
Enigma: Decentralized Computation Platform with
Guaranteed Privacy

Guy Zyskind Oz Nathan Alex ’Sandy’ Pentland∗

Abstract

A peer-to-peer network, enabling different parties to jointly store and run compu-
tations on data while keeping the data completely private. Enigma’s computational
model is based on a highly optimized version of secure multi-party computation,
guaranteed by a verifiable secret-sharing scheme. For storage, we use a modi-
fied distributed hashtable for holding secret-shared data. An external blockchain
is utilized as the controller of the network, manages access control, identities and
serves as a tamper-proof log of events. Security deposits and fees incentivize oper-
ation, correctness and fairness of the system. Similar to Bitcoin, Enigma removes
the need for a trusted third party, enabling autonomous control of personal data.
For the first time, users are able to share their data with cryptographic guarantees
regarding their privacy.

1 Motivation

Since early human history, centralization has been a major competitive advantage. Societies with
centralized governance were able to develop more advanced technology, accumulate more resources
and increase their population faster [1]. As societies evolved, the negative effects of centralization
of power were revealed: corruption, inequality, preservation of the status quo and abuse of power.
As it turns out, some separation of powers [2] is necessary. In modern times, we strive to find a
balance between the models, maximizing output and efficiency with centralized control, guarded by
checks and balances of decentralized governance.

The original narrative of the web is one of radical decentralization and freedom[3]. During the last
decade, the web’s incredible growth was coupled with increased centralization. Few large compa-
nies now own important junctures of the web, and consequently a lot of the data created on the
web. The lack of transparency and control over these organizations reveals the negative aspects of
centralization once again: manipulation [4], surveillance [5], and frequent data breaches [6].

Bitcoin [9] and other blockchains [10] (e.g., Ethereum) promise a new future. Internet applications
can now be built with a decentralized architecture, where no single party has absolute power and
control. The public nature of the blockchain guarantees transparency over how applications work
and leaves an irrefutable record of activities, providing strong incentives for honest behavior. Bitcoin
the currency was the first such application, initiating a new paradigm to the web.

The intense verification and public nature of the blockchain limits potential use cases, however.
Modern applications use huge amounts of data, and run extensive analysis on that data. This re-
striction means that only fiduciary code can run on the blockchain [7]. The problem is, much of
the most sensitive parts of modern applications require heavy processing on private data. In their
current design, blockchains cannot handle privacy at all. Furthermore, they are not well-suited for
heavy computations. Their public nature means private data would flow through every full node on
the blockchain, fully exposed.

∗guyz@mit.edu, oznathan@gmail.com, pentland@mit.edu

1



There is a strange contradiction in this setup. The most sensitive, private data can only be stored and
processed in the centralized, less transparent and insecure model. We have seen this paradigm lead
to catastrophic data leaks and the systematic lack of privacy we are currently forced to accept in our
online lives.

2 Enigma

Enigma is a decentralized computation platform with guaranteed privacy. Our goal is to enable
developers to build ’privacy by design’, end-to-end decentralized applications, without a trusted
third party.

Enigma is private. Using secure multi-party computation (sMPC or MPC), data queries are com-
puted in a distributed way, without a trusted third party. Data is split between different nodes, and
they compute functions together without leaking information to other nodes. Specifically, no single
party ever has access to data in its entirety; instead, every party has a meaningless (i.e., seemingly
random) piece of it.

Enigma is scalable. Unlike blockchains, computations and data storage are not replicated by every
node in the network. Only a small subset perform each computation over different parts of the data.
The decreased redundancy in storage and computations enables more demanding computations.

The key new utility Enigma brings to the table is the ability to run computations on data, without
having access to the raw data itself. For example, a group of people can provide access to their
salary, and together compute the average wage of the group. Each participant learns their relative
position in the group, but learns nothing about other members’ salaries. It should be made clear
that this is only a motivating example. In practice, any program can be securely evaluated while
maintaining the inputs a secret.

Today, sharing data is an irreversible process; once it is sent, there is no way to take it back or limit
how it is used. Allowing access to data for secure computations is reversible and controllable, since
no one but the original data owner(s) ever see the raw data. This presents a fundamental change in
current approaches to data analysis.

3 Design overview

Enigma is designed to connect to an existing blockchain and off-load private and intensive compu-
tations to an off-chain network. All transactions are facilitated by the blockchain, which enforces
access-control based on digital signatures and programmable permissions.

