
A System for Parallel Media Processing

John A. Watlington and V. Michael Bove, Jr.
MIT Media Laboratory

20 Ames Street, Room E15-324, Cambridge MA 02139 USA
+1 617 253 0334, fax +1 617 258 6264

wad@media.mit.edu, vmb@media.mit.edu
(correspondence to second author)

Keywords: multimedia, data
ow, streams, digital signal processing

Abstract
We describe a parallel computer system for processing media: audio, video, and graphics,

among others. The system supports medium to coarse grain parallelism, using a data
ow

model of execution, on a range of machine architectures scaling from a single von Neumann or

general purpose processor (GPP) up to networks of several hundred heterogeneous processors.

A distributed resource manager, extending or subsuming the functionality of a traditional

operating system, is an integral and necessary part of the system. While we are building a

system for processing a variety of media, in this paper we concentrate on video because it

provides an extreme case in terms of both data rates and available parallelism.

1 Introduction

In order to provide higher compression, greater
exibility, and more semantic description of

scene content, video is increasingly moving toward representations in which the data are seg-

mented not into arbitrary �xed and regular patterns, but rather into objects or regions de-

termined by scene-understanding algorithms [14][15]. These representations are e�ectively sets

of objects and \scripts" describing how to render output images from the objects. In other

papers, we have described the advantages of this approach, and have shown a general structure

for decoding
exible, object-based video representations [5][4]. While it is possible to view this

trend as reducing the regularity of the processing, and thus reducing the e�ciency available

from computational optimizations, we note that the individual objects are amenable to the

same sorts of techniques used in \traditional" video coders, and also that the encoding algo-

rithms require vastly more processing than current DSP-based approaches; further, most such

advanced representations contain su�ciently many degrees of freedom that hardwired algorith-

mic pipelines are out of the question, and it becomes even more important to consider strategies

for e�cient programmable systems.

Irrespective of the coding method, computational needs for video are likely to increase

greatly in coming years. Digital video { unlike digital audio { is far from operating at human

1

perceptual limits. As display technologies and communications bandwidth permit, higher def-

inition systems will add to the computational demands. Alternative output technologies, for

example the holographic video displays developed at the MIT Media Laboratory [18] [22], push

these demands still further.

Custom processors operating in parallel and using hardwired communications networks are

capable of meeting the computational demands of media processing for a given application, yet

the
exibility to support di�erent algorithms is di�cult to provide with these architectures.

Single \general-purpose" processors, now often with specialized instructions/datapaths for ma-

nipulating small data elements in parallel (e.g. using a 32-bit ALU to process 8-bit R,G,B pixel

values simultaneously [20] [12]), provide adequate
exibility and are showing promise of meeting

the needs of the current generation of media applications. Yet, for the reasons presented above,

algorithms and applications which require tens to thousands of times more computation and

memory bandwidth than current applications are being developed. Since these requirements

of media processing greatly exceed the capabilities of single processors, programmable parallel

architectures will remain attractive for all but the cheapest or most limited media applications.

The system model described in this paper is an attempt to support computationally demand-

ing media tasks in an environment in which the programmer can take advantage of parallelism

and specify real-time performance without needing to know details of the hardware architec-

ture(s) used to execute the tasks. The parallelism can extend to processing resources available

\outside the box." Thus di�erently-scaled or -architected systems can execute the same soft-

ware, and can avail themselves of other local, underutilized processors; consider for instance a

VRML viewer on a personal computer borrowing cycles from the rendering engine of a video

game in the next room, or several PCs working together to achieve real-time media encoding.

2 Characteristics of Media Processing

To understand how we might address the problem, we should examine the characteristics of

both digital video data and typical processing algorithms. Relevant points about video data

are:

� The information is typically stored in compactly �lled multidimensional arrays.

� The information extent is typically unbounded along at least one dimension (time).

� If supporting object-based video, the information extent along one or more dimensions

may vary (within bounds) along a separate dimension (for example, x and y size varying

along the time dimension).

� There is a huge amount of information involved.

The last item provides most of the di�culty involved with video processing. Fortunately,

most algorithms of interest do not need concurrent access to a large number of the elements in a

data array. Processing commonly operates independently in a locality of limited dimensionality

(one color component in one region of a frame, one frame, or one small region of a group of

frames), providing a large amount of potential data parallelism. Within the smaller locality

2

accessed by a given invocation of an algorithm step, the data access pattern is typically �xed.

We will describe a mechanism, streams, which exposes and utilizes these algorithmic regularities.

