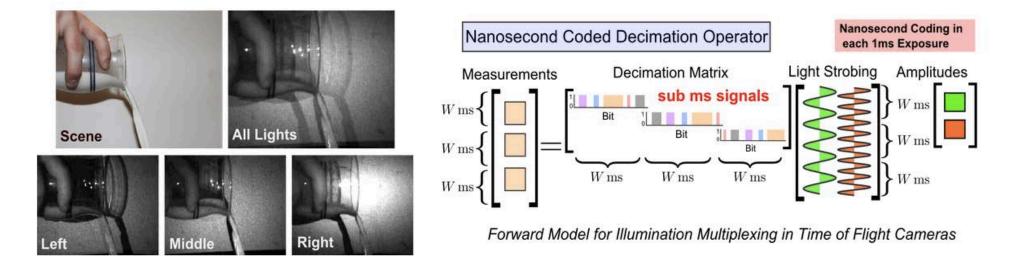
Demultiplexing Illumination via Low Cost Sensing and Nanosecond Coding

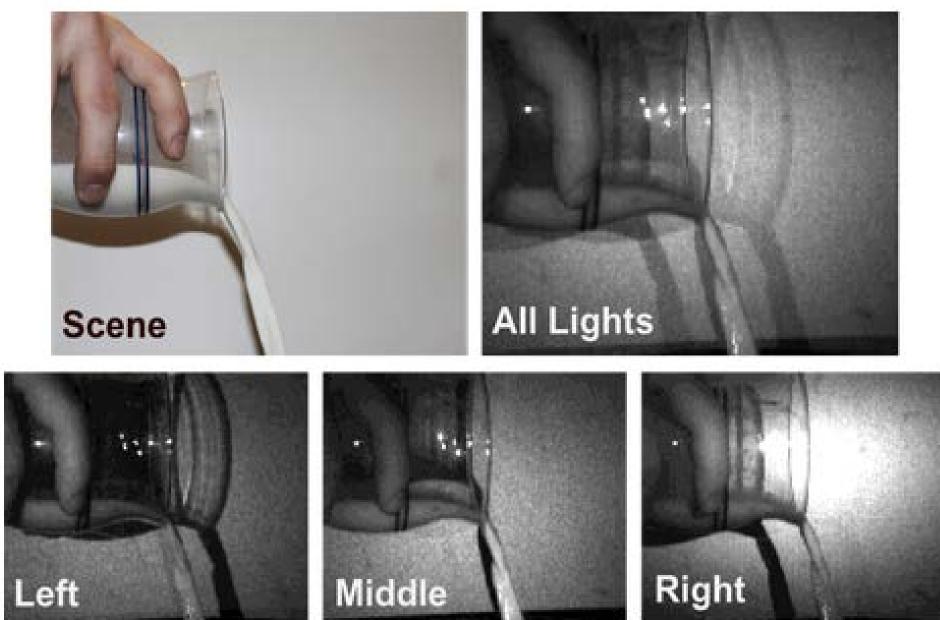


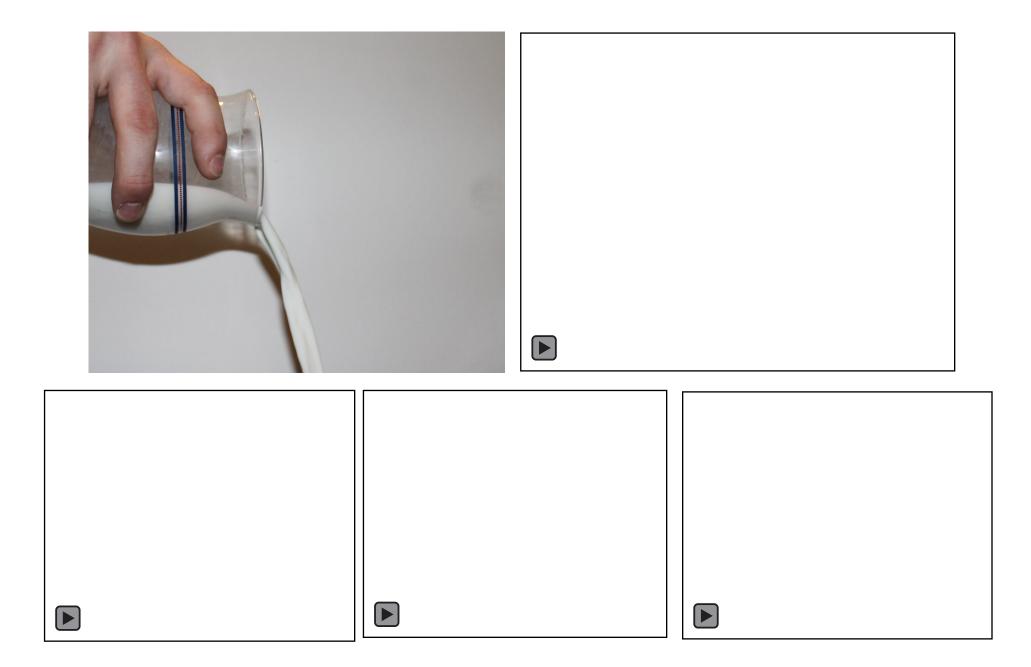
Achuta Kadambi (MIT)Ayush Bhandari (MIT)Refael Whyte (Waikato)Adrian Dorrington (Waikato)Ramesh Raskar (MIT)

http://media.mit.edu/~achoo/demux Presented at ICCP 2014 in Santa Clara

Problem Statement

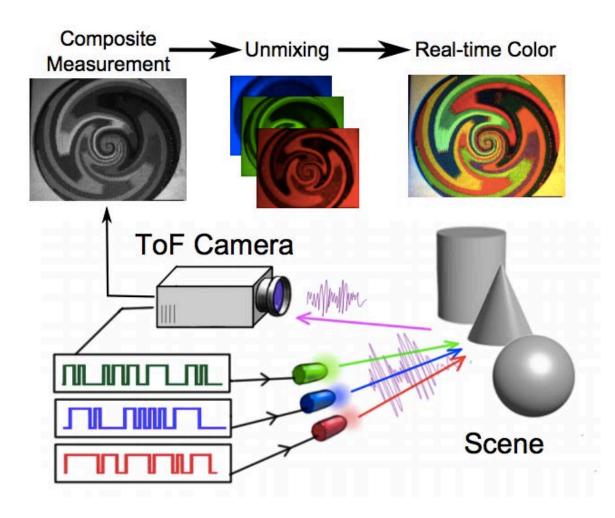
Amplitude Image from a 3D ToF camera





Application: Color Time of Flight

Ē



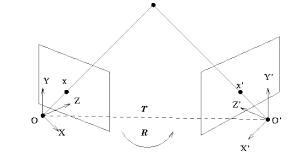


3D Time of Flight Cameras (Background)

Stereo Cameras

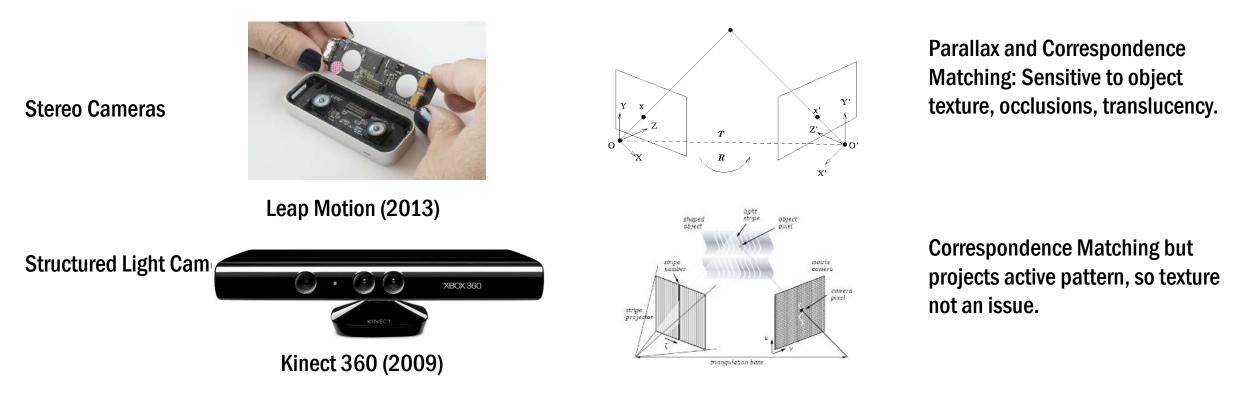
3D Cameras

Leap Motion (2013)