Code is executed both on the blockchain (public parts) and on Enigma (private or computationally
intensive parts). Enigma’s execution ensures both privacy and correctness, whereas a blockchain
alone can only ensure the latter. Proofs of correct execution are stored on the blockchain and can be
audited. We supply a scripting language for designing end-to-end decentralized applications using
private contracts, which are a more powerful variation of smart contracts that can handle private
information (i.e., their state is not strictly public).

The scripting language is also turing-complete, but this is not as important as its scalability. Code
execution in blockchains is decentralized but not distributed, so every node redundantly executes the
same code and maintains the same public state. In Enigma, the computational work is efficiently
distributed across the network. An interpreter breaks down the execution of a private contract,
as is illustrated in Figure 1, resulting in improved run-time, while maintaining both privacy and
verifiability.

The off-chain network solves the following issues that blockchain technology alone cannot handle:

1. Storage. Blockchains are not general-purpose databases. Enigma has a decentralized off-
chain distributed hash-table (or DHT) that is accessible through the blockchain, which
stores references to the data but not the data themselves. Private data should be encrypted
on the client-side before storage and access-control protocols are programmed into the
blockchain. Enigma provides simple APIs for these tasks in the scripting language.

2



Blockchain Enigma

f : X → Y

opi

public

private

Figure 1: Code execution model.

2. Privacy-enforcing computation. Enigma’s network can execute code without leaking the
raw data to any of the nodes, while ensuring correct execution. This is key in replacing cur-
rent centralized solutions and trusted overlay networks that process sensitive business logic
in a way that negates the benefits of a blockchain. The computational model is described
in detail in section 5.

3. Heavy processing. Even when privacy is not a concern, the blockchain cannot scale to
clearing many complex transactions. The same off-chain computational network is used to
run heavy publicly verifiable computations that are broadcast through the blockchain.

4 Off-chain storage

Off-chain nodes construct a distributed database. Each node has a distinct view of shares and en-
crypted data so that the computation process is guaranteed to be privacy-preserving and fault tol-
erant. It is also possible to store large public data (e.g., files) unencrypted and link them to the
blockchain. Figure 2 illustrates the database view of a single node.

shares

encrypted data

public data

Figure 2: A node’s local view of the off-chain data.

On a network level, the distributed storage is based on a modified Kademlia DHT protocol [11]
with added persistence and secure point-to-point channels, simulated using a broadcast channel and
public-key encryption. This protocol assists in distributing the shares in an efficient manner. When
storing shares, the original Kademlia distance metric is modified to take into account the preferential
probability of a node.

3



5 Privacy-enforcing computation

In this section, we describe Enigma’s computational model. We begin with a brief introduction
to publicly verifiable secure MPC based on state-of-the-art advances in cryptography. Then, we
describe a series of performance improvements to secure MPC that makes the technology practical
even when the network is large: hierarchical secure MPC, network reduction and adaptable circuits.

To use Enigma, developers write high-level code, where public parts are executed on the blockchain
and private parts are run off-chain, on Enigma’s platform. We call these private contracts, since they
are smart contracts that can handle private information.

5.1 Overview of secure multi-party computation

5.1.1 Privacy (passive adversaries)

Yao introduced the first solution to secure two-party computation protocols in 1982 [12]. In the
same paper, Yao suggested the popular millionaire problem, describing two millionaires interested in
knowing which one of them is richer, without revealing their actual net worth. In the decades since,
the two-party problem has been generalized to MPC, which refers to the n-party case. For general-
purpose MPC, in which every protocol could be composed from a circuit of elementary MPC gates,
two major approaches have been developed over the years: Yao’s garbaled (boolean) circuits [13]
and MPC based on secret sharing. The latter has been more commonly used in production systems
(e.g., [14] and [15]) and is our focus as well.

A threshold cryptosystem is defined by (t + 1, n) − threshold, where n is the number of parties
and t + 1 is the minimal number of parties required to decrypt a secret encrypted with threshold
encryption. Secret sharing is an example of a threshold cryptosystem, where a secret s is divided
among n, s.t. at least t+1 are required to reconstruct s. Any subset of t parties cannot learn anything
about the secret. A linear secret-sharing scheme (or LSSS) partitions a secret to shares such that the
shares are a linear combination of the secret. Shamir’s secret sharing (or SSS) is an example of a
LSSS, which uses polynomial interpolation and is secure under a finite field Fp [16]. Specifically,
to share a secret s, we select a random t degree polynomial q(x) –

q(x) = a0 + a1x+ · · ·+ atx
t, (1)

a0 = s, ai ∼ U(0, p− 1). (2)

The shares are then given by
∀i ∈ {1, · · · , n} : [s]pi

= q(i). (3)

