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ABSTRACT

The Cheops Imaging System is a compact, modular platform for acquisition, processing,
and display of digital video sequences and model-based representations of moving scenes, and is
intended as both a laboratory tool and a prototype architecture for future programmable video
decoders. Rather than using a large number of general-purpose processors and dividing up
image processing tasks spatially, Cheops abstracts out a set of basic, computationally intensive
stream operations that may be performed in parallel and embodies them in specialized hardware.
We review the Cheops architecture, describe the software system that has been developed to
perform resource management, and present the results of some performance tests.
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INTRODUCTION: RESEARCH CONTEXT AND BACKGROUND

Digital coding of video signals has become a topic of much interest in recent years, with
applications ranging from videotelephony and \movies-on-demand" to terrestrial broadcast of
high-de�nition television (HDTV) through existing spectrum allocations. In addition to the
dimensions of data compression and robustness to noise, the Information and Entertainment
Section of the MIT Media Laboratory has been exploring what we feel will ultimately be
the most dramatic impact of digital video: the ability to decouple the form in which images
originate from the form in which they are ultimately viewed.[1] This research has proceeded in
two directions. First, we have extended \traditional" video coding techniques to allow decoding
at resolutions and frame rates other than that of the originating camera (\open architecture"
television) and to support sending various subsets of the bitstream over di�erent channels
(\scalability"). Second, we have for several years been investigating moving away from pixel-
and frame-based image representations and toward descriptions of moving scenes that embody
information about the structure of the scene; this promises both greater coding e�ciency and
the ability (whether in post-production or in interactive viewing) to manipulate the data in a
physically or semantically meaningful way.

While an increasing number of VLSI integrated circuits dedicated to the encoding and
decoding of speci�c video compression algorithms are becoming available, the potential need
to decode a digital video bitstream in di�erent ways and the likelihood that a number of
di�erent digital video representations may need to coexist in a single platform suggest that much
encoding and decoding will not be done on dedicated, single-purpose circuits. Rather a digital
video bitstream might carry enough information about its format that di�ering sorts of 
exible
decoders will be able to produce images from it; this approach will also permit a continuing
evolution of video representations to accommodate higher-resolution images, higher-bandwidth
channels, and advances in compression methods as they develop. In examining our current
and projected research video processing needs, and as a �rst examination of hardware and
software architectures for 
exible digital video processing, we have developed a set of system
requirements:

� The system should be able to do digital signal processing in conjunction with graphics at
real-time or near-real-time rates. Where algorithmic complexity is too high for real-time
computation, the system should be able to run asynchronously, storing the results for
later display at synchronized real-time rates.

� The system should be easily programmable, without undue attention to hardware resource
management or process synchronization.

� The system should support time-sharing among multiple processes.

� The system should be easily upgradable as processing requirements change or as technol-
ogy improves.

� The system should be compact and relatively inexpensive, so that multiple copies can be
built.

Examination of algorithms used in both waveform-based and analysis-synthesis image coding
shows a limited number of extremely computationally intensive and often quite regular opera-
tions (matrix algebra, correlations, and convolutions, for example) along with less-demanding
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tasks that might easily be handled by typical microprocessors. A process might be described as
a 
ow graph in which these basic tasks are connected together in a way which indicates the data
dependencies.[2] Such a model is often referred to as a data-
ow description of the process. The
basics of data-
ow computing were developed and described by Dennis in the 1970's.[3] While
the initial investigations of hardware and software systems that follow the data-
ow paradigm
were aimed at general-purpose computing, more recently several groups have looked at the use of
data-
ow for digital signal processing applications.[4] An early example is the DDSP system.[5]
Researchers have addressed the speed, multidimensionality, and synchronization requirements
of digital video processing by building hardwired pipelines such as the Cytocomputer,[6] though
such an architecture has very limited recon�gurability. The more 
exible TIP [7] was based on
di�ering sorts of processors connected around a ring bus; here the performance-limiting factor
may be the bus bandwidth rather than the processors themselves. FLIP [8] instead used identi-
cal processors which could be microcode-con�gured into speci�c functionalities and connected
together in a variety of ways through sixteen selectable buses. The Princeton Engine [9] is a
large linear array of identical processors tightly coupled to a communication network as well
as to analog-to-digital and digital-to-analog converters. The Datacube MaxVideo 20 and 200
[10][11] use a full crosspoint switch to connect an ALU, a convolution and statistics processor,
memory, and analog-to-digital and digital-to-analog converters. The latter �ve systems are no-
table for the designers' explicit use of the data-
ow model for programming. MX-1, a parallel
image and signal processing system using identical processors communicating through a cross-
point, is described in [12]; here a combination of parallel LISP and C was used for programming,
with no apparent application of data-
ow techniques.