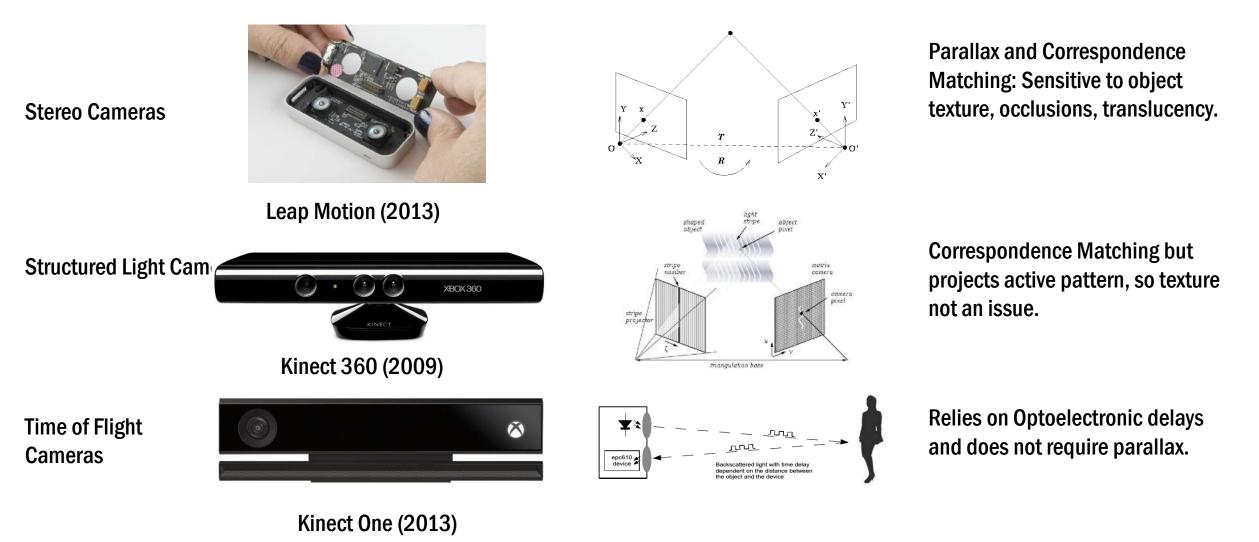


Parallax and Correspondence Matching: Sensitive to object texture, occlusions, translucency.

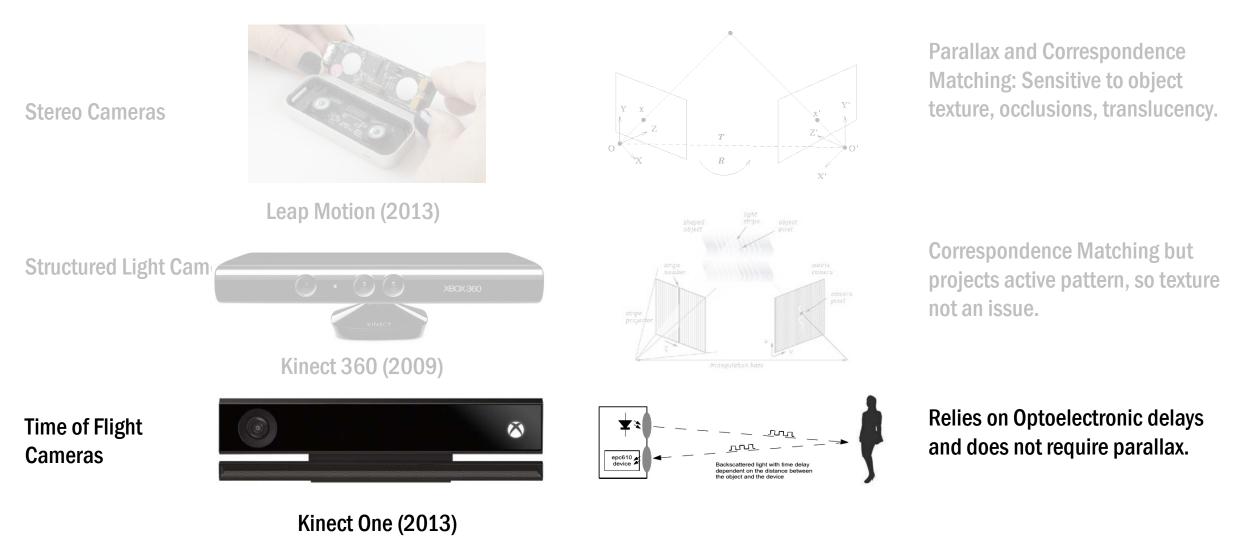
Real-time 3D Devices



Real-time 3D Devices



Real-time 3D Devices



Time of Flight

Time it takes for an object, particle, or wave to travel a distance through a medium.

LIDAR

Police Speed Gun

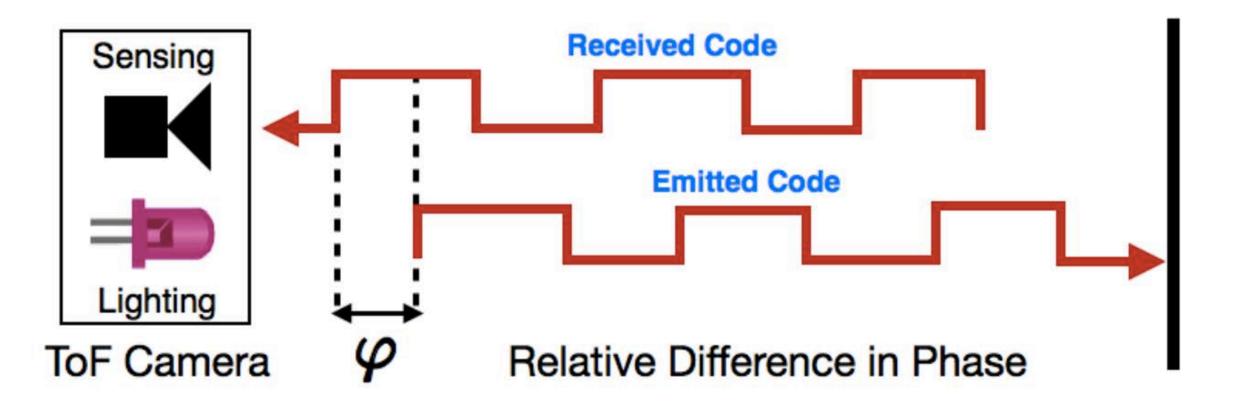
Microsoft Kinect

1638: First Time of Flight Camera?

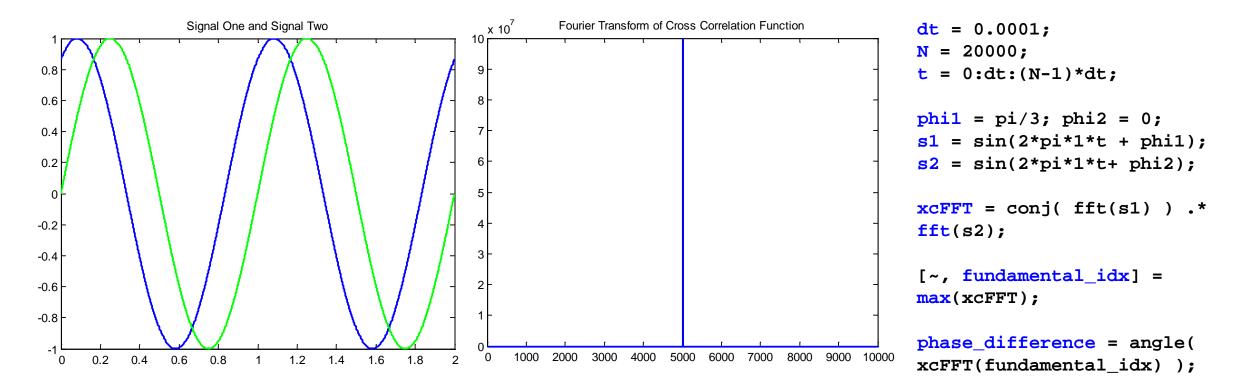
Graphic courtesy: phys.colorado.edu

2000: Time of Flight 3D Cameras

Ę

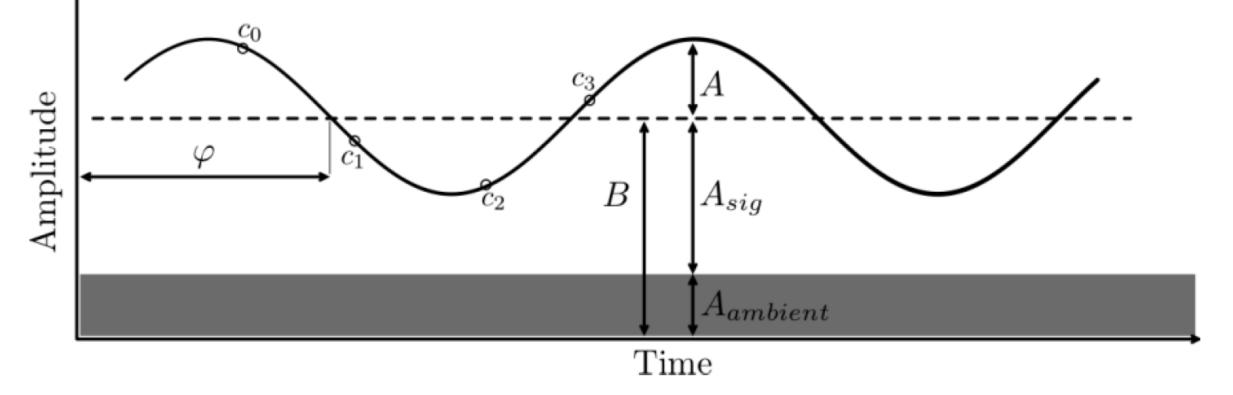


Review: Fourier Transform of Xcorr Encodes Phase



Key point: Conventional ToF sensors directly measure the crosscorrelation function on the sensor level.