Then, given any t+1 shares, q(x) could be trivially reconstructed using Lagrange interpolation and
the secret s recovered using s = q(0). Since SSS is linear, it is also additively homomorphic, so
addition and multiplication by a scalar operations could be performed directly on the shares without
interaction. Formally –

c× s = reconstruct({c[s]pi
}t+1
i∈n), (4)

s1 + s2 = reconstruct({[s1]pi + [s2]pi}t+1
i∈n). (5)

Multiplication of two secrets s1 and s2 is somewhat more involved. If each party would attempt to
locally compute the product of two secrets, they would collectively obtain a polynomial of degree 2t,
requiring a polynomial reduction step (2t→ t). For an information theoretic setting, this result adds
an honest majority constraint (i.e., t < n

2 ) on privacy and correctness. If we bound the adversary’s
computational power, both properties are assured for any number of corrupted parties, but fairness
and deciding on an output still requires an honest majority [17].

As to performance, a re-sharing step is required in the degree reduction step, implying all parties
must interact with all other parties (O(n2) communications). This makes MPC impractical for
anything larger than a small constant number of parties n. While optimized solutions exist for

4



improving the amortized complexity, they are based on assumptions that restrict functionality in
practice. Conversely, we describe a generic solution to this problem for any functionality in Section
5.2, which makes secure MPC feasible for arbitrarily large networks.

Note that with secure addition and multiplication protocols, we can construct a circuit for any arith-
metic function. For turing-completeness, we need to handle control flow as well. For conditional
statements involving secret values, this means evaluating both branches and for dynamic loops we
add randomness to the execution. Our general-purpose MPC interpreter is based on these core con-
cepts and other optimizations presented throughout the paper.

5.1.2 Correctness (malicious adversaries)

So far we have discussed the privacy property. Liveness, namely – that computations will terminate
and the system will make progress, is also implied given an honest majority, since it is all that is
needed for reconstruction of intermediate and output values. However, in the current framework
there are no guarantees about the correctness of the output; party pi could send an invalid result
throughout the computation process which may invalidate the output. While BGW [17] presented
an information-theoretic solution to verifiable MPC, its practical complexity could be as bad as
O(n8), given a naive implementation [?].

Therefore, our goal is to design an MPC framework that is secure against malicious adversaries but
has the same complexity of the semi-honest setting (O(n2)). Later, we would further optimize this
as well.

Very recently, Baum et al. developed a publicly auditable secure MPC system that ensures correct-
ness, even when all computing nodes are covertly malicious, or all but a single node are actively
malicious [18]. Their state-of-the-art results are based on a variation of SPDZ (pronounced speedz)
[19] and depend on a public append-only bulletin board, which stores the trail of each computation.
This allows any auditing party to check the output is correct by comparing it to the public ledger’s
trail of proofs. Our system uses the blockchain as the bulletin board, thus our overall security is
reduced to that of the hosting blockchain.

SPDZ. A protocol secure against malicious adversaries (with dishonest majority), providing cor-
rectness guarantees for MPC. In essence, the protocol is comprised of an expensive offline (pre-
processing) step that uses somewhat homomorphic encryption (or SHE) to generate shared ran-
domness. Then, in the online stage, the computation is similar to the passive case and there is no
expensive public-key cryptography involved. In the online stage, every share is represented by the
additive share and its MAC, as follows:

〈s〉pi
= ([s]pi

, [γ(s)]pi
), s.t. γ(s) = αs, (6)

where α is a fixed secret shared MAC key and 〈•〉 denotes the modified secret sharing scheme which
is also additively homomorphic. 〈•〉-sharing works without opening the shares of the global MAC
key α, so it can be reused.

As before, multiplication is more involved. Multiplication consumes {〈a〉, 〈b〉, 〈c〉} triplets, s.t.
c = ab, that are generated in the pre-processing step (many such triplets are generated). Then, given
two secrets s1 and s2, that are shared using 〈•〉-sharing, secret-sharing the product s = s1s2 is
achieved by consuming a triplet as follows –

〈s〉 = 〈c〉+ ε〈b〉+ δ〈a〉+ εδ, (7)
ε = 〈s1〉 − 〈a〉, δ = 〈s2〉 − 〈b〉. (8)

As mentioned, generating the triplets is an expensive process based on SHE. The full protocol in-
cluding security proofs is found in [18]. Verification is achieved by solving –

γ − αs = 0, (9)

5



where s is the secret that, without loss of generality, can be the reconstructed result of any secure
computation. Intuitively, this is just a comparison of the computation over the MAC against the
computed result times the secret MAC key. The reason we are not performing actual comparison is
so that α remains secret and can be reused.