In recent years a number of single-chip video processors have emerged. While software tools
may enable programmers to use a data-
ow abstraction, at the hardware level many of these
chips { like Matsushita's ISMP [13] and Texas Instruments' MVP [14] { are based on a standard
multiple-instruction multiple-data (MIMD) parallel architecture. PADDI [15] and Philips' VSP
[16] enable the construction of various synchronous processing pipelines by connecting their sets
of arithmetic logic units through recon�gurable communication networks.

Cheops, the system we describe in this paper, perhaps has its closest direct predecessor
in Fujitsu's IDATEN system.[17] IDATEN used a modi�ed Benes Permutation Network to
connect together several di�erent types of processors in recon�gurable pipelines, where each
processor performed a high-level operation such as �nite-impulse-response �ltering. Cheops is
similarly a data-
ow computer, in that algorithms are described as graphs involving operations
by specialized stream processors and specifying the data dependencies among the operations.1

A von Neumann general-purpose processor controlling everything, though, greatly enhances
the 
exibility and programmability of the system. Cheops di�ers from IDATEN in several
areas, particularly in that resources are scheduled dynamically so that the same software will
run on di�erently-equipped Cheops systems and so that multiple application programs can run
concurrently. Also, Cheops allows bu�ers to be included in the data-
ow graph, permitting
slower-than-real-time processing when demand exceeds available resources.2 These bu�ers also

1We use the term stream processor because the basic units of data on which Cheops operates are arrays of

data accessed in a sequential fashion. Some authors make a distinction between such a stream-oriented data-
ow

model and one in which an individual datum is considered elemental. See for instance [18].
2A corollary property is the ability to perform portions of an algorithm at faster-than-real-time rates within

the limits improsed by the bu�er space available.
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allow the general-purpose controlling CPU to gain access to intermediate results in the data-

ow graph, enabling conditional data redirection or performance of portions of the algorithm
for which specialized hardware is not available.

CHEOPS SYSTEM ARCHITECTURE

Cheops was intended to be a compact, reasonably inexpensive adjunct to a workstation.
Along the way it has become a nearly complete workstation in its own right, with the limitation
that it doesn't maintain its own �lesystem but (transparently to the programmer) depends on
the �lesystem of its host computer. Since Cheops is a laboratory tool as well as a prototype
recon�gurable video processor, it must be modular to meet future processing and input/output
requirements. Cheops takes advantage of parallelism at several levels:

� Individual specialized processing units (the stream, or data-
ow processors) typically
comprise multiple parallel computing elements.

� Multiple stream processors operate simultaneously on one processor module.

� Multiple modules may reside in the backplane.

At the module level, the Cheops system architecture (Figure 1) resembles the \open ar-
chitecture television receiver" proposed by Schreiber, et al.,[19] though that device had pro-
cessing modules connecting between distinct input and output buses. Cheops allows for three
di�erent module types: processor, input/memory and output. These modules are intercon-
nected by three linear buses. Two of these buses are capable of sustained high bandwidth
(>100Mbyte/sec) transfer of pixel rasters (the Nile Buses) and the third is a 32Mbyte/sec bus
for transfer of smaller units of data and system control (the Global Bus). Up to four of each
type of module may be present in the system at one time, allowing a wide range in both system
processing power and I/O capabilities.

The stream processing portion of Cheops supports two basic data types: 16-bit and 24-bit.
On the Nile Buses, image data (pixels) being transferred to or from an I/O device are represented
as three independent 8-bit component channels, packed into a 24-bit word. Each component
channel in a pixel may be either unsigned or signed two's complement. Internal to a processing
module, component channels are stored independently, using a 16-bit, �xed-point, signed two's
complement representation referred to hereafter as a sample. Although the overall dynamic
range required by several image processing algorithms (in particular subbands and transforms)
exceeds that provided by a single 16-bit �xed-point representation, the range required by an
individual block of data (such as a particular subband) is typically predictable. Individual
processing devices may maintain much greater internal precision and either automatically or
under external control renormalize results to �t properly within 16-bit samples. When necessary,
Cheops' general-purpose microprocessor can handle other data types such as 32-bit integers and

oating-point numbers.