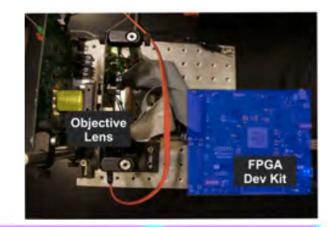
Output: Phase and Amplitude



Depth and Monochrome Data from the Xcorr Function

Output: Phase and Amplitude

Reflection/Albedo (monochrome)



Range of Foreground

Phase/Range/Depth

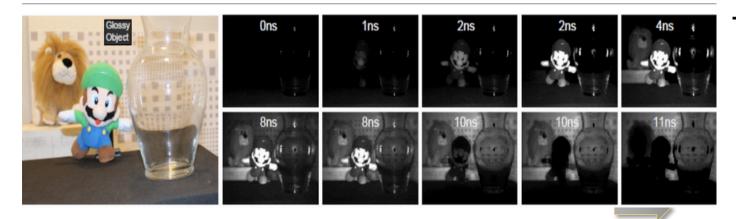
Nanophotography (Coded ToF)

Coded Time of Flight Cameras: Sparse Deconvolution to Address Multipath Interference and Recover Time Profiles

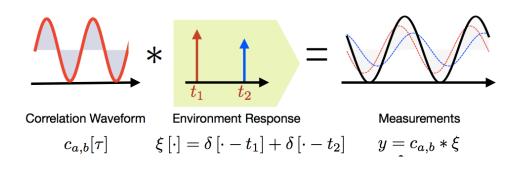
<u>Achuta Kadambi¹</u> Refael Whyte^{1, 2} <u>Ayush Bhandari¹</u> Lee Streeter² <u>Christopher Barsi¹</u> <u>Adrian Dorrington²</u> <u>Ramesh Raskar¹</u>

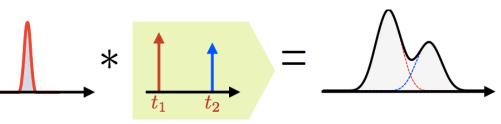
¹<u>Massachusetts Institute of Technology</u> ²<u>University of Waikato</u>

ACM Transactions on Graphics 2013 (SIGGRAPH Asia)

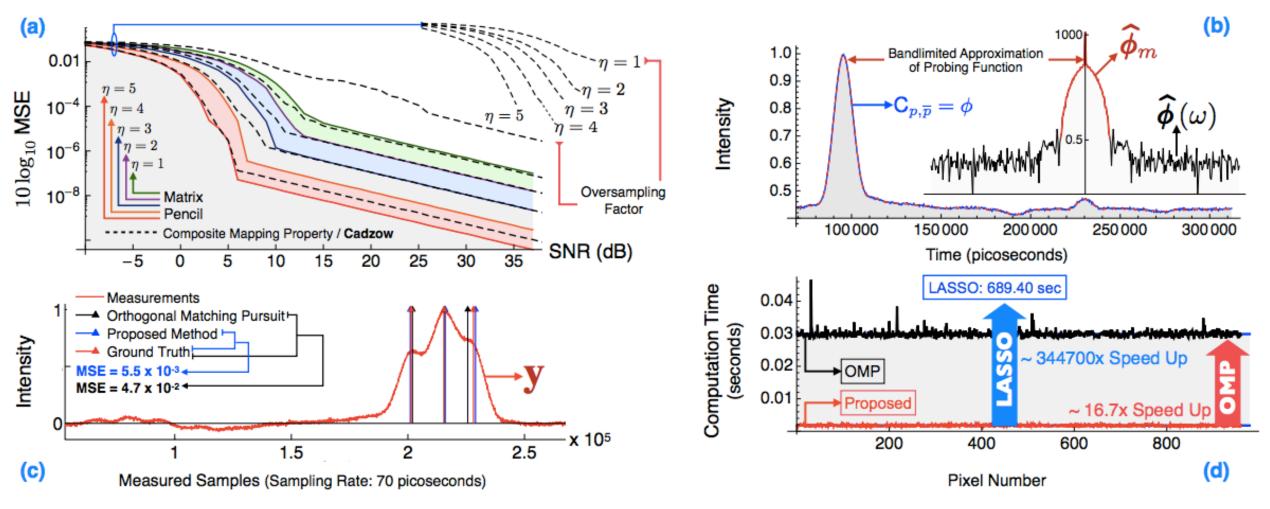


A Kadambi et al. ACM Trans. On Graphics Cf. also work from Wolfgang Heidrich grp





Sparsity without Sparse Regularization?



A Bhandari, A Kadambi, R Raskar, ICASSP 2014

Previous: Color Time of Flight

Not real-time. Sequential Capture

Muttayane A, University of Waikato 2006

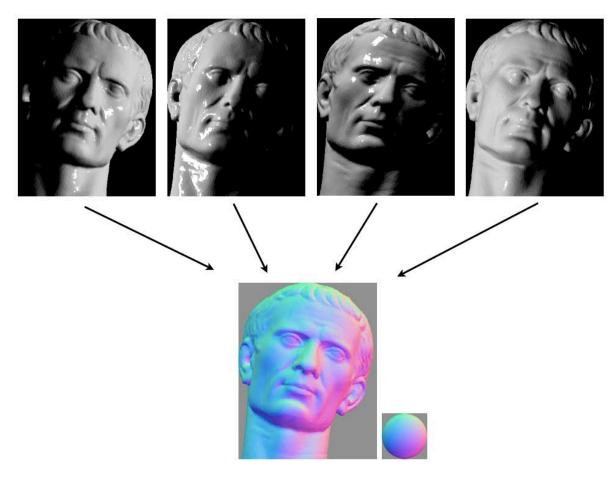
Illumination and Multiplexing (Background)

Illumination and Photography

Ę

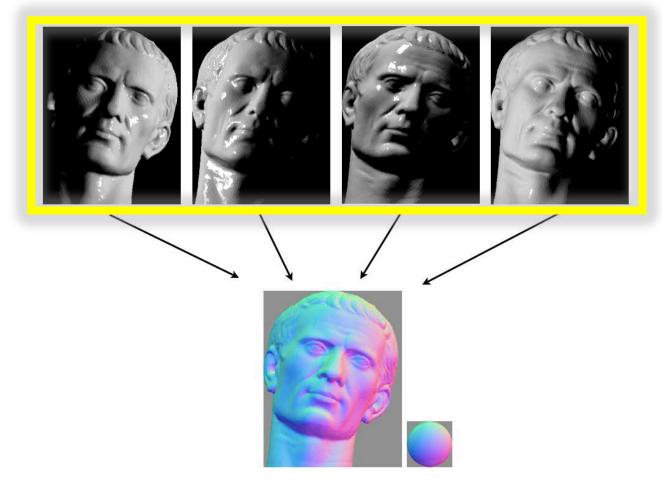
Ken Rockwell

Computational Lighting



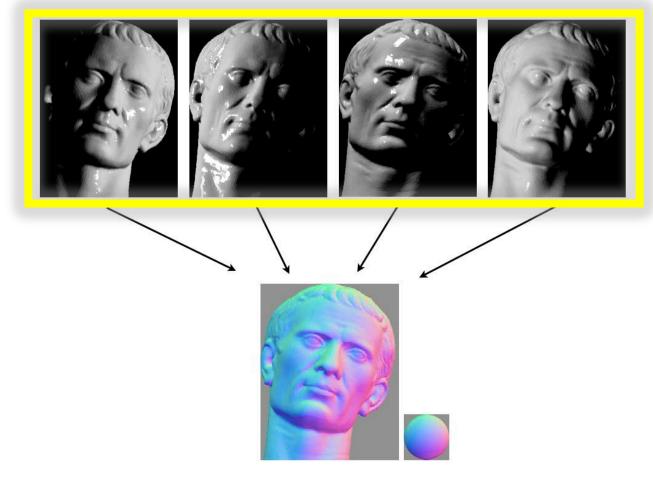
Photometric Stereo

Computational Lighting



Photometric Stereo

Computational Lighting



Photometric Stereo

Wu et al. PAMI 2011

Illumination Capture

Studio Lighting

No Relighting Not Dynamic

Increasing Computation

Illumination Capture

Studio Lighting

No Relighting Not Dynamic

Light Stage (Siggraph '04) Dynamic Requires Fast Camera No Depth Information

Increasing Computation

Illumination Capture

Studio Lighting

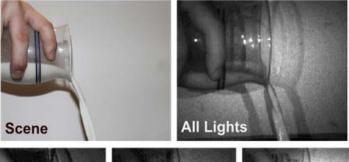
No Relighting Not Dynamic

Light Stage (Siggraph '04)

Dynamic Requires Fast Camera No Depth Information

Time of Flight 3D Multiplexing

Dynamic Repurposes Depth Sensor 3D Scene Information



Increasing Computation

Illumination Multiplexing

Cast as a Linear Inverse Problem

A Theory of Multiplexed Illumination

Yoav Y. Schechner Dept. Electrical Engineering Technion - Israel Inst. Technology Haifa 32000, ISRAEL yoav@ee.technion.ac.il Shree K. Nayar and Peter N. Belhumeur

Dept. Computer Science Columbia University New York, NY 10027 {nayar,belhumeur}@cs.columbia.edu

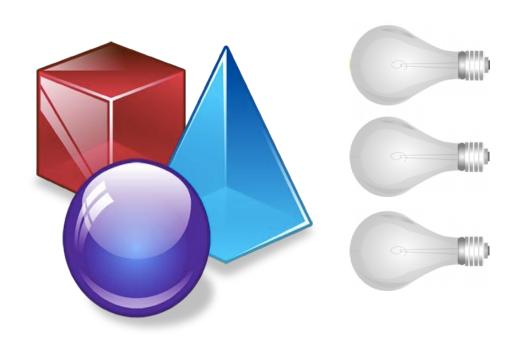
Multiplexed Fluorescence Unmixing

Marina Alterman, Yoav Y. Schechner Department of Electrical Engineering Technion - Israel Inst. Technology, Haifa 32000, Israel amarina@tx.technion.ac.il, yoav@ee.technion.ac.il Aryeh Weiss School of Engineering Bar-Ilan University, Ramat Gan 52900, Israel aryeh@cc.huji.ac.il

Illumination Multiplexing within Fundamental Limits

Netanel Ratner Yoav Y. Schechner Department of Electrical Engineering Technion - Israel Institute of Technology Haifa 32000, ISRAEL ratner@tx.technion.ac.il yoav@ee.technion.ac.il

At a single pixel!