3 Hybrid Data
ow

An imperative algorithm speci�cation (i.e. a sequence of instructions to be executed sequen-

tially), while an ideal means of controlling a single von Neumann or Harvard architecture

processor, provides little opportunity for parallel execution. Instruction level parallelism of

small numbers of instructions may be detected and used, but larger amounts of parallelism

aren't available unless explicitly supported by the application algorithm. This requires the

programmer to determine the parallelism, in many cases �xing the granularity at compile time

for a particular machine. The fundamental issues encountered in building a parallel processing

system 1 are particularly di�cult to overcome using imperative algorithm speci�cations.

A �ne-grained data
ow speci�cation provides the maximum available execution parallelism

for a given algorithm, and directly addresses the fundamental issues mentioned above. Unfor-

tunately, a �ne-grained data
ow implementation encounters the high overhead of synchronizing

(token matching, or scheduling) every instruction, producing results which aren't competitive

with imperative implementations of equivalent cost.

Several of the re�nements to �ne-grained, static, data
ow are attempts to utilize data and

instruction locality [7]. In particular, hybrid data
ow schemes [9][16][17] propose a scheduling

quantum larger than a single instruction in an e�ort to minimize the amount of synchronization

while still providing an acceptable level of parallelism. The number of basic instructions in the

sequence varies from one (�ne-grained data
ow) through the tens and hundreds (medium-

grain) up to entire applications (coarse-grain). Note that the machines used to execute the

instruction sequences may themselves use multiple processing units to e�ciently utilize the

available instruction level parallelism within the sequence.

We also propose using medium-grain hybrid data
ow in part because the instruction se-

quences represent algorithm sections (or tasks) of a size suitable for accelerating with a typical

specialized processor.

4 Specialized Processors

Building a system with the processing power required for analyzing or synthesizing video using

only a network of homogenous GPPs is a costly and unwieldy solution. We propose that some

of the processing elements be specialized processors { capable of executing a restricted set of

algorithms much more e�ciently than a general purpose processor. Examples of specialized

processors are SIMD and MIMD arrays of processing units, well suited to such tasks as matrix

multiplication, convolution, and vector distance calculations (e.g. vector quantization or motion

estimation). Another example is a recon�gurable processor, which may be rapidly con�gured

to provide application speci�c functionality [23][8].

1According to Arvind [1], the two fundamental issues encountered in building a parallel processor computer

system are: 1. The non-deterministic latency associated with accessing shared memory in a multiprocessor, and

2. Obtaining e�cient synchronization of a process across multiple processors.

3

Algorithm tasks are dynamically mapped onto the most appropriate (i.e. fastest for it

given the current architectures, loading, and data locality) processing elements available in a

system by a resource manager. The processing elements are grouped into processing nodes,

which contain a general purpose processing element executing part of the resource manager,

and possibly other specialized processing elements which it may control or con�gure. Even if

we limit our machines to general purpose processors, a variation in capabilities among them

(e.g. faster processor, larger data cache, or di�erent communication latency) allows us to

preferentially schedule non-parallelizable sections of algorithms to more capable processors.

Specifying a task in a heterogeneous processing environment must be done in a manner

independent of the machine architecture chosen for execution. The simplest method, run-time

interpretation of an intermediate, machine independent language, imposes an unacceptable

performance penalty. A more attractive solution is to compile, at application start-up, the in-

termediate form of each task speci�cation into instruction sequences for the particular machine

architectures present in the system. While this is quite feasible for general purpose processors,

the compilation of con�guration information for completely or partially recon�gurable (special-

ized) architectures is not as well developed. In these cases the \instruction sequence" may more

closely resemble datapath con�guration information than any sequence of instructions.

In order to support specialized processors easily at the present time, the task representation

proposed is a set of pre-compiled instruction sequences { each intended for execution on a

particular machine architecture. The use of shared libraries allows common tasks to be easily

extended to support system-speci�c specialized processors. Otherwise, the application would

have to be pre-compiled for all target architectures: a highly undesirable situation.

5 Streams

We extend hybrid data
ow with the introduction of streams [21], a natural means of describing

data which changes along any dimension. In its simplest manifestation, a stream may represent

a variable which is modi�ed over time. Each entry along a dimension represents a change in

the value of the variable. A multidimensional stream is essentially a multidimensional array of

relatively small (8 - 1024 bits) data elements, possibly sparsely populated or unbounded in size

along one or more dimensions.

Streams allow the intelligent prefetching of data in order to overcome the uncertain latency

of accessing shared data and also provide a convenient framework for performing synchroniza-

tion. They are a mechanism for specifying a data interconnection between functional tasks,

representing (possibly elastic) delay elements for temporary storage of intermediate results.