CHEOPS PROCESSOR ARCHITECTURE

The philosophy behind the design of the Cheops processor module is to abstract out a basic
set of computationally intensive operations required for real-time performance of a variety of
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desired applications. These operations are then embodied in specialized hardware provided
with a very high throughput memory interface, and controlled by a general-purpose processor.
Although image data tends to be large, it is accessed in a regular fashion, and the operations
needed tend to work within a limited data window (often <1Ksample). Rather than storing
all the data locally, the specialized processors operate upon one or more high speed streams
of data. Stream processors are not required to input and output data simultaneously; some
act only as destinations or as sources, while processors that require very large pipeline delays
may do both but in separate transfer phases. The general-purpose processor can read and
write control registers and local memory on the stream processors, as well as read results of
calculations on the streams { the latter particularly the case on destination-only processors
like block motion estimators. This access is via an 8-bit-wide control register datapath which
supports transfer rates of 8Mbytes/sec.

The processor module comprises eight memory units communicating through a full cross-
point switch with up to eight stream processing units. As it was possible to build a full crosspoint
switch capable of 40MHz operation with just four chips (LSI Logic L64270 devices), we chose
to implement our interconnection network in this fashion rather than to use a more compact
arrangement of switching elements. Each memory unit is made up of dual ported dynamic
memory (VRAM) and a two-dimensional direct memory access (DMA) controller for trans-
ferring a stream of data through the crosspoint at up to 40Msample/sec. Specialized stream
processors attached to the switch perform common mathematical tasks such as convolution, cor-
relation, matrix algebra, block transforms, spatial remapping, or non-linear functions. These
processing units are on removable sub-modules, allowing recon�gurability and easy upgrade. A
general-purpose central processing unit (CPU) { an Intel 80960CA or CF, clocked at 32MHz {
is provided for sequencing and controlling the 
ow of data among the di�erent functional units,
implementing the portions of algorithms for which a specialized processor is not available, and
performing higher-level tasks such as resource management and user interface. Figure 2 shows
a simpli�ed view of the topology of a single \P2" processor module.

Because the switch is a full crosspoint, it is possible to connect a memory bank to another
memory bank, to cascade processors,3 or to send one stream to several destinations simultane-
ously.

The DMA controllers on each VRAM bank, called \
ood controllers," are capable of rel-
atively agile handling of one- and two-dimensional (and to a lesser extent, three-dimensional)
arrays. When acting as a source, a 
ood controller can replicate or zero-pad independently in
two dimensions, and when acting as a destination it can decimate. Hence fractional sampling-
rate conversion can be performed in a single transfer through a �lter stream processor. The
functionality of a 
ood controller, especially in conjunction with the transpose stream proces-
sors discussed below, is thus similar to the multidimensional stream functions of the data-
ow
language Lucid;[20] see also [21]. The Nile Bus interface on non-processor modules is e�ectively
a 
ood controller also, and Nile transfers are handled in a similar fashion to transfers within a
processor module.

The processor module interfaces to the Nile Buses via the crosspoint switch. The pixel data
being transferred is stored internal to the processor module in three separate memory units, one
component channel per unit. As the pixel data is transferred to/from the Nile Bus, it passes

3The ability to cascade processors is limited by the maximum pipeline delay supported by the 
ood controller

in the ultimate destination. See below.
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through a color-space converter (a 3�3 matrix multiplier and lookup tables). This processor
decouples the pixel color representation used for display/input from that used for processing,
and may also be used to process data within a P2 module.