We can now see that 〈•〉-sharing has similar properties to SSS, namely – it is additively homomor-
phic and requires a re-sharing round for multiplication (O(n2) communication complexity), but in
addition – it ensures correctness against up to n − 1 active adversaries. The offline round is easily
amortized over many computations and can be computed in parallel while other computations are
running, so it does not significantly affect the overall efficiency.

Publicly verifiable SPDZ. In the publicly verifiable case, MACs and commitments are stored on
the blockchain, therefore making the scheme secure even if all n computing parties are malicious.
We follow the representation of [18], which defines J•K-sharing, as –

JsK = (〈s〉, 〈r〉, 〈gshr〉), (10)

where s is the secret, r is a random value and c = gshr is the Pedersen commitment, with g, h
serving as generators. J•K-sharing preserves additive homomorphic properties, and with a slightly
modified multiplication protocol we can re-use the same idea of generating triplets ({JaK, JbK, JcK})
offline.

A key observation here is that the nodes only need to compute over 〈•〉-shared values and not over
the commitments. These are stored on the blockchain and could later be addressed by any public
validator that has the output. Even if a single node has broken its commitment, it would be evident
to the auditor.

5.2 Hierarchical secure MPC

Information-theoretic results show that secure MPC protocols require each computing node to inter-
act with all other nodes (O(n2) communication complexity) and a constant number of rounds. In the
case of a LSSS, this computational complexity applies to every multiplication operation, whereas
addition operations can be computed in parallel, without intercommunication. As previously men-
tioned, secure addition and multiplication protocols are sufficient to construct a general-purpose
interpreter that securely evaluates any code [17].

Cohen et al [20] recently proposed a method of simulating an n-party secure protocol using a log-
depth formula of constant-size MPC gates, as illustrated in Figure 3. We extend their result to LSSS
and are able to reduce the communication-complexity of multiplication from quadratic to linear, at
the cost of increased computation complexity, which is parallelized. Figure 4 illustrates how vanilla
MPC is limited by the number of parties, while our implementation scales up to arbitrarily large
networks.

MPC3

MPC3

MPC3

MPC3

Figure 3: Hierarchical Formula Builder.

6



0 5 10 15 20 25 30
0

200

400

600

800

1000

1200

1400

number of parties

c
o

m
p

u
ta

ti
o

n
 t

im
e

 (
m

s
)

 

 

MPC

ps−MPC

unsecure

Figure 4: Simulated performance comparison of our optimized secure MPC variant compared to
classical MPC.

5.3 Network reduction

To maximize the computational power of the network, we introduce a network reduction technique,
where a random subset of the entire network is selected to perform a computation. The random pro-
cess preferentially selects nodes based on load-balancing requirements and accumulated reputation,
as is measured by their publicly validated actions. This ensures that the network is fully utilized at
any given point.

5.4 Adaptable circuits

Code evaluated in our system is guaranteed not to leak any information unless a dishonest majority
colludes (t ≥ n

2 ). This is true for the inputs, as well as any interim variables computed while the
code is evaluated. An observant reader would notice that as a function is evaluated from inputs to
outputs, the interim results generally become less descriptive and more aggregative.

For simple functions or functions involving very few inputs, this may not hold true, but since these
functions are fast to compute - no additional steps are needed.

However, for computationally expensive functions, involving many lines of code and a large number
of inputs, we can dynamically reduce the number computing nodes as we progress, instead of having
a fixed n for the entire function evaluation process. Specifically, we design a feed-forward network
(Figure 5) that propagates results from inputs to outputs. The original code is reorganized so that we
process addition gates on the inputs first, followed by processing multiplication gates. The interim
results are then secret-shared with N

c nodes, and the process is repeated recursively.

5.5 Scripting

As previously mentioned, end-to-end decentralized apps are developed using private contracts,
which are further partitioned to on-chain and off-chain execution. Off-chain code returns results
privately, while sending correctness proofs to the blockchain. For simplicity, the scripting language
is similar in syntax to well-known programming languages.

There are two major additions to the scripting language that require more detail.

5.6 Private data types

Developers should use the private keyword to specify private objects. This automatically ensures
that any computation involving those objects remains secure and private. When working with private
objects, the data themselves are not locally available, but rather a reference of them.

7



Input #1

Input #2

Input #3

Input #4

Input #5

Output

Addition
layer1

Mult.
layer1

Addition
layer2

Mult.
layer2

Output
layer

Figure 5: Feed forward flow of the secure code evaluation.