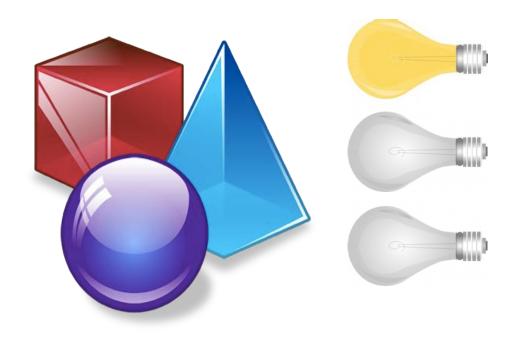


$$\begin{bmatrix} I^{(1)}(x,y) \\ I^{(2)}(x,y) \\ I^{(3)}(x,y) \end{bmatrix} = \begin{bmatrix} ? ? ? ? \\ ? ? ? ? \\ ? ? ? \end{bmatrix} \begin{bmatrix} \alpha^{(1)} \\ \alpha^{(2)} \\ \alpha^{y} \end{bmatrix}$$
$$\mathbf{Y} = \mathbf{H} \qquad \mathbf{X}$$
$$\mathbf{M}$$

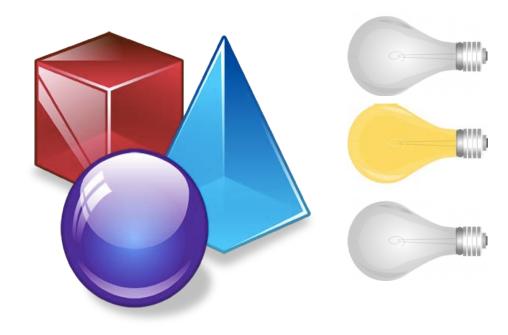
$$\mathbf{W} = \mathbf{M} \qquad \mathbf{X}$$

$$\mathbf{M}$$

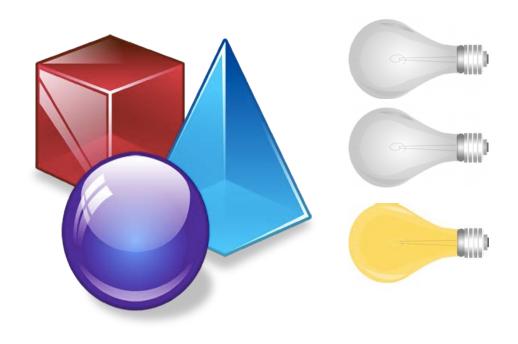
$$\mathbf{M$$



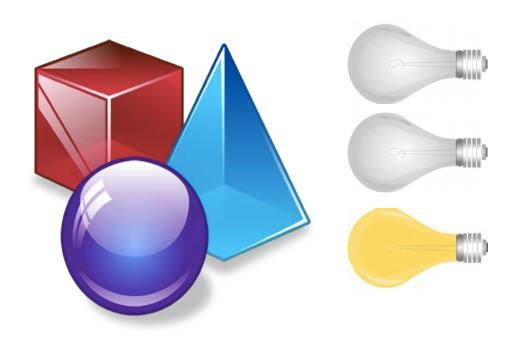
 $\begin{bmatrix} I^{(1)}(x,y) \\ I^{(2)}(x,y) \\ I^{(3)}(x,y) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ ? & ? & ? \\ ? & ? & ? \end{bmatrix} \begin{bmatrix} \alpha^{(1)} \\ \alpha^{(2)} \\ \alpha^{y} \end{bmatrix}$ Recovered **Multiplexing** Measured Amplitudes Matrix Amplitudes



 $\begin{vmatrix} I^{(1)}(x,y) \\ I^{(2)}(x,y) \\ I^{(3)}(x,y) \end{vmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ ? & ? & ? \end{bmatrix} \begin{bmatrix} \alpha^{(1)} \\ \alpha^{(2)} \\ \alpha^{y} \end{bmatrix}$ Recovered **Multiplexing** Measured Amplitudes Matrix Amplitudes

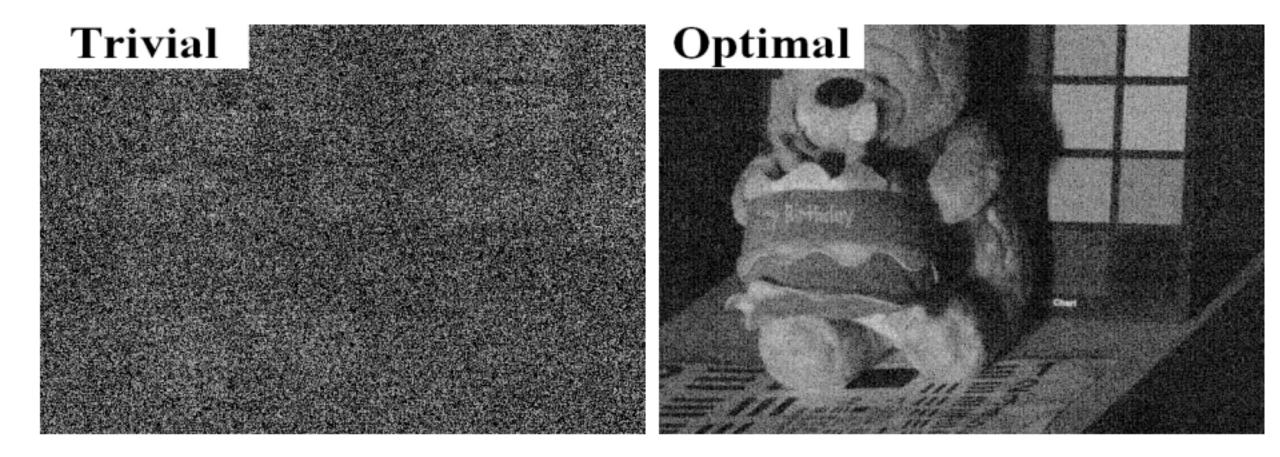


 $\begin{bmatrix} I^{(1)}(x,y) \\ I^{(2)}(x,y) \\ I^{(3)}(x,y) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha^{(1)} \\ \alpha^{(2)} \\ \alpha^{y} \end{bmatrix}$ Recovered **Multiplexing** Measured Amplitudes Matrix Amplitudes



 $\begin{array}{c|c} I^{(1)}(x,y) \\ I^{(2)}(x,y) \\ I^{(3)}(x,y) \end{array} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha^{(1)} \\ \alpha^{(2)} \\ \alpha^{\gamma} \end{bmatrix}$ Recovered **Multiplexing** Measured Amplitudes Matrix Amplitudes