Streams explicitly identify the data parallelisms and access regularities available in the applica-

tion of a task to a number of data elements. The granularity with which a stream is processed

is determined at runtime, providing (within limits) an appropriate level of parallelism for a

particular system.

Collapsing a multidimensional array down to a linear sequence of values conceptually in-

volves a set of nested, bounded, incrementable array index counters. We standardize the de-

scription of these virtual counters using two or more integer parameters, which may be repeated

in a hierarchical manner to describe either a stream segment accessed by a single invocation

of a task, or the mapping between a multidimensional data array and its linear form. Two

4

extent

step
extentoffset

step

a.) D{x, y} E{4, 4} S{2, 1} of D{x, y} E{3, 2} S{1, 1} O{1,2}
b.) D{x, y} E{3, 2} S{4, 3} O{2,1}

x

y
step

extent

step

order

extent

- desired stream elements

Figure 1: Stream Parameters

example stream access patterns and their parameters are shown in Figure 1. Part b of the

�gure shows an example of a two level access pattern, with the step and extent of only the top

level indicated. These parameters (usually abbreviated to their �rst letter) are:

Dimensions Each stream is de�ned for some number (possibly zero) of dimensions. There

is no change in the stream along unde�ned dimensions.

O�set Establishes the absolute location in the stream of the lesser bound of this stream

fragment along each de�ned dimension. (Abbreviated as L , not O .)

Extent This is the maximum range of the stream fragment along each de�ned dimension.

This may be in�nite.

Step The step parameters give the counter increment in each dimension. There are several

\special" values that a step parameter may have for a particular dimension. One is zero,

which indicates that the same values are to be replicated along that dimension. The value

of the extent along any dimension of the stream (denoted by Edim) may also be speci�ed

as a step parameter, allowing the multidimensional array to be stored in a \packed"

format.

Order This is the order of counter nesting (e.g. do we scan horizontally and then vertically,

or vice versa.)

As there is no limit on the number of dimensions which may be de�ned in a program, it

is safe to say that every stream is embedded in a higher dimensional space. When a task has

one or more streams as arguments, it is applied to a particular fragment, or subsection, of each

stream. If the task only operates over a lower dimensional or smaller space than the fragment,

it will be applied multiple times over subspaces of the fragments. This allows synchronization

and scheduling costs to be amortized over multiple task invocations. There are a number of

common operations (such as convolution, or estimation of image motion) that operate in a

area of data which is changed only incrementally between task applications. Using the above

access pattern de�nition, this neighborhood is indicated independently for each dimension, and

is de�ned as the sample extent times the absolute value of the sample step { if the step is

5

non-zero { and one otherwise. The size of the \sample overlap" along each dimension is equal

to the sample neighborhood minus the absolute magnitude of the block step.

If the sample overlap is non-zero, the resource manager will attempt to pipeline the stream

operation, thereby amortizing the cost of transferring the overlapped data over as many task

invocations as feasible. Pipelining is possible when the function can be executed on a pro-

cessor that has su�cient local storage to store stream values that it will need again. In the

one-dimensional case, there must be enough memory to store the sample extent. In the N -

dimensional case, there must be enough memory to store the multiple of the number of task

invocations being overlapped times the sample extent for each of the N � 1 lower dimensions.

When it is desirable to pipeline the processing of data extents larger than the local storage

provided by the processing units in a system, the stream may be automatically partitioned into

multiple smaller streams in order to avoid over
owing the processor local memory, in a manner

identical to that used for exploiting data parallelism.

Elements in a stream may only be assigned once. Once written, an element may not be

modi�ed. A task which accesses stream elements which have not yet been assigned will not be

scheduled for execution until the stream elements are available. While this synchronization of

data is e�ectively performed on each individual value of each stream, for e�ciency's sake, it is

almost always performed on larger blocks of data. The size of a synchronization data block is

determined by the resource manager at runtime, taking into account the stream access pattern,

amount of pipelining, and complexity of the input task and output task(s) of a stream.

A user application is responsible for declaring a stream { in the initial program environment

or using a system call { before declaring any tasks using it. What is really created is a stream

directory structure. This structure, which is incompletely replicated across all the processors

accessing a stream, contains an entry for each stream fragment in local memory, and information

on which processor to query for more data in a particular dimensional extreme (i.e. for stream

fragments with an X dimension position lower than C, ask node D.) The resource manager,

not the application, is responsible for allocating the actual memory for a stream. Upon stream

creation, an attempt is made to allocate adequate stream bu�ering, but this allocation may be

increased during execution if necessary.