5.7 Data access

There are three distinct decentralized databases living in the system, each accessible through a global
singleton dictionary. Specifically –

1. Public ledger. The blockchain’s public ledger can be accessed and manipulated using L.
For example, L[k] ← 1 would update key k for all nodes. Since the ledger is completely
public and append-only, the entire history is stored as well and (read-only) accessible using
L.get(k, t).

2. DHT. Off-chain data are stored on the DHT and accessible in the same way the public
ledger is. By default, data are encrypted locally before transmission and only the signing
entity can request the data back. Otherwise, using DHT.set(k, v, p), where k is the key, v
is the value and p is a predicate, namely – p : X → {0, 1}, sets v to be accessible through
k if and only if p is satisfied. We supply several built-in predicates in the language such as
limiting access to a list of public keys. If encryption is turned off, the default predicate is
∀x p(x) = 1, so the data are public but distributed off-chain.

3. MPC. Syntactically, using MPC is equivalent to DHT, but the underlying process differs.
In particular, executing MPC.set(k, v, p) secret shares v. The shares are distributed to
potential computing parties that store their shares in their local view. Now p can be used
to specify who can reference the data for computation using vref ← MPC[k], without
revealing v. By default, only the original dealer can ask for the raw data back by running
v ← MPC.declassify(k), which similar to the sharing process, collects shares from the
various parties and reconstructs the secret value locally. In addition, any other entities
belonging to the same shared identity can reference the data for computation. For details
about shared identities see section 6.1.

Note that for simplicity, we addressed all keys in L, DHT and MPC dictionaries as using a sin-
gle namespace, whereas in practice finer granularity is available, so that they can be segmented to
databases, tables, and finer hierarchies.

6 Blockchain interoperability

In this section we show how Enigma interoperates with a blockchain. Specifically, we detail how
complex identities are formed using digital signatures, which are automatically compatible with
blockchains. We then continue to describe in detail the core protocols linking Enigma’s off-chain
storage and computation to a blockchain.

8



6.1 Identity management

A recent survey paper divided blockchain-inspired technologies into two: fully decentralized
permission-less ledgers (e.g., Bitcoin, Ethereum) and semi-centralized permissioned ledgers (e.g.,
Ripple) [21]. In the paper, the author argues that there is an inherent trade-off between having a
pseudo-anonymous system, where no one is trusted and all information must remain public, and
having a somewhat centralized system with trusted nodes that can verify true underlying identities.
With an off-chain technology linked to a blockchain, this trade-off can be avoided while the network
remains fully decentralized.

For this to work, we define an extended version of identities, one that captures shared identities
across multiple entities and their semantic meaning. Formally, the pseudo-anonymous portion of a
shared identity is a (2n+ 1)-tuple –

SharedIdentityP = (addrP , pk
(p1)
sig , pk

(p2)
sig , · · · , pk

(pn)
sig ) (11)

where n denotes the number of parties. It should be clear that for n = 1 we revert to the special
pseudo-identity case.

To complete our definition of shared identities, we incorporate the idea of meta-data. Meta-data
encapsulates the underlying semantic meaning of an identity. Primarily, these include public access-
control rules defined by the same predicates mentioned earlier, which the network uses to moderate
access-control, along with any other public or private data that is relevant.

For example, Alice may want to share with Bob her height, but not her weight. Alternatively, she
may not even want to tell Bob her exact height, but will allow him to use her height in aggregate
computations. In this case, Alice and Bob can establish a shared identity for this purpose. Alice
invokes a private contract that shares her height usingMPC[′alice height′] = alice height, which
Bob can reference for computations, without accessing Alice’s height value directly.

The default MPC predicate establishes that Alice’s pseudonym is the owner of the shared informa-
tion and that Bob has restricted access to it. The predicate, shared identity’s list of addresses and a
reference to the data are stored on the blockchain and collectively define the public meta-data, or in
other words - information related to the identity that is not sensitive but should be used to publicly
verify access rights. Any additional meta-data that is private, or in other words that only Alice, Bob
and perhaps several others should have access to could be securely stored off-chain using the DHT.

It should now be clear how our system solves the need for trusted nodes. As always, public transac-
tions are validated through the blockchain. With shared identities and predicates governing access-
control stored on the ledger, the blockchain can moderate access to any off-chain resources. For any-
thing else involving private meta-data, the off-chain network can act as a trustless privacy-preserving
verifier.

6.2 Link protocols

We now discuss the core protocols linking the blockchain to off-chain resources. Specifically, we
elaborate on how identities are formed and stored on the ledger; and how off-chain storage (DHT)
and computation (MPC) requests are routed through the blockchain, conditional on satisfying pred-
icates.

