technique leverages differ-

ent physics to demonstrate complementary advantages.

Benefits: By using the depth map to place numerous con-

straints on the shape-from-polarization problem, this pa-

per resolves many of the ambiguities in prior shape-from-

polarization research while demonstrating compelling ad-

vantages over alternative techniques (SfS and PS). In par-

ticular, SfS and PS assume Lambertian objects and dis-

tant/controlled lighting, while the proposed technique has

demonstrated results on diffuse to mirror-like objects in

controlled and uncontrolled settings. Moreover, the pro-

posed technique can be made passive, can be implemented

in a single-shot, and requires no baseline (Tab. 1). While

not specific to multipath correction, the proposed technique,

while using fewer images, can outperform a paper entirely

dedicated to ToF multipath correction (Fig. 8).

Limitations: The proposed technique requires 3 images

for capture; however, off-the-shelf solutions allow single-

shot capture.5 For robust performance, the assumptions de-

5Polarization mosaic: moxtek.com/optics-product/pixelated-polarizer

scribed in Section 4 and Tab. 1 must be met. Note that some

of these limitations are also present in SfS and PS contexts.

For example, the proposed technique cannot handle spec-

ular interreflections, but SfS or PS methods cannot handle

any interreflections, whether diffuse or specular.

Open challenges: While the proposed technique is capa-

ble of obtaining encouraging results (e.g. Fig. 9d), several

scientific challenges remain, including: (1) better meth-

ods to compute polarization normals on scene facets con-

taining mixtures of diffuse and specular reflections (see

footnotes1,2), (2) whether there is a way to correctly resolve

high-frequency detail without resorting to the closed surface

heuristic (Sec. 4.1.2), and (3) alternate ways to circumvent

a low degree of polarization at fronto-parallel facets (Sec.

4.2.1). Additional information, e.g., from multi-view data,

circular polarization, or shading, might be a way to improve

on our technique. In conclusion, we hope our practical re-

sults spur interest in using polarization for 3D sensing.
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