6 Naming and Protection

We use a capability mechanism [13][19] to provide naming and protection. Capability based

addressing is similar to segmented addressing, or addressing through an object descriptor. Like

those mechanisms, it provides a level of indirection that aids memory relocation (e.g. objects

may be moved into slower storage over time.) It also provides for context independent naming

(objects may easily be interchanged between processes), and persistent objects { those which

outlive the process that created it. All data objects in the system are accessed using capabil-

ities, called tags, including task instructions, hardware devices, streams, process and system

environments, and the task tokens used to schedule instruction sequences for execution. Sepa-

rate bits in a tag allow a data object to be independently readable, writeable, and executable,

controlling an applications access to data using a particular tag.

Tags may be freely copied, passed as parameters, and passed from application to application,

but may not be modi�ed or forged by an application. This is enforced by isolating the tags

6

from the application instruction sequences. This also allows the scheduling agent to easily

locate the tags used by a task (which represent all non-temporary data accessed by a task)

while performing processor selection and data prefetching. The data objects represented by

the capabilities are fetched into local memory if necessary and the capability resolved into an

address in the local address space before executing a task.

6.1 Scoping

Each data object has a single descriptor structure (which may be replicated per processor node),

which is stored in an environment. Each process has a separate hierarchy of environments, used

to store the data and instruction object descriptors used solely within that process. A System

environment is provided for storing persistent objects.

In a data
ow system, the data objects accessed by a task must be clearly identi�ed in

order to ensure the availability of the data local to a processor when the task is executed.

Unlike a program executing in a single address space, there are no ubiquitous globals. All

of the data objects referred to in a task's parameter lists must be assigned and located in

memory local to the processor, with appropriate permissions, before a task will be scheduled

for execution. There are three lists of data elements accessible by the instructions of a given

task: Input/Output, Internal, and Private, each with a di�erent role. Each task is provided

with a list of Input/Output parameters, which may be either constants or tags and are used

to pass arguments to a task and provide destinations for the results. They are equivalent to

function arguments and results in a conventional system model and are the major component

of a task token. Internal parameters are provided to allow a task instruction to access private

data objects, not available to the calling task (i.e. supporting protected procedures.) They are

equivalent to global variables, shared by all instances of a code module in a conventional system

model. Since the Internal parameters are bound to a task in general, and not to any particular

instance, they must be shared by all callers of a task. The Private parameters allow a shared

library task to reference data objects unique to a particular process, yet not accessible to user

tasks of that process.

6.2 Persistent Storage Management

Data objects are loosely divided into two categories: those which are described in a Process or

Task environment, and those which are described in the System environment. Objects which are

part of a Task or Process environment will be automatically destroyed when their application

terminates. In contrast, objects described in the System environment will not be deallocated,

and may remain de�ned inde�nitely.

It is intended that these long-term objects | applications, multimedia recordings, or in-

frastructure | be accessed in several di�erent manners:

� The system environment, and process environments are built and stored in long-term (non-

volatile) storage, and loaded into memory as needed. Only a minimal system environment

need be provided locally in long-term storage on a processor node, as system resources

and all application resources may be fetched from other processors in the system.

7

� Data objects placed in the system environment for sharing by di�erent processes may

migrate onto long-term storage if unused and memory is needed.

� Deliberate disk I/O may be performed by specifying a \�le I/O" task as the source

or destination (respectively) of a stream. This method is also used for other physical

device I/O. The \device drivers" consist of publicly executable tasks located in the system

environment for driving displays, peripherals, and audio outputs, as well as acquiring

video, audio, and sensor or other data.

Deallocation of persistent objects is problematic. Unlike the temporary data objects de�ned

local to a process, it is di�cult to determine when a persistent object is no longer needed. We

anticipate that { similarly to existing disk �lesystems { occasional manual intervention will be

necessary to remove unneeded data.

7 Scheduling

While hybrid data
ow doesn't specify any particular method of implementation, the \un-

bounded" nature of media streams being processed precludes the use of static data
ow. We

are proposing the use of an extension to tagged-token dynamic data
ow. Instead of the con-

ventional model { where tokens refer to data using a \tag" which contains both function and

iteration speci�ers { a data reference in this system consists of a tag identifying a stream object,

along with the dimensions, o�set and extent of the data being stored or demanded. Additional

explicit dependencies are addressed using the tag of the target task token.

When a program is started, the resource manager receives a dependency graph of tasks

and streams. The dependency graph is not explicitly provided, instead it is embodied in the

dependencies speci�ed in each stream or task object. These initial tasks, when executed, may

in turn create (or reference existing) graphs and present them to the resource manager for

execution. The resource manager is responsible for evaluating the graphs presented to it to

produce output data. Although the nature of the data being processed introduces real-time

constraints, we reject as unecessarily limited systems which guarantee performance through

static scheduling [11]. The method of evaluation selected, eduction, heavily in
uences the

inherent fault-tolerance of the system.