6.2.1 Access control

Protocol 1 describes the process of creating a shared identity and Protocol 2 implements the publicly-
verifiable contract for satisfying predicates.

6.2.2 Store and Load

Storing and loading data for direct access via the DHT are shown in Protocol 3. For storing data,
write permissions are examined with the given qstore predicate. The storing party can provide a
custom predicate for verifying who can read the data. This is the underlying process that is abstracted
away using the DHT singleton object in the scripting language.

9



Algorithm 1 Generating a shared identity
Input: P = {pi}Ni=1 parties, A = {POLICYpi

}Ni=1
Output: Ledger L stores reference to the shared identity.
addrP = 0
ACL = ∅
for pi ∈ P do

(pk
(pi)
sig , sk

(pi)
sig )← Gsig()

addrP = addrP ⊕ pk(pi)
sig

ACL[pksig]← A[pi]
end for
m← (addrP , ACL)
send signed tx(m) to the network

procedure STOREIDENTITY(addrP , ACL)
L[addrP ]← ACL

end procedure

Algorithm 2 Permissions check against the blockchain

Input: pk(pi)
sig the requesting party signature, addrP the shared identity’s address, q – a predicate

verifying if pi has sufficient access rights.
Output: s ∈ {0, 1}.

procedure CHECKPERMISSION(pk(pi)
sig , addrP , q)

s← 0
if L[addrP ] 6= ∅ then

ACL = L[addrP ]

if q(ACL, pk(pi)
sig ) then

s← 1
end if

end if
return s

end procedure

10



Algorithm 3 Storing or Loading Data

Input: pk(pi)
sig , addrP , x (data), q(x)read – a predicate for verifying future read access.

Output: if successful, returns ax – the pointer to the data (predicate), or ∅ o.w.
procedure STORE(pk(pi)

sig , addrP , x, q
(x)
read)

if CheckPermission(pk(pi)
sig , addrP , qstore) = True then

ax = H(addrP ‖ x)
L[ax]← q

(x)
read

DHT [ax]← x
return ax

end if
return ∅

end procedure
Input: pk(pi)

sig , addrP , ax – the address of the data (predicate)
Output: if successful, returns the data x, or ∅ o.w.

procedure LOAD(pk(pi)
sig , addrp, ax)

q
(x)
read ← L[ax]

if CheckPermission(pk(pi)
sig , addrP , q

(x)
read) = True then

return DHT [ax]
end if
return ∅

end procedure

6.2.3 Share and Compute

Share and compute, illustrated in Protocol 4, are the MPC equivalent of store and load protocols,
since they enable processing. Internally, they store and load shares from the DHT and allow working
with references to the data while keeping the data secure.

Algorithm 4 Secure computation and secret sharing protocols

Input: pk(pi)
sig , addrP , x (data), xref – reference for computation, q(x)compute – predicate verifying

computation rights.
Output: if successful, returns pointer to xref for future computation, or ∅ o.w.

procedure SHARE(pkpi

sig, addrP , x, xref , q
(x)
compute, n, t)

[x]p ← V SS(n, t)
peers← sample n peers
for peer ∈ peers do

send [x]
(peer)
p to peer on a secure channel

end for
return Store(pk(pi)

sig , addrP , xref , q
(x)
compute)

end procedure
Input: pk(pi)

sig , addrP , axref
– reference data address, f – unsecure code to be rewritten as a secure

protocol.
Output: if successful, returns f(x) without revealing x, or ∅ o.w.

procedure COMPUTE(pkpi

sig, addrP , axref
, f )

xref ← Load(pk
(pi)
sig , addrP , axref

)

if xref 6= ∅ then
fs ← generate secure computation protocol from f
return fs(xref )

end if
return ∅

end procedure

11



7 Incentives

Since Enigma is not a cryptocurrency or a blockchain, the incentive scheme is based on fees rather
than mining rewards, where nodes are compensated for providing computational resources. Full
nodes are required to provide a security deposit, making malicious behaviour punishable.

7.1 Security Deposits

A possible attack on MPC protocols takes advantage of the lack of guaranteed fairness in the proto-
col. Under certain conditions, a malicious party can learn the output and abort the protocol before
other parties learn the output as well. While this attack, when carried out by a majority, cannot
be prevented, it can be penalized. Using Bitcoin security deposits for punishing malicious nodes
in MPC has been investigated by several scholars recently [22, 23]. We use a similar model, and
extend it to penalize other malicious behaviors such as breaking correctness, which is validated by
the SPDZ protocol (see section 5.1.2).