Easy to Invert! But Not Optimal for SNR

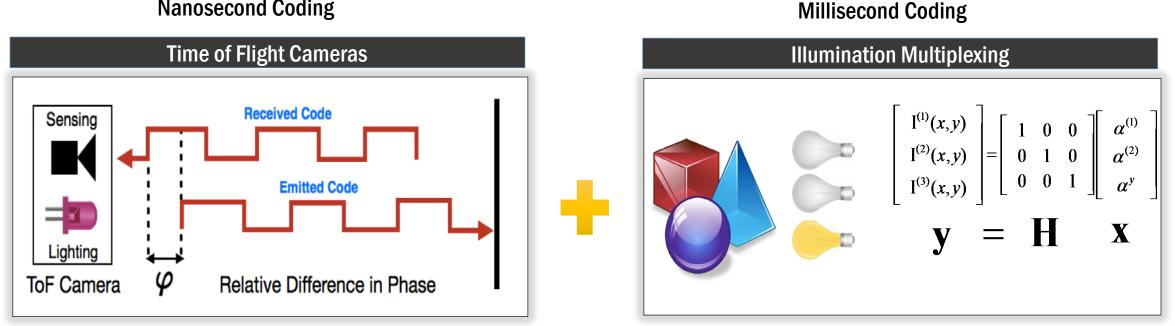


Ratner and Schechner 2007 CVPR

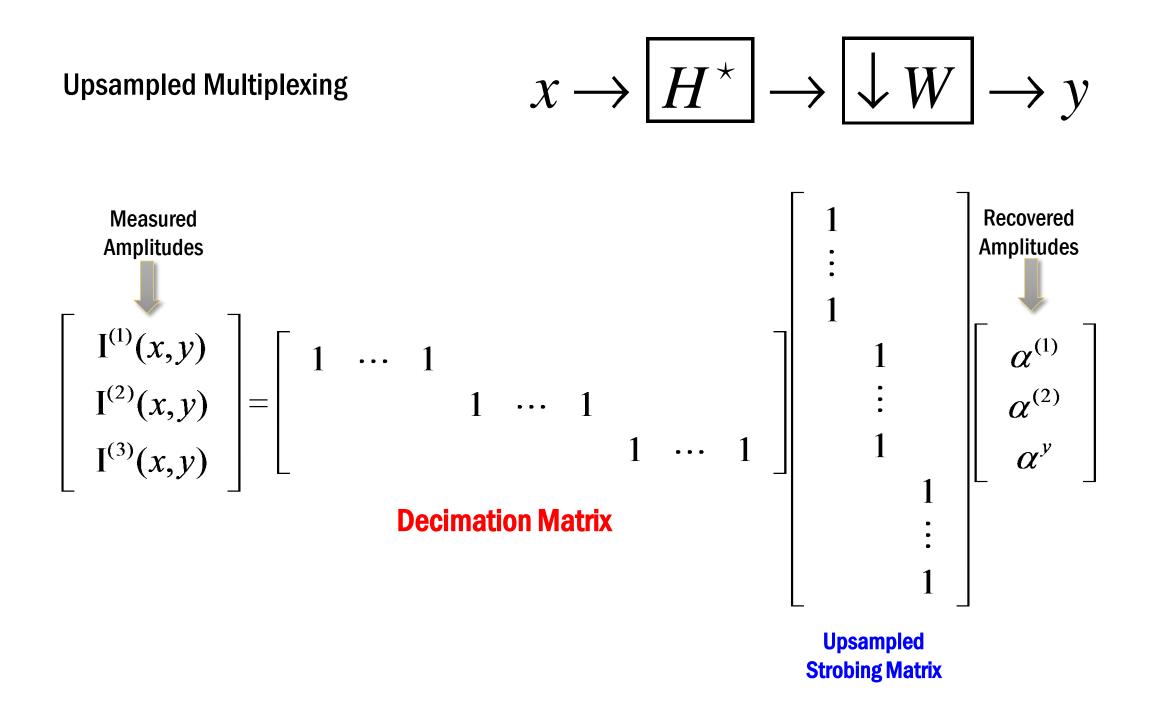
Main Contribution

Ę

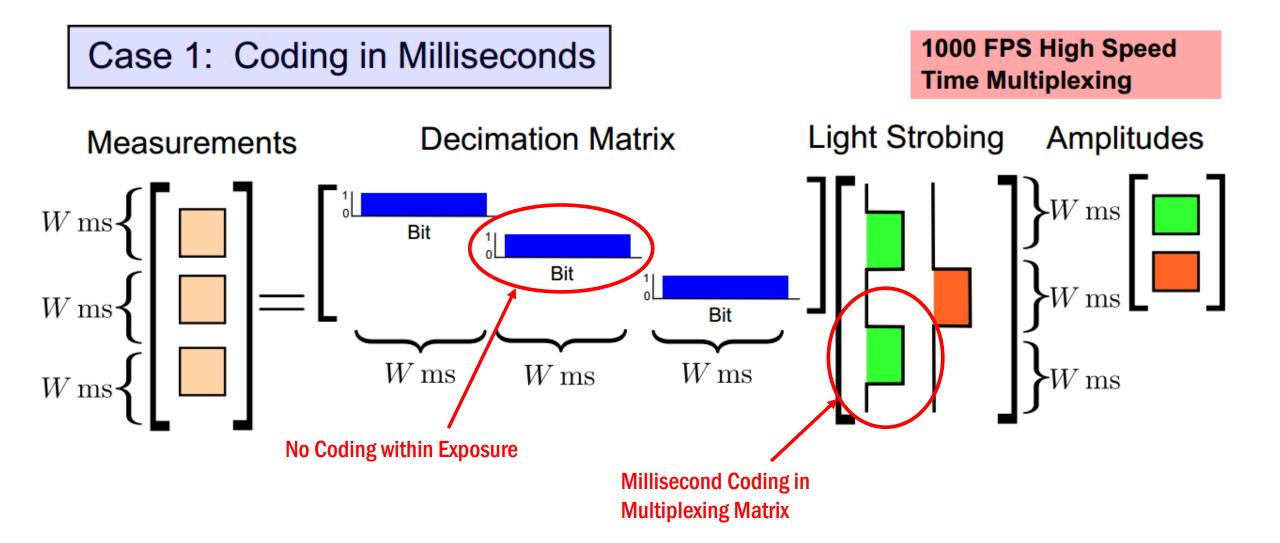
Nanosecond Coding



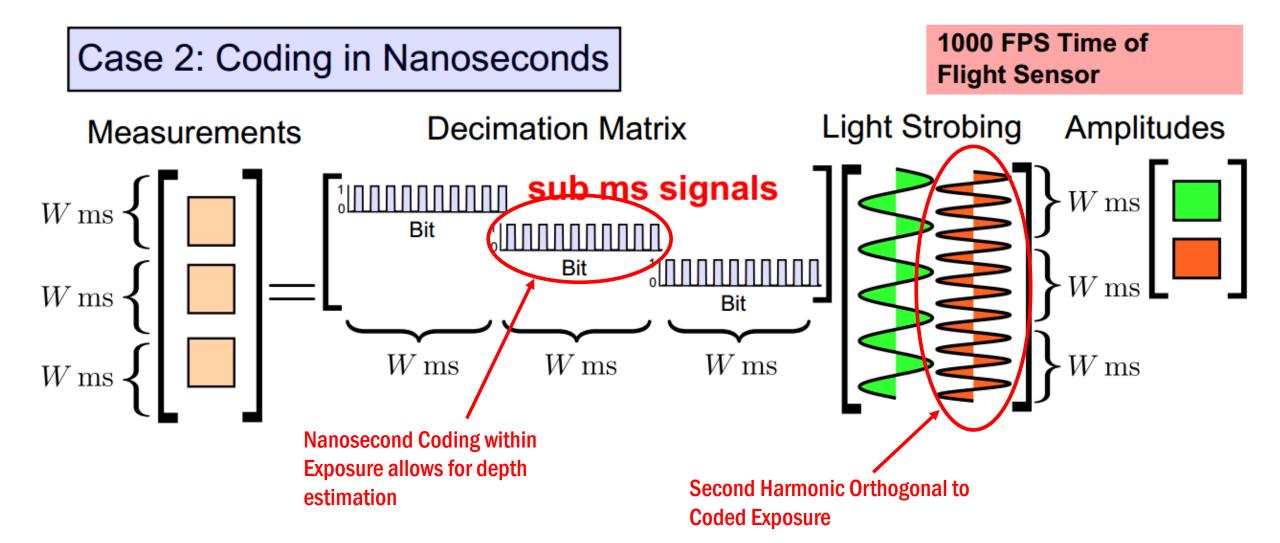
Time of Flight + Reflectance Multiplexing



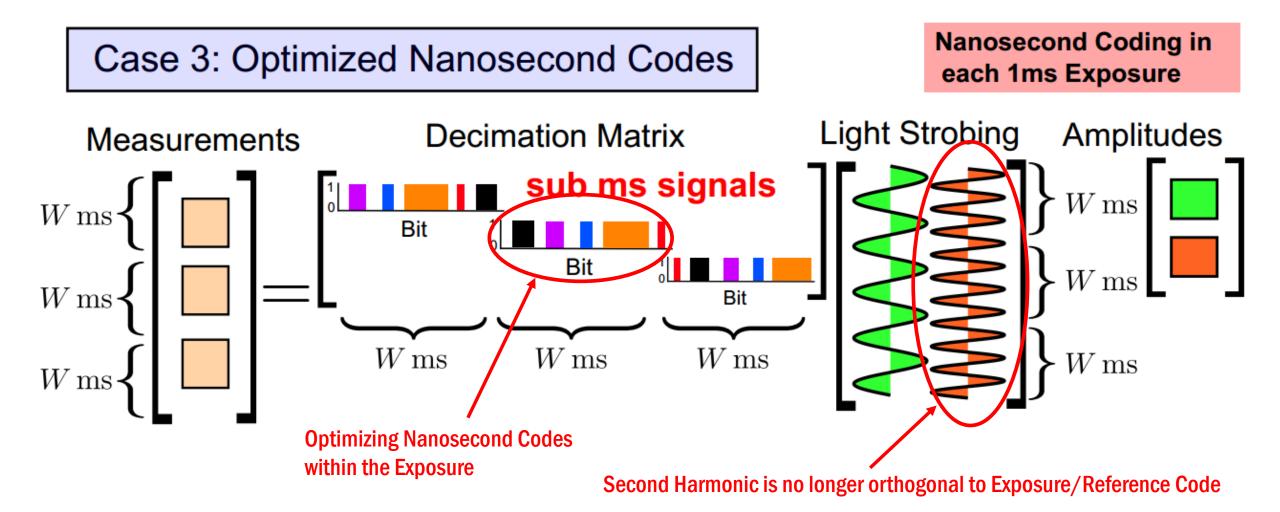
Millisecond Coding with High Speed Camera