7.1 Eduction

There are two basic methods of evaluating the dependency graph which describes a program:

demand driven (or call-by-need) and data driven (call-by-value). A data-driven approach per-

forms a computation as soon as the required input values are available. While this ensures that

a computation is performed as soon as possible, it generally results in unneeded computations

being performed. Visualize, for example, a program that only wants to output a small region

of interest of a large input dataset.

While a demand-driven approach prevents unnecessary computations from being performed,

a demand for application output typically sees the complete computational latency of the ap-

plication before the requested data is available. The demand driven evaluation, or eduction [3],

of a dependency graph is described by two rules :

8

BkOff

Init

Query

Store

BkOff

Query

Store

Store

Absent

Error
Query

Store

BkOff

BkOff

Present

Waiting Execute

Query

Figure 2: Stream Synchronization State Diagram

1. The need for an data value at the output of a process causes it to be demanded.

2. If a data object (or a particular sub-context of one) is demanded, then and only then are

values demanded that are known directly to determine the data object.

Thus, eduction is simply tagged, demand-driven dynamic data
ow, where the tag includes

the multidimensional context of the data.

Exactly determining the appropriate input stream fragment for producing a given output

fragment is only possible given a constant rate (deterministic) process. If constant rate, the

information used by the resource manager for stream splitting and pipelining (the extent, di-

mension, and step of stream inputs and outputs to a task), in conjunction with a task history

establishing an absolute relationship between the di�erent stream coordinate systems at some

point in space-time, is su�cient for calculating which input stream fragments should be queried

for a given fragment of output stream. If not a constant rate process, upper and lower bounds

may be used to characterize the process rate [6], but a following stream merge will require serial

stream reassembly. An example of the latter situation from digital media is variable-length cod-

ing, for which a maximum and minimum compression factor are known, but the instantaneous

rate will vary with the statistics of the data.

If a particular fragment of a stream has been queried (demanded), the process producing

that fragment should be executed as soon as possible. At the same time, since a fragment

demanded may encompass many of the fragments actually used for scheduling and execution,

we provide a mechanism { the BkOff message { for signaling that a particular streams bu�ers

are �lling up and data is no longer urgently needed.

The synchronization state of a stream fragment follows the state diagram shown above.

This is similar to that proposed for an I-structure [2], with an extension to support two priority

levels. This is done to avoid the condition of processors sitting idle, by beginning data-driven

processing in the absence of data demands. The Present state represents a datum that is

presently located in memory, but which has not been demanded (via a Query). The Execute

state represents data for which at least one query has been received. If any tasks have their

dependencies cleared, and an output fragment which is Waiting or an input fragment which is

Execute, they will be executed. If no such tasks are ready, tasks with all their Input fragments

Present are executed. If a BkOff message is received for a fragment, the priority of the data

is reduced.

9

7.2 Fault-Tolerance

Fault-tolerance is frequently cited as an advantage of distributed systems, but this is perhaps

making a virtue out of a feature necessitated by the large number of components in such a

system. Data and instructions may be lost or garbled in transmission between processors,

and processor nodes may function incorrectly for various reasons. The fault-tolerant nature

of functional languages, and eduction in particular, have been noted previously [10] [3]. For

reasons of brevity we will simply here note that our system is able to detect errors, and (by

use of the stream mechanism) recalculate correct data to recover from errors as necessary { a

feature perhaps of much greater importance in professional, or media-generation applications

than in consumer systems.

8 Requirements for the Resource Manager

The resource manager is a task distributed across all the processing nodes in a system, both

for scalability and fault-tolerance. It is charged with providing the functions of a traditional

operating system, as well as meeting the objectives alluded to previously:

1. It allows an algorithm to be executed on a variety of actual systems by dynamically

mapping the algorithm onto the available number and type of processing units.

2. It allows applications executing concurrently to share a limited pool of processor, memory,

and communication resources. It should provide graceful degradation of a system (fair

access to resources) when overloaded.

3. It performs the run-time partitioning of streams to exploit data parallelism.

The resource manager is responsible for scheduling { deciding at runtime which processing

element should be used to execute a given task. This decision is based on how e�ciently

a particular processing element will perform the task (taking into account any code or data

already local to a given processor), the amount of local storage required for e�cient pipelining,

and the complement and current load of processing elements in the system. In addition to

balancing the processing load of an application across a system, this provides a tolerance of

faults in individual processing elements.