The actual data transfers through the crosspoint switch are synchronized by handshaking
lines called \OK channels." Every 
ood controller and stream processor connects to every
OK channel. In setting up a transfer, a process selects an unused OK channel and sets the
involved source and destination 
ood controllers and stream processor to use this channel. The
destinations are also informed of the pipeline delay associated with the datapath and stream
processors. The OK channels are the logical AND of the OK outputs of all of the participants
in a transfer. When all participants are ready to transfer data, the sources begin transferring.
After an amount of time equal to the pipeline delay of the transfer, the destinations begin
writing result data into memory. The current processor design has three OK channels, and
thus at most three transfers may be taking place at one time on a processor module, though
any number of memory banks and stream processors may be involved.4

The processor module communicates with the host computer using a SCSI (Small Computer
Systems Interface) bus. Each processor module appears as a �xed disk device, therefore in most
cases no special host device driver is needed; Cheops systems have proven to be compatible with
existing UNIX disk device drivers on DECStations, Sun SPARCStations, IBM RS/6000 systems,
and Silicon Graphics workstations. Two RS-232 serial ports are available, one for debugging
and diagnostics, and the other for user interface devices such as serial knob boxes, mice, or
touch-sensitive screens. If only a low-bandwidth host interface is desired, one of the ports may
substitute for the SCSI connection.

STREAM PROCESSORS

All stream processors constructed to date conform to the generic model diagrammed in
Figure 3. The electrical connections are fairly simple, and the signals involved have been
discussed above. The register interface and control state machine are usually implemented as
individual PALs, but if a large �eld programmable gate array (FPGA) is used as the main
processor it may have enough extra terms available to implement these functional blocks as
well. Because one removable submodule can hold two stream processors, it is possible for a
single stream processor to have two inputs or two outputs, though in so doing it disables the
other unit on the submodule when enabled. Stream processors may maintain as much internal
state as necessary, though if the delay between input and output is very long and the processor
can itself hold an entire transfer's worth of data, the processor operates in a two-phase fashion,
where �rst it acts as only a destination, then as a source. Details on speci�c processors follow.

� Transpose processor: Although VRAM provides dense memory with a high throughput,
rapid access is allowed only with an address stride of one, along adjacent samples in a
linear address space. Operations using other strides (such as vertical or temporal process-
ing) may be performed by �rst re-ordering the data stream using this stream processor.
Each processor module has two of these units permanently installed, which also handle
conversion to and from the square block format commonly used by devices such as block

4There is a separate OK channel associated with the processor's connection to the Nile Buses, but in practice

there are generally too few memory banks available on a processor module for three other transfers to take place

at the same time as a Nile Bus transfer to or from that module.
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transform and motion estimation chips. Each is implemented as an FPGA and 128Kbytes
of SRAM; bu�ers larger than 256�256 must thus be tiled, an operation which the resource
management software handles automatically and transparently.

� Filter processor: The �rst �lter module built contains four INMOS A110 FIR �lter chips,
and performs 21-tap �ltering organized as either 1�21 or 3�7. As these chips are limited
to 20MHz operation, it is necessary to sample-replicate the data at the source 
ood
controller and to decimate by two at the destination. A cascade adder input is brought
out so that a the output of another �lter unit can be summed in to provide the software
abstraction called a \dual �lter."

A faster and more 
exible processor made of LSI Logic L64261 devices, variable-length
shift registers, and a programmable operation sequencer, replaces the earlier �lter pro-
cessor. The new module adds full-speed operation, larger �lter kernels (up to 64 taps),
stream adding and multiplying, and the ability to multiply 1�4 vectors by 4�4 matrices
for graphics rendering.

� DCT processor: This unit contains an INMOS A121 device and performs 12-bit, 8�8
discrete cosine transform (DCT) and inverse DCT. Given a second input, it can also do a
post-add of an error signal and a pre-subtract of a prediction signal, to support predictive
coders.

� Motion estimator: This unit is based on an LSI Logic L64720, and performs full-search
motion estimation of an 8�8 block in a 16�16 window or, 16�16 in a 32�32 window.
The entire sum-of-recti�ed-di�erences bu�er is accessible over the control register bus if
desired.

� Color space converter: This has been discussed earlier in connection with the Nile Buses,
but it may also perform on-board processing of three data channels. In order to operate
at full speed, it is implemented as a pair of Brooktree BT281 chips.

� Remap/composite processor: This stream processor { composed of Altera 7000-series
EPLD's and 4Mbytes static RAM { deocdes both forward and backward motion com-
pensation, performs image warping, and incorporates a 16-bit z-bu�er for graphics com-
positing and hidden surface removal. Images of up to 2048�1024 are supported and
vectors may be either relative o�sets or absolute addresses.