Nanosecond Coding with Time of Flight Sensor



"Optimal" Nanosecond Coding



Comparing Inverse Problems

Conventional Multiplexing

y =	Hx
------------	----

- y_i : Measured Intensity at i-th Image
- H: Millisecond Strobing Pattern of Lights
- x_i : Amplitude of the i-th Illumination Source

Time of Flight 3D Multiplexing

Ty = TLx

- T: Toeplitz Circulant Matrix of Reference Code Electronic Computation
- L: Upsampled Light Source Strobing Pattern Optical Computation

Comparing Inverse Problems

Conventional Multiplexing

y =	Hx
------------	----

- y_i : Measured Intensity at i-th Image
- H: Millisecond Strobing Pattern of Lights
- x_i : Amplitude of the i-th Illumination Source

Time of Flight 3D Multiplexing

Ty = TLx

- T: Toeplitz Circulant Matrix of Reference Code Electronic Computation
- *L*: Upsampled Light Source Strobing Pattern *Goal Solve for T and L* Optical Computation

A Simple Option: Optimization

Ē

Merges some constraints of the optimization program to the physical constraints.

$$\Sigma = \mathbb{E} \left[(\hat{\mathbf{x}} - \mathbb{E}[\hat{\mathbf{x}}]) (\hat{\mathbf{x}} - \mathbb{E}[\hat{\mathbf{x}}])^{\top} \right]$$
No problem...
$$\{\mathbf{T}^{\star}, \mathbf{L}^{\star}\} = \underset{\mathbf{T}, \mathbf{L}}{\operatorname{arg\,min}} \parallel \mathbf{M}^{\star} - \mathbf{TL} \parallel_{F} \quad \text{s.t.} \qquad \mathbf{M}^{\star} = \mathbf{T}^{\star} \mathbf{L}^{\star}. \quad \mathcal{C} \subset \mathbb{R}^{m \times p}$$

$$1 \succcurlyeq \operatorname{vec}(\mathbf{T}) \succcurlyeq 0, \quad 1 \succcurlyeq \operatorname{vec}(\mathbf{L}) \succcurlyeq 0, \quad \mathbf{T} \in \mathcal{C}$$

$$\mathbf{M}^{\star} = \underset{\mathbf{Q}}{\operatorname{arg\,min}} \operatorname{tr}(\mathbf{Q}) \quad \text{s.t.} \qquad \underset{\mathbf{C} \in \mathcal{C}}{\operatorname{arg\,min}} \parallel \mathbf{T}^{(k)} - \mathbf{C} \parallel_{F}$$

$$1 \succcurlyeq \operatorname{vec}(\mathbf{M}) \succcurlyeq 0, \quad \mathbf{Q} \succcurlyeq \left(\mathbf{M}^{\top} \Sigma^{-1} \mathbf{M}\right)^{-1} \quad \text{MSE} = \frac{1}{n} \operatorname{tr} \left[\left(\mathbf{M}^{\top} \Sigma^{-1} \mathbf{M}\right)^{-1} \right]$$

$$\operatorname{arg\,min} \frac{1}{n} \operatorname{tr} \left[\left(\mathbf{M}^{\top} \Sigma^{-1} \mathbf{M}\right)^{-1} \right] \quad \text{s.t.} \quad 1 \succcurlyeq \operatorname{vec}(\mathbf{M}) \succcurlyeq 0$$

Finding the Closest Circulant Matrix admits a closed form solution.

$\mathbf{\Sigma} = \mathbb{E} \left[\left(\mathbf{\hat{x}} - \mathbb{E}[\mathbf{\hat{x}}] \right) \left(\mathbf{\hat{x}} - \mathbb{E}[\mathbf{\hat{x}}] ight)^{ op} ight]$ **Remarks on Optimality** $\mathbf{M}^{\star} = \mathbf{T}^{\star} \mathbf{L}^{\star}. \quad \mathcal{C} \subset \mathbb{R}^{m \times p}$ $\{\mathbf{T}^{\star}, \mathbf{L}^{\star}\} = \arg \min \| \mathbf{M}^{\star} - \mathbf{T}\mathbf{L} \|_{F}$ s.t. T.L $\mathbf{c}_{\omega} = \mathbf{M}\mathbf{x} + \boldsymbol{\eta}$ $1 \succcurlyeq \operatorname{vec}(\mathbf{T}) \succcurlyeq 0, \quad 1 \succcurlyeq \operatorname{vec}(\mathbf{L}) \succcurlyeq 0, \quad \mathbf{T} \in \mathcal{C}$ **Details in the Paper!** $\| \mathbf{T}^{(k)} - \mathbf{C} \|_{F}$ $\mathbf{M}^{\star} = \operatorname*{arg\,min} \operatorname{tr}(\mathbf{Q}) \, \mathrm{s.t.}$ $\mathbf{C} \in \mathcal{C}$ $1 \succcurlyeq \operatorname{vec}(\mathbf{M}) \succcurlyeq 0, \ \mathbf{Q} \succcurlyeq \left(\mathbf{M}^{\top} \mathbf{\Sigma}^{-1} \mathbf{M}\right)^{-1} \ \mathrm{MSE} = \frac{1}{n} \operatorname{tr} \left[\left(\mathbf{M}^{\top} \mathbf{\Sigma}^{-1} \mathbf{M}\right)^{-1} \right]$ $\underset{\mathbf{M}}{\operatorname{arg\,min}} \ \frac{1}{n} \operatorname{tr} \left[\left(\mathbf{M}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{M} \right)^{-1} \right] \quad \text{s.t.} \quad 1 \succcurlyeq \operatorname{vec}(\mathbf{M}) \succcurlyeq 0$

Finding the Closest Circulant Matrix admits a closed form solution.

ToF Multiplexing is Preconditioning on the Toeplitz Matrix

 $\mathbf{y} = \mathbf{L}\mathbf{x} \xrightarrow{T(\cdot)} \mathbf{T}\mathbf{y} = \mathbf{T}\mathbf{L}\mathbf{x}$

L is the multiplexing matrix. (light switching pattern

T is a Toeplitz Circulant Matrix

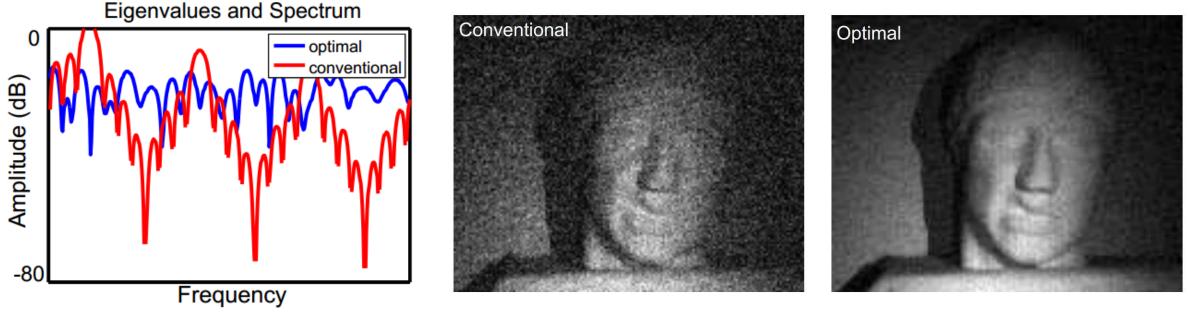
Proposition 3.1

Suppose for millisecond multiplexing, **H** is orthogonal. Then the nanosecond light strobing matrix **L** is orthogonal and the optimal exposure code **r** is broadband in frequency domain.

→ Shortcut to Avoid Optimization
→ "Optimal" in what sense?

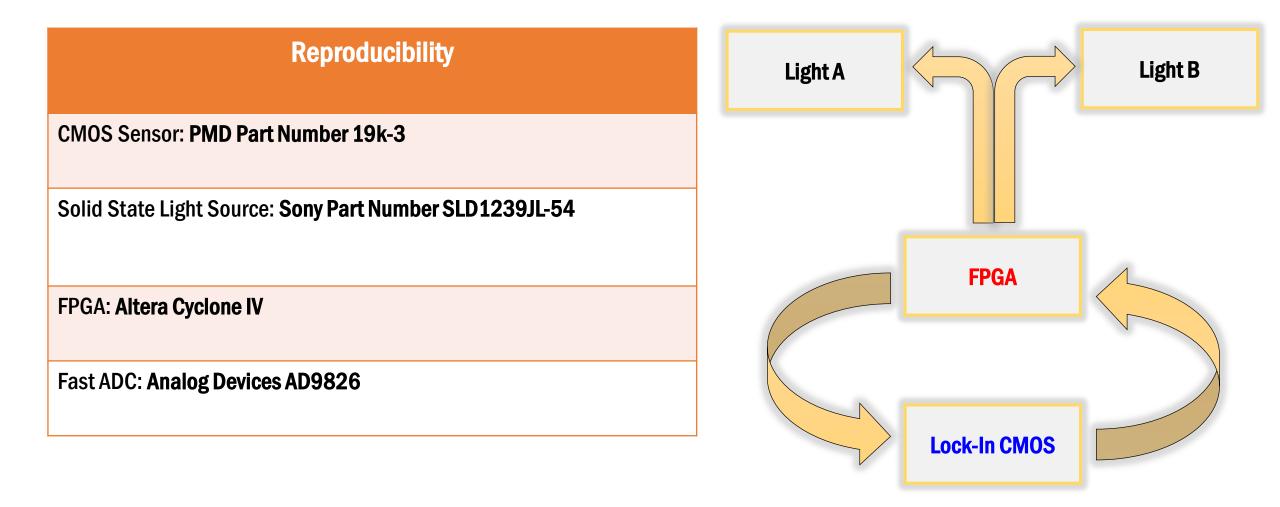
Finding Optimal Codes allows a Well Conditioned Problem