Long and medium-term (longer than the execution of a single task) memory resources

associated with a process are allocated using the resource manager. Streams are a special

case of these which may grow dynamically and be stored in a distributed manner. This support

allows an algorithm to operate independently of a particular memory architecture { the resource

manager will allocate storage in a location it deems optimal for that algorithm and architecture.

In addition, automatic deallocation (\garbage collection") of memory objects greatly simpli�es

the application programmer's task.

The manner in which communication resources are managed varies with machine architec-

ture. Some architectures use communication resources such as shared buses, or packet-switched

networks, which rely mainly on fast hardware arbitration. Others use semi-static routing {

such as a circuit-switched crossbar { or DMA channels, which must be scheduled. The resource

10

manager both takes the availability of the communication resources into consideration when

scheduling algorithm segments, and performs any initialization of communications channels

(e.g. con�guring the crossbar, or DMA controller) required.

8.1 Distributed Resource Management

Although a resource manager is capable of \stand-alone" operation, it is designed to operate

in conjunction with resource managers on other processors in a distributed system. The extent

of this distributed system is determined when the resource manager initializes itself, and is

modi�ed over time to re
ect the addition and removal of resources. A node has a list of

\primary nodes" stored locally, and uses it to register itself and obtain information about the

local system of which it is a component. This list is not meant to be complete, rather it contains

a subset of nodes likely to be operational.

The distributed system is organized logically 2 as a tree with no single node at the top

(level 0). At each level in the tree below the top, a processor recognizes a primary processor in

the level above it, an alternate in the level above it to be used in case of primary failure, peer

processors at the same level, and nodes below it for which it is the primary.

Primary

Peer

Peer Peer

Alternate

P

P P

PP

P P P P P P P P P

Level

0

1

2

Figure 3: Logical Hierarchy of Processors in a System

In an attempt to avoid \hot spots", this hierarchy may be di�erent for each process in a

system, and is de�ned as part of the process environment. The number of processors in a level

cannot be �xed, and varies along with the number of levels to re
ect the available process

parallelism and number of active nodes in a system.

When the evaluation of a graph of one or more task tokens and streams is requested,

the evaluation is performed locally. As opportunities for data and control parallelism become

apparent, the tasks will be assigned to additional processing nodes. This assignment utilizes a

(possibly erroneous) model of the processing resources in the system. This model is built when

a processing node �rst contacts a system, and is updated as changes (such as the average load

on remote machines) are detected.

The assignment of tasks to processing resources is not done in a single step. Rather, the

assignment is done hierarchically. When a task is to be applied to a stream, and the stream and

task parameters indicate that it may be \split" to provide parallelism, the task is subdivided and

2The logical organization need not consider the actual network topology. If, however, there is a hierarchy of

communication bandwidths, the mapping of logical organization to physical processors should re
ect it.

11

dispatched to processors in the next level of the hierarchy. Upon evaluation, these processors

may further subdivide the task and dispatch it to even lower levels.

This has two e�ects:

� The computational and network I/O load of performing the task/stream splitting and

assignment is distributed. Larger systems have a larger number of processors at each

level of the hierarchy, as well as more levels in the hierarchy.

� The computational resources being modeled at the initial (and more distant from the

worker processors) task subdivision are aggregates. When (and if) a �ner subdivision is

performed in the next step it utilizes a more local (and hopefully more accurate) model

of available resources. This attempts to ameliorate the e�ects of errors in the model of

system processor resources.

Once the scheduling, or mapping onto currently available processor resources is performed,

the graph is executed relatively independently of the originating node. The serial portions of the

application will be scheduled for execution on the primary node, but may migrate to alternates

(which become primaries and name new alternates) if needed (e.g. due to overloading or failure

of the originating node.)

MVec

Motion
Estimation

In Out
DiffNew

In

Old

Motion
Comp.

Out

MOld
-

Figure 4: A 2D Motion Predictive Coder

9 An Example Application

A simple example of a stream graph | representing a 2D motion predictive video encoder

comprised of three tasks and �ve streams | is shown in Figure 4. The square elements in the

graph represent tasks, and the circles represent bu�ers inserted into streams in the graph by

the resource manager. A stream may have multiple output ports (each with its own access

pattern) utilizing the same stream bu�ers. The algorithm consists of a task which estimates

the 2D planar motion of the \New" video frame relative to the \Old" video frame, followed by

a Motion Compensation task that immediately selects the region in the \Old" frame indicated

by the motion vector. An error signal is generated and output, along with the estimated motion

vectors.