To participate in the network, store data, perform computations and receive fees, every full-node
must first submit a security deposit to a private contract. After each computation is completed, a
private contract verifies correctness and fairness were maintained. If a node is found to lie about
their outcome or aborts the computation prematurely, it loses the deposit which is split between the
other honest nodes. The computation is continued without the malicious node (e.g., by setting its
share of the data to 0).

7.2 Computation Fees

Every request in the network for storage, data retrieval, or computation has a fixed price, similar to
the concept of Gas in Ethereum. Unlike Ethereum where every computation is run by every node,
in Enigma different nodes execute different parts of each computation and need to be compensated
according to their contribution, which is measured in rounds. Recall that every function is reduced
to a circuit of addition and multiplication gates, each of which takes one or more rounds. A node
participating in a computation is paid the weighted sum of the number of rounds it contributed to
and the operations it performed (addition, multiplication).

Since the platform is turing-complete the exact cost of a request cannot always be pre-calculated.
Therefore, once the computation is finalized, the cost of each request is deducted from an account
balance each node maintains. A request will not go through unless the account balance is over a
minimum threshold.

7.3 Storage Fees

Fees for data storage are market based and time limited. The hosting contract is automatically
renewed using the owner’s account balance. If the balance is too low, access to the data will be
restricted and unless additional funds are deposited, the data will be deleted within a certain amount
of time.

8 Applications

8.1 Data Marketplace

Direct consumer to business marketplace for data. With guaranteed privacy, autonomous control and
increased security, consumers will sell access to their data. For example, a pharmaceutical company
looking for patients for clinical trials can scan genomic databases for candidates. The marketplace
would eliminate tremendous amounts of friction, lower costs for customer acquisition and offer a
new income stream for consumers.

8.2 Secure Backend

Many companies today store large amounts of customer data. They use the data to provide person-
alized services, match individual preferences, target ads and offers, etc. With Enigma, companies

12



can use the data for the same purposes they do today, without actually storing or processing the data
on their servers, removing security risks and assuring the privacy of their customers.

8.3 Internal Compartmentalization

Large organizations can use Enigma to protect their data and trade secrets from corporate espionage
and rogue employees. Employees can still use and analyze data for the benefit of the organization,
but won‘t be able to steal any data. Productivity inside organizations would be improved since more
people can have access to more data, and costs on security would be lower.

8.4 N-Factor Authentication

Voice, face and fingerprint recognition stored and computed on Enigma. Only the user ever has
access to these data. Policies for when and if additional keys are required can be set inside a private
contract, unexposed to any potential attacker.

8.5 Identity

Authenticating and securely storing identities in a fully anonymous, yet provably correct, fashion is
trivial on Enigma and requires as little as several lines of code. The process is simple – a user secret-
shares her personal information required for authentication. When the user logs in, an authenticating
private contract is executed, validating the user and linking her real identity with a public pseudo-
identity. The process is completely trust-less and privacy-preserving.

8.6 IoT

Store, manage and use (the highly sensitive) data collected by IoT devices in a decentralized, trust-
less cloud.

8.7 Distributed Personal Data Stores

Store and share data with third parties while maintaining control and ownership. Set specific policies
for each service with private contracts. Identity is truly protected since the decision to share data is
always reversible - services have no access to raw data, all they can do is run secure computations
on it.

8.8 Crypto Bank

Run a full-service crypto bank without exposing private internal details. Users can take loans, de-
posit cryptocurrencies or buy investment products with the autonomous control of the blockchain,
without publicly revealing their financial situation.

8.9 Blind E-Voting

Votes on anything, from political elections to company board meetings, without exposing anything
besides the final outcome. Not only is the privacy of each voter is maintained, even the actual vote-
count can remain private. For example, if the elections require any kind of majority vote, but no
details about the distribution, a unanimous decision would be indistinguishable from one decided by
a single vote.

8.10 Bitcoin Wallet

1. Decentralized private key generation – Multiple Enigma nodes locally create a segment of
the key, whereas the full key is only ever assembled by the user. No trail of evidence is left
anywhere.

2. Decentralized transaction signing – Transactions signed without ever exposing the private
key or leaving a trail.

13



3. Decentralized controls - Set spending limits, multi-sig, CHECKLOCKTIMEVERIFY like
controls, and more with a private script. Lock time, limits or number of required signatures
are completely invisible to a potential attacker.

References
[1] Diamond, Jared, and Germs Guns. Steel: The fates of human societies. New York: W. W.