Ļ

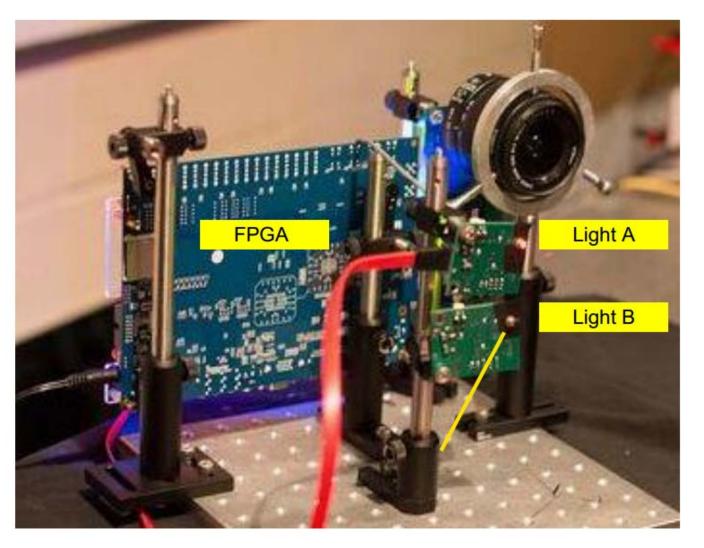


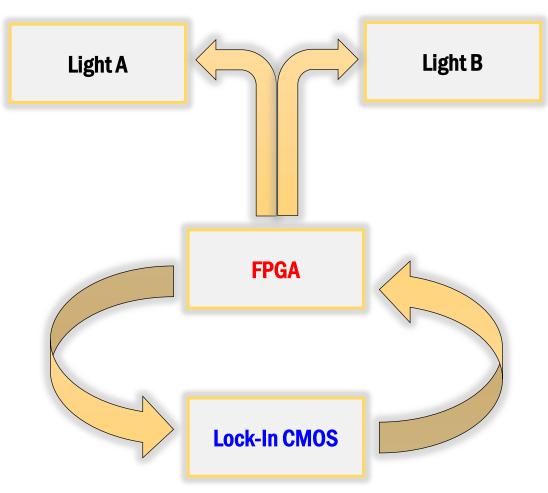
(a) Ill Conditioned

(b) Better Conditioned



Prototype Camera





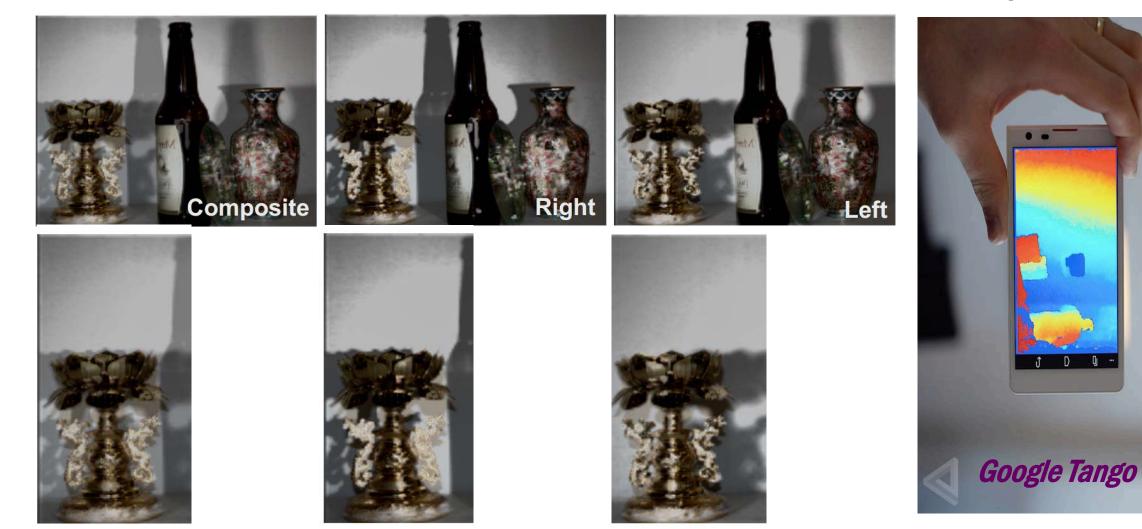
Shoot Now, Relight Later

Shoot Now, Relight Later

Shoot Now, Relight Later

Shoot Now, Relight Later

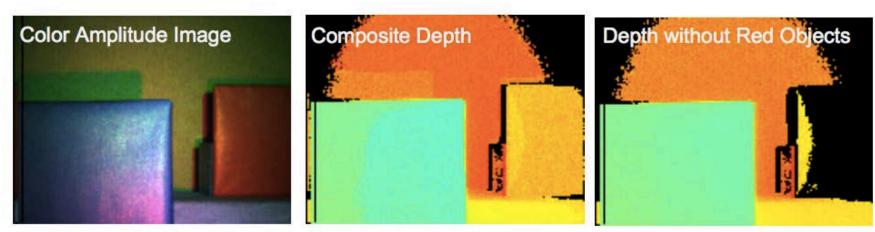
Enhance Mobile Experience?



Shoot Now, Relight Later

Ę

RGBD Time of Flight with One Sensor



Future Work in 3D Multiplexing

• Multiplexing for Depth Accuracy?

• Multiplexing and Photometric Approaches?

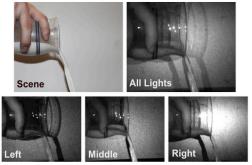
• Hyperspectral RGBD?

Achuta Kadambi <u>achoo@mit.edu</u> Media Laboratory, MIT

Demultiplexing Illumination via Low Cost Sensing and Nanosecond Coding

Achuta Kadambi¹ Ayush Bhandari¹ Refael Whyte² Adrian Dorrington² Ramesh Raskar¹ ¹Massachusetts Institute of Technology ²University of Waikato

IEEE ICCP 2014, Santa Clara CA



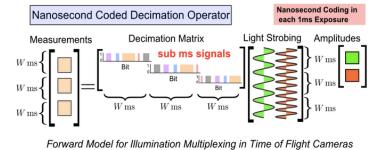


Figure 1: Demultiplexing Illumination with a Time of Flight Camera. The scene is in upper-left. A ToF camera is synced to 3 light sources; we measure all three light sources (upper-right) and can decompose as if only one of the individual light sources was on. Note the distinction of shadows in the separated images.

Project Webpage: www.media.mit.edu/~achoo/demux Personal Webpage: www.media.mit.edu/~achoo/

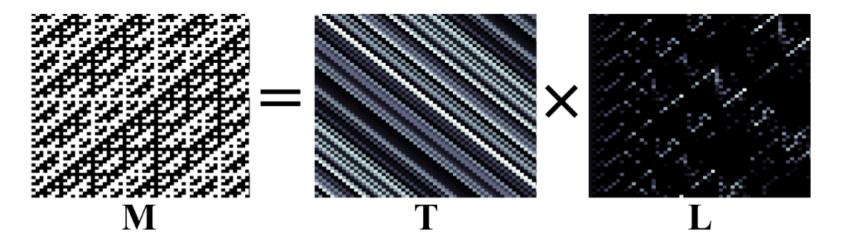
Coding in Time not Space

Collaborators:

Achuta Kadambi Ayush Bhandari Refael Whyte Adrian Dorrington Ramesh Raskar

Thanks To: Hisham Bedri (MIT) Boxin Shi (MIT) Gordon Wetzstein (MIT) Moshe Ben-Ezra (MIT)

Optimizing over the Product



 $\mathbf{c}_{\omega} = \mathbf{M}\mathbf{x} + \boldsymbol{\eta}$

$$\begin{split} \boldsymbol{\Sigma} &= \mathbb{E}\left[\left(\hat{\mathbf{x}} - \mathbb{E}[\hat{\mathbf{x}}] \right) \left(\hat{\mathbf{x}} - \mathbb{E}[\hat{\mathbf{x}}] \right)^{\top} \right] \\ \text{MSE} &= \frac{1}{n} \text{tr} \left[\left(\mathbf{M}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{M} \right)^{-1} \right] \end{split}$$