Typical characteristics for each task stream input or output are shown in Table 9. The

variable BS is used to represent the size (in any dimension) of the blocks used for motion

prediction, and SS is used to represent the size (in any dimension) of the area searched for the

12

optimal match (typically a small integer multiple of BS). For example, the video data input

to the stream graph (the output of the In task) is a stream fragment that varies along the x,

y, and t (time) dimensions. Its extent in the x dimension is Ex, along the y, Ey, and it is

unbounded in time.

The access pattern of the Motion Estimation task, shown graphically in Figure 5, shows

considerable overlap in the \New" stream between successive task evaluations. Depending on

the relative amount of state memory available in the processing element, this task may be

pipelined to greatly reduce memory and communications needs. Current specialized motion

estimation processors tend to provide enough state for pipelining in only a single dimension,

whereas software implementations may attempt to store enough data in local cache for the two

dimensional pipelining shown in Figure 5.

The characteristics of the stream bu�ers aren't �xed, instead being determined at runtime

to re
ect both the capabilities of the machine and the structure of the algorithm. The size

of the \Old" stream bu�er, for example, depends rather directly on either the computational

latency of the Motion Estimation processor (when using �ne-grained synchronization) or on

the synchronization block size. The \MOld" stream bu�er size is directly determined by the

synchronization block size used.

The graph may be subdivided for execution, either if multiple processing elements are

available in the system or if the local state on a selected processor is inadequate for optimum

pipelining of a given task. A subdivision of the 2D Motion Predictive encoder for a system

with two similar nodes is shown in Figure 6. While both data and process parallelism are

available in this example, the chosen partition on a homogenous machine will most likely be

data partitioning to minimize communication between processing nodes. As indicated earlier,

memory constraints may force partitions smaller than the most e�cient to be used. As discussed

elsewhere [6], it is also possible to construct dependency graphs which may (due to feedback

loops) only be evaluated using synchronization data blocks of limited size.

While stream access overlap allows pipelining, it also increases the communications cost of

obtained data parallelism. Partitioning along the t dimension of the input and output streams

in this example (where there is no overlap) is also feasible, but given the input and output

streams this would result in increased bu�er sizes and longer computational latency.

Data already accessed

New

Old
Motion

Estimation

Motion
Vectors

Figure 5: Stream Access Patterns of the Motion Estimation Task

13

Task: New Old

Port: output output

Dimensions Dfx; y; tg Dfx; y; tg

Extent EfEx; Ey;1g EfEx + 2BS;Ey + 2BS;1g

Step Sf1; Ex; Ex �Eyg Sf1; Ex + SS �BS;

(Ex + SS �BS)� (Ey + SS �BS)g

Order Of1; 2; 3g Of1; 2; 3g

Task: Motion Estimation Motion Compensation

Port: New Old MVec MVec Old MOld

Dimensions Dfx; yg Dfx; yg Dfsg Dfsg Dfx; yg Dfx; yg

Extent EfBS;BSg EfSS; SSg Ef2g Ef2g EfSS; SSg EfBS;BSg

Step SfBS;BSg SfBS;BSg Sf1g Sf1g SfBS;BSg SfBS;BSg

Order

Task: Subtract Di� MVec

Port: all input input

Dimensions scalar Dfx; y; tg Dfs; tg

Extent EfEx; Ey;1g Ef2;1g

Step Sf1; Ex; Ex �Eyg Sf1; 1g

Order Of1; 2; 3g Of1; 2g

Table 1: Motion Predictive Encoder Stream Parameters

10 Conclusion

Through the stream mechanism we decouple the memory access from the actual processing of

the data, simplifying the design of specialized processors and allowing them e�ciently to share

a single memory interface. In addition, the stream mechanism allows the data and functional

parallelism present in an application to be manipulated to match the parallelism available in a

particular system.

Digital media provide a computational domain whose demands will continue to increase

for many years to come. Because this is after all a consumer application, solutions must be

compact, low-cost, and easily programmable, and must support di�ering hardware scales and

architectures. We feel that the system we have outlined here o�ers a practical framework for

design of such products.

References

[1] Arvind and Robert A. Iannucci. Two fundamental issues in multiprocessing. In Proc. of

DFLVR Conf. on Parallel Processing in Science and Eng., 1987. Also in Architectural

14

MVec

Motion
Estimation

DiffNew

Old

Motion
Comp.

MOld
-

MVec

Motion
Estimation

In Out

DiffNew

In

Old

Motion
Comp.

OutMOld
-

Old

New

MVec

Diff

Figure 6: A Partitioning of the Motion Predictive Coder

Alternatives for Exploiting Parallelism, ed. by David J. Lilja, IEEE Computer Society

Press, Los Alamitos, CA, 1991.

[2] Arvind and R. E. Thomas. I-structures: An e�cient data type for functional languages.