� Superposition processor: This is a very specialized unit which can perform superposition
of weighted, arbitrary 16-bit basis functions of up to 1024 samples in length. Its main
application is in computational holography and non-orthogonal transforms. On one pass,
it can place up to four basis functions on each output sample; multiple passes or mul-
tiple processors in cascade (set up automatically by the resource mangement software)
permit any number of functions to be superimposed. It is based on one LSI Logic L64260
multiply-accumulate chip and 2Mbytes of SRAM.

� Sequenced lookup table: Besides acting as a 16-bit lookup table, this processor was also
designed to decode vector quantization with block sizes up to 4�4. Its functionality has
been absorbed into the state machine processor described below.
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� State machine: This highly recon�gurable device is intended to provide bitstream oper-
ations, variable-length encoding and decoding, 
oating-point arithmetic, and other func-
tions not available in other processors. It very closely follows the generic model in Figure
3, with the processor portion comprising both a PowerPC 603 and an Altera 8000-series
in-circuit-reprogrammable gate array. The memory portion contains 4Mbytes of SRAM.
An application program (or more precisely the resource manager) con�gures this device
by loading a speci�c logic function into the EPLD, or by loading software for the CPU,
which operates either on a continuous stream or in two-phase fashion.

Currently supported stream processors are diagrammed in Figure 4; note that shown are
logical processors (as they would appear to a programmer) rather than physical devices { the
\dual �lter," for example, is actually created by enabling an additional datapath internal to a
submodule containing two FIR �lter processors.

INPUT AND OUTPUT

We have built two di�erent output modules, both providing more than one framestore of
direct mapped (three channels of 8 bits) image memory. The �rst is software-con�gurable to
produce a broad variety of video formats, from 640�480, 30Hz interlaced (RS-170A), up to
1280�1024, 66Hz progressively scanned. Both digital and analog outputs are provided, and the
video may be synchronized to an external source. The second output module generates analog
video for a 2048�2048, 60Hz progressively scanned display.

The memory/input module provides a Cheops system with a large memory bu�er (64Mbytes
to 8Gbytes) on one card, accessible at full bandwidth over the Global Bus and both Nile Buses.
It also allows a single remote device, located on a daughter card, up to 400Mbytes/sec access
into or out of the memory. We have built a high-speed interface (HiPPI) daughter card, and are
developing another card which accepts various analog and digital video formats. The memory
in both the output and memory/input modules is triple-ported to allow simultaneous full speed
data transfer to the same block of memory over the Nile Bus, the Global bus and the I/O port
of the module.

OPERATING SYSTEM AND COMMUNICATIONS

A Cheops system acts as a peripheral to one of a variety of host computers; the host
provides a �lesystem/network interface and a platform for software development and cross-
compilation. Software is written in a high level language (C), compiled, then executed on the
general-purpose processor. An operating system (Magic7) resident on each processor module
provides overt process time-sharing, memory management, and message passing. Unlike most
multitasking operating systems, Magic7 permits processes to specify the points at which they
may be swapped out (by an explicit call to proc sleep() or by performing an input/output
function call), accommodating time critical tasks. A message passing facility may be used to
commmunicate among multiple processes executing on a single processor, or on other processor
modules. Processes executing on the host computer may also use this facility to communicate
with processes executing on the Cheops system. Although Cheops is solely a target device on the
SCSI bus, a resident client/server protocol allows Cheops programs downloaded and executed
from the host to access �les on the host �lesystem, and to print and input on the host's console
devices, using the same function calls as any ordinary host program under UNIX.
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Since the 
ood controllers model memory as two-dimensional, we have extended the con-
ventional malloc() function: allocation of two-dimensional arrays within memory is permitted,
as is specifying a speci�c memory bank (for instance, di�erent color components of an image
should be stored in di�erent banks in order to allow maximum parallelism).