Norton, 1997.
[2] de Montesquieu, Charles. The spirit of the laws. Digireads. com Publishing, 2004.
[3] Perry, Barlow John. A Declaration of the Independence of Cyberspace. Electronic Frontier

Foundation 8, 1996.
[4] Vindu Goel. Facebook tinkers with users emotions in news feed experiment, stirring outcry.

The New York Times, 2014.
[5] James Ball. ”Nsas prism surveillance program: how it works and what it can do.” The

Guardian, 2013.
[6] Bill Hardekopf. ”The Big Data Breaches of 2014.” Forbes, 2015.
[7] Nick Szabo. ”The dawn of trustworthy computing.” 2014
[8] Nick Szabo. ”The God Protocols.” 1997
[9] Nakamoto, Satoshi. ”Bitcoin: A peer-to-peer electronic cash system.” Consulted 1.2012

(2008): 28.
[10] Clark, Joseph Bonneau Andrew Miller Jeremy, Arvind Narayanan Joshua A. Kroll Edward,

and W. Felten. ”SoK: Research Perspectives and Challenges for Bitcoin and Cryptocurren-
cies.”, Security and Privacy (SP), 2015 IEEE Symposium on. IEEE, 2015.

[11] Maymounkov, Petar, and David Mazieres. ”Kademlia: A peer-to-peer information system
based on the xor metric.” In Peer-to-Peer Systems, pp. 53-65. Springer Berlin Heidelberg,
2002.

[12] Yao, Andrew C. ”Protocols for secure computations.” 2013 IEEE 54th Annual Symposium on
Foundations of Computer Science. IEEE, 1982.

[13] Ben-David, Assaf, Noam Nisan, and Benny Pinkas. ”FairplayMP: a system for secure multi-
party computation.” Proceedings of the 15th ACM conference on Computer and communica-
tions security. ACM, 2008.

[14] Bogdanov, Dan, Sven Laur, and Jan Willemson. ”Sharemind: A framework for fast privacy-
preserving computations.” Computer Security-ESORICS 2008. Springer Berlin Heidelberg,
2008. 192-206.

[15] Team, VIFF Developement. ”Viff, the virtual ideal functionality framework.” 2009.
[16] Shamir, Adi. ”How to share a secret.” Communications of the ACM 22.11 (1979): 612-613.
[17] Ben-Or, Michael, Shafi Goldwasser, and Avi Wigderson. ”Completeness theorems for non-

cryptographic fault-tolerant distributed computation.” Proceedings of the twentieth annual
ACM symposium on Theory of computing. ACM, 1988.

[18] Baum, Carsten, Ivan Damgrd, and Claudio Orlandi. ”Publicly auditable secure multi-party
computation.” Security and Cryptography for Networks. Springer International Publishing,
2014. 175-196.

[19] Damgrd, Ivan, et al. ”Practical covertly secure MPC for dishonest majorityor: Breaking the
SPDZ limits.” Computer SecurityESORICS 2013. Springer Berlin Heidelberg, 2013. 1-18.

[20] Cohen, Gil, et al. ”Efficient multiparty protocols via log-depth threshold formulae.” Advances
in CryptologyCRYPTO 2013. Springer Berlin Heidelberg, 2013. 185-202.

[21] Swanson, Tim. ”Consensus-as-a-service: a brief report on the emergence of permissioned,
distributed ledger systems.”, 2015.

[22] Bentov, Iddo, and Ranjit Kumaresan. ”How to use bitcoin to design fair protocols.” Advances
in CryptologyCRYPTO 2014. Springer Berlin Heidelberg, 2014. 421-439.

[23] Andrychowicz, Marcin, et al. ”Secure multiparty computations on bitcoin.” Security and Pri-
vacy (SP), 2014 IEEE Symposium on. IEEE, 2014.

14


	Motivation
	Enigma
	Design overview
	Off-chain storage
	Privacy-enforcing computation
	Overview of secure multi-party computation
	Privacy (passive adversaries)
	Correctness (malicious adversaries)

	Hierarchical secure MPC
	Network reduction
	Adaptable circuits
	Scripting
	Private data types
	Data access

	Blockchain interoperability
	Identity management
	Link protocols
	Access control
	Store and Load
	Share and Compute


	Incentives
	Security Deposits
	Computation Fees
	Storage Fees

	Applications
	Data Marketplace
	Secure Backend
	Internal Compartmentalization
	N-Factor Authentication
	Identity
	IoT
	Distributed Personal Data Stores
	Crypto Bank
	Blind E-Voting
	Bitcoin Wallet