Optimizing over the Product

$$\mathbf{c}_{\omega} = \mathbf{M}\mathbf{x} + \boldsymbol{\eta}$$

$$\boldsymbol{\Sigma} = \mathbb{E}\left[(\hat{\mathbf{x}} - \mathbb{E}[\hat{\mathbf{x}}]) (\hat{\mathbf{x}} - \mathbb{E}[\hat{\mathbf{x}}])^{\top} \right]$$

$$\mathbf{MSE} = \frac{1}{n} \operatorname{tr} \left[(\mathbf{M}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{M})^{-1} \right]$$

$$\operatorname{arg\,min}_{\mathbf{M}} \frac{1}{n} \operatorname{tr} \left[\left(\mathbf{M}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{M} \right)^{-1} \right] \quad \text{s.t.} \quad 1 \succcurlyeq \operatorname{vec}(\mathbf{M}) \succcurlyeq 0$$

$$\begin{split} & \text{Optimizing over the Product} \\ & \mathbf{c}_{\omega} = \mathbf{M}\mathbf{x} + \boldsymbol{\eta} \\ & \boldsymbol{\Sigma} = \mathbb{E}\left[\left(\hat{\mathbf{x}} - \mathbb{E}[\hat{\mathbf{x}}] \right) \left(\hat{\mathbf{x}} - \mathbb{E}[\hat{\mathbf{x}}] \right)^{\top} \right] \\ & \mathbf{M}\text{SE} = \frac{1}{n} \text{tr} \left[\left(\mathbf{M}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{M} \right)^{-1} \right] \\ & \text{arg min } \frac{1}{n} \text{tr} \left[\left(\mathbf{M}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{M} \right)^{-1} \right] \quad \text{s.t.} \quad 1 \succcurlyeq \text{vec}(\mathbf{M}) \succcurlyeq 0 \\ & \mathbf{M}^{\star} = \operatorname*{arg \min}_{\mathbf{Q}} \text{tr}(\mathbf{Q}) \quad \text{s.t.} \\ & \mathbf{1} \succcurlyeq \text{vec}(\mathbf{M}) \succcurlyeq 0, \quad \mathbf{Q} \succcurlyeq \left(\mathbf{M}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{M} \right)^{-1} \quad \begin{array}{c} \text{Q is positive} \\ \text{semidefinite} \end{array} \end{split}$$

Non-negative Matrix Factorization with Circulant Constraints

$$\mathbf{M}^{\star} = \mathbf{T}^{\star} \mathbf{L}^{\star}.$$

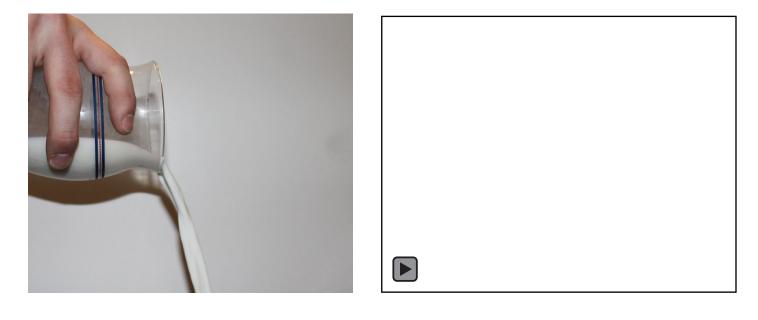
$$\{\mathbf{T}^{\star}, \mathbf{L}^{\star}\} = \underset{\mathbf{T}, \mathbf{L}}{\operatorname{arg\,min}} \| \mathbf{M}^{\star} - \mathbf{T}\mathbf{L} \|_{F} \quad \text{s.t.}$$

$$1 \succcurlyeq \operatorname{vec}(\mathbf{T}) \succcurlyeq 0, \quad 1 \succcurlyeq \operatorname{vec}(\mathbf{L}) \succcurlyeq 0, \quad \mathbf{T} \in \mathcal{C} \quad \mathcal{C} \subset \mathbb{R}^{m \times p}$$

$$\underset{\mathbf{C} \in \mathcal{C}}{\operatorname{arg\,min}} \| \mathbf{T}^{(k)} - \mathbf{C} \|_{F}$$

Finding the Closest Circulant Matrix admits a closed form solution.

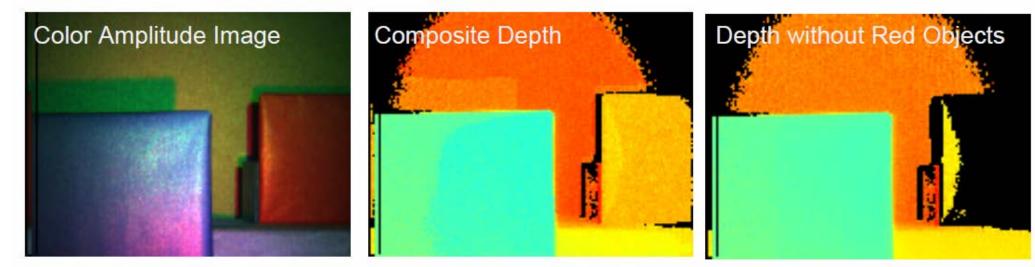
Real-time Illumination Multiplexing



Single-chip Color ToF Camera

Key Benefit is that there is no Bayer mask so spatial resolution is preserved.

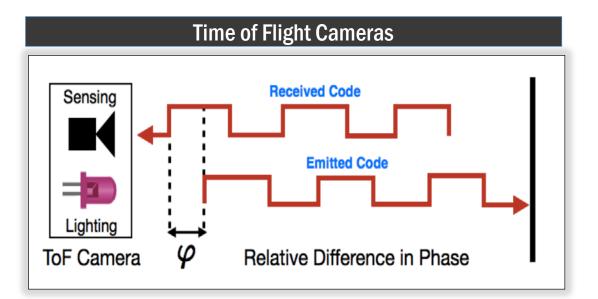
No limit to real-time performance since we are already multiplexing samples.

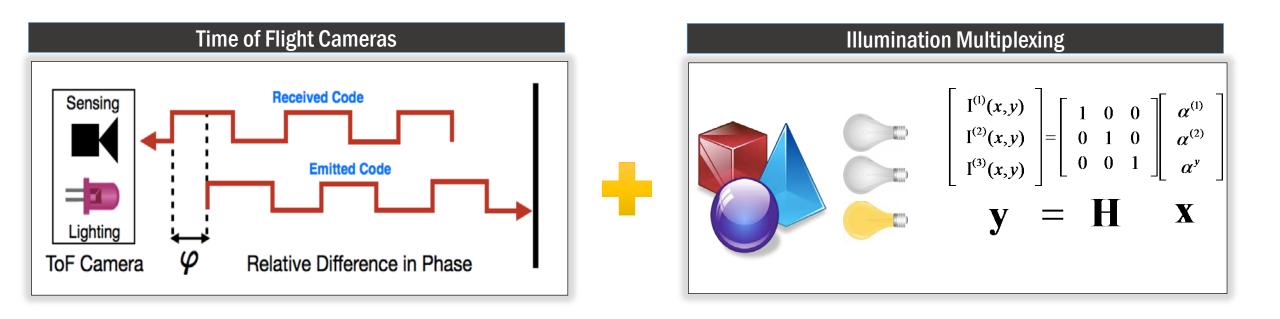


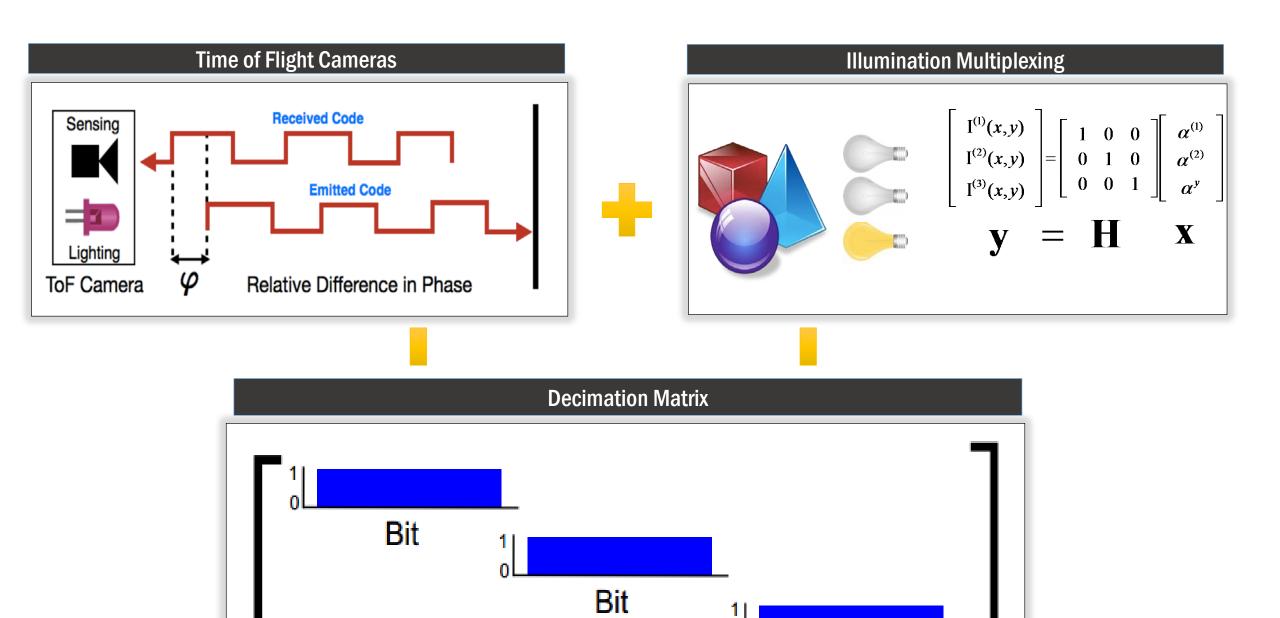
Application to Scene Relighting

Lighting is Important

Capture Visual Information \rightarrow Prune Post-process







Bit