RESOURCE MANAGEMENT

Lee has made a distinction among several types of schedulers for data-
ow processors;[4] it
is possible to use Cheops' stream processors in what he calls a fully static fashion, compiling
code that sets up the crosspoint switch in a speci�c way and assigns tasks to speci�c hardware
devices. Indeed, several simple programs (mostly for diagnostic purposes) were written to
operate in this manner. However, because the stream processors are on removable submodules
and thus the con�guration may change from time to time or from system to system, this
solution doesn't seem desirable. Further, static scheduling becomes nearly unworkable in a
multitasking environment like Magic7, where several processes may be competing for the same
resources. In order to alleviate these problems, we have developed a resource management
daemon named NORMAN.[22] It manages the system resources, such as the currently installed
stream processors and the Nile Buses, maintaining scoreboards and queues for each. A user
program { a process which handles �le I/O, interaction, and so forth { will pass a linked-list
data structure describing the data-
ow portion of the algorithm to the daemon. An individual
stream transfer making up a sub-part of the data-
ow graph occurs when all prerequisite data,
an appropriate stream processor, and a destination are available. Transfers may optionally be
made dependent upon a real-time clock (counting video frames on a selected input or output
module) to permit process synchronization with video sources or displays. The programmer
may associate a callback routine with any individual transfer, to inform the invoking process
of the status of the data-
ow processing.

NORMAN can be said to be a fully dynamic scheduler, as it assigns tasks to speci�c pro-
cessors only at run time. A still �ner distinction needs to be made, though: does the daemon
assign physical devices to elements in the entire data-
ow graph as soon as received, or does it
assign devices as they become needed and available? The initial implementation of NORMAN
did the former, a strategy which entailed less dynamic decisionmaking, but ultimately proved
less e�cient as well as not amenable to a multitasking environment. The current version of
NORMAN does all scheduling on the 
y. We will compare performance of these two approaches
in a later section of this paper.

Creating the linked list describing the data-
ow graph is the only unconventional task facing
the programmer, and a number of successively simpler methods have been made available.
Consider the simple case of a taking the 8�8 DCT of the di�erence of corresponding blocks in
two arrays of values (Figure 5), as might be done in a predictive coder. The streams �rst pass
through a transpose operation to rearrange the blocks into successive samples in each stream,
then another transfer passes these through the DCT processor, which is set to \presubtract"
mode.5 The lowest-level, most esoteric, and most bug-prone option is to manage the pointers
in the transfer elements directly. Below is the type declaration for these elements; for obvious
reasons we won't include the actual C code for this �rst approach.

5Actually, we are allowed to connect the DCT processor right to the transpose engines, but for generality we

will maintain the intermediate bu�ers.

9



typedef struct QueueElem {

struct QueueElem *next; /* next queue element */

struct QueueElem *prev; /* previous queue element */

int num_deps; /* # of backward dependencies */

DependList *back; /* list of backward dependencies */

int num_dests; /* # of forward dependencies */

DependList *forw; /* list of forward dependencies */

PipeDesc *pipe; /* subtransfer descriptor */

int miniq_io; /* flags the QueueElem as an input, output,

both or neither of the miniqueue */

long timestamp; /* timestamp transfer should occur */

int start_phase; /* nile transfer start phase */

void (*proc)(); /* pointer to completion routine */

long user_data; /* field to hold user data */

int copied; /* RMAN management variables */

struct QueueElem *copy;

} QueueElem;

Simple C functions to create, con�gure and connect the desired elements provide a more
palatable interface:

/* representative functions prototyped in cheops_rman.h: */

extern QueueElem *RmanDCT(short *src, short *vector,

unsigned xdim, unsigned ydim,

unsigned mode, short *dst, void (*done)());

extern QueueElem *RmanTranspose(short *srcstart, unsigned xsize, unsigned ysize,

short *dststart, void (*done)());

/* in the user's program: */

QueueElem *my_dct, *my_transpose_1, *my_transpose_2;

my_transpose_1 = RmanTranspose(SRCBUF1, XSIZE, YSIZE, TMPBUF1, transpose_callback);

my_transpose_2 = RmanTranspose(SRCBUF2, XSIZE, YSIZE, TMPBUF2, transpose_callback);

my_dct = RmanDCT(TMPBUF1, TMPBUF2, XSIZE, YSIZE, DCT_PRESUB, DSTBUF, dct_callback);

RmanTransposeSetMode(my_transpose_1, TENG_DCT_8_MODE);

RmanTransposeSetMode(my_transpose_2, TENG_DCT_8_MODE);

RmanConnect(my_transpose_1, my_transpose_2, NULL); /* connect parallel mini-queue */

RmanDepend(my_transpose_1, my_dct, NULL); /* set dependencies */

RmanConnect(my_transpose_1, my_dct, NULL); /* connect DCT to the transposes */
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/* Now get a pipeline ID from NORMAN, and then execute (return value

* checking deleted for brevity). Reference the whole thing by the

* head of the queue: my_transpose_1.