Technical Report LSC/TM-178, MIT Laboratory for Computer Science, 1980.

[3] Edward A. Ashcroft, Anthony A. Faustini, Rangaswamy Jagannathan, and William W.

Wadge. Multidimensional Programming. Oxford Univ. Press, New York, 1995.

[4] V. Michael Bove, Jr. Multimedia based on object models: Some whys and hows. IBM

Systems Journal, 35(3 & 4), 1996.

[5] V. Michael Bove, Jr., Brett D. Granger, and John A. Watlington. Real-time decoding

and display of structured video. In Proc. IEEE Int'l. Conf. on Multimedia Computing and

Systems '94, Boston, MA, May 1994.

[6] Joseph T. Buck and Edward A. Lee. Scheduling dynamic data
ow graphs with bounded

memory using the token
ow mode. In Proc. IEEE 1993 Intl. Conf. on Acoustics, Speech

and Signal Processing, pages I{429 { I{432, April 1993.

[7] D. Culler and G. Papadopoulos. The Explicit Token Store. Journal of Parallel and Dis-

tributed Computing, 10(4):289{308, Dec 1990.

[8] Setven A. Guccione and Mario J. Gonzalez. A data-parallel programming model for re-

con�gurable architectures. In Proc. IEEE Workshop on FPGAs for Custom Computing

Machines, pages 79{87, Napa, CA, 1993.

[9] R.A. Iannucci. Toward a Data
ow/von Neumann Hybrid Architecture. In Proc. 15th

Annual Int'l Symposium on Computer Architecture, pages 131{140. ACM, 1988.

[10] R. Jagannathan and E. A. Ashcroft. Fault tolerance in parallel implementations of func-

tional languages. In Proc. 21th Int'l Symp. on Fault-Tolerant Computing, pages 256{263,

Montreal, Quebec, Canada, June 1991. IEEE.

15

[11] K.H. Kim and Chittur Subbaraman. Fault-tolerant real-time objects. Communications of

the ACM, 40(1):75{82, January 1997.

[12] R. Lee. Subword parallelism with MAX-2. IEEE Micro, 16(4):51{59, August 1996.

[13] Henry M. Levy. Capability-Based Computer Systems. Digital Press, Bedford, Mass, 1984.

[14] A. Ikonomopoulos Murat Kunt and M. Kocher. Second-generation image-coding tech-

niques. Proceedings of the IEEE, 73(4):549{574, 1985.

[15] H. G. Musmann. Object-oriented analysis-synthesis coding of moving objects. Signal

Processing: Image Communication, 1:117{138, 1989.

[16] R.S. Nikhil, G.M. Papadopoulos, and Arvind. *t: A multithreaded massively parallel

architecture. In Proc. 19th Annual Int'l Symposium on Computer Architecture, pages 156{

167, 1992.

[17] M. Sato, Y. Kodama, S. Sakai, Y. Yamaguchi, and Y. Koumura. Thread-based pro-

gramming for em-4 hybrid data
ow machine. In Proc. 19th Annual Int'l Symposium on

Computer Architecture, pages 146{155, 1992.

[18] Pierre St.-Hilaire, Steven A. Benton, and Mark Lucente. Synthetic aperture holography:

a novel approach to three dimensional displays. Journal of the Optical Society of America

A, 9(11):1969{1977, Nov. 1992.

[19] Andrew S. Tanenbaum, Sape J. Mullender, and Robbert van Renesse. Using Sparse Ca-

pabilities in a Distributed Operating System. In Proceedings 6th Annual Int'l. Conf. on

Distributed Computing Systems, pages 553{563, New York, 1986. IEEE.

[20] M. Tremblay, J. M. O'Connor, V. Narayanan, and H. Liang. VIS speeds new media

processing. IEEE Micro, 16(4):51{59, August 1996.

[21] John Watlington and V. Michael Bove, Jr. Stream-based computing and future television.

In Proc. 137th SMPTE Technical Conference, Sep 1995.

[22] John A. Watlington, Mark Lucente, Carlton J. Sparrell, V. Michael Bove, Jr., and Ichiro

Tamitani. A hardware architecture for rapid generation of electro-holographic fringe pat-

terns. In SPIE Proc. #2406-23 - Practical Holography IX, Bellingham, WA, Feb. 1995.

SPIE.

[23] M. Wazlowski, L. Agarwal, T. Lee, A. Smith, E. Lam, P. Athanas, H. Silverman, and

S. Ghosh. PRISM-II Compiler and Architecture. In Proc. IEEE Workshop on FPGAs for

Custom Computing Machines, pages 9{16, Napa, CA, 1993.

16