*/

pipeid = RmanPipeIdAllocate();

returnval = RmanExecute(pipeid, my_transpose_1);

The highest-level access currently available is a two-step process. The graph is described
in a locally-developed language called OOPS,[23] which a pre-compiler expands into the C
structures for inclusion into a skeleton C program.

SRCBUF1 = buffer[XSIZE, YSIZE]()

SRCBUF2 = buffer[XSIZE, YSIZE]()

TMPBUF1 = transpose[TENG_DCT_8_MODE](SRCBUF1)

TMPBUF2 = transpose[TENG_DCT_8_MODE](SRCBUF2)

DSTBUF = dct[DCT_PRESUB](TMPBUF1, TMPBUF2)

A graphical interface would most easily be added at the OOPS level.

HARDWARE DESCRIPTION

The typical Cheops system (Figure 6) is enclosed in a box 45cm by 60cm by 22cm, containing
one P2 processor module and one or more O1 output modules and M1 memory/input modules;
it consumes approximately 400W of power. Modules for Cheops have a standard size of 36cm
by 40cm, and may be up to 4cm thick. Three 96-pin connectors connect the modules to the
system backplane. This backplane carries the Global and Nile Buses, and provides power to
the modules. The backplane is terminated at one or both ends with active termination, and
may be up to 50cm in length. System clocks are provided by the backplane.

The vast majority of the integrated circuits used throughout Cheops are CMOS or BiCMOS.
One notable exception is the Bus Transceiver Logic (BTL) used for all backplane signals, due to
its reduced crosstalk, increased noise immunity and lower driver impedance. Much of the control
logic is implemented using �eld programmable gate arrays (Altera MAX5000 and MAX7000
series), and so far no custom or semi-custom integrated circuits have proven necessary.

The Cheops P2 Processor Module consists of one main printed circuit board and �ve daugh-
ter printed circuit cards. Two (16cm by 14cm) memory cards each contain two memory banks
and their control logic, replicating the four memory banks located on the motherboard. Stream
processors (Figure 7) are located on separate 10cm by 14cm cards, two to a card.

APPLICATIONS AND PERFORMANCE EVALUATION

We have written a number of user applications for Cheops, including real-time interactive
signal processing utilities for image sequences, image compression and decompression utilities,
and renderers for moving computer-graphics particle databases. Reference [24] describes a
script-driven, 
exible decoding pipeline for producing images from 2-D and 3-D model-based
coders, while [25] discusses the use of the superposition processor in computation of holograms.
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We have measured the system's performance on a variety of simple tasks.6 In order to
evaluate the performance of NORMAN, we will consider a signal processing task: convolv-
ing a 21-tap FIR �lter kernel both horizontally and vertically with an already-in-RAM RGB
image sequence, and displaying the results. The data-
ow graph contains three parallel sets
of transpose-�lter-transpose-�lter, all connecting to one display operation across the Nile Bus
{ though in the actual benchmark presented here, the images were read from disk already
transposed, so the �rst transpose operation may be dispensed with.

We compared run-time scheduling of the entire queue of transfers with on-the-
y scheduling
of each transfer (discussed in a previous section), for three sizes of images, and for varying
numbers of available �lter stream processors. The results are summarized in Table 1. The
theoretical maximum frame rates given assume no scheduling or setup overhead, and are an
estimate of the performance of the stream processors and Nile Bus if simply hard-wired together.
On-the-
y scheduling, because it involves more time-consuming computation before starting
each transfer, can in some cases incur a small performance degradation in the maximum rate,
though it is clearly superior in the two-processor case. We note that as the transfer sizes increase,
the processing rate becomes signi�cantly closer to the theoretical maximum, as the scheduling
and setup overhead is amortized over larger transfers. The major performance limiting factor in
the assigned task seems to be the presence of only two transpose units on the processor module
(additional plug-in transpose processors can be installed if needed).

When considering the performance �gures observed in the �rst table, the reader must note
that the �lter processors used for the foregoing test (which were limited to running at half the
e�ective transfer speed of the 
ood controllers) have been superseded by newer submodules
that operate at twice the former clock rate. The performance of these new �lter processors,
scheduled on-the-
y, is given in Table 2. The fact that overall performance does not quite
double emphasizes the need for additional transpose processors, and illustrates the e�ects of
the overhead in the resource management daemon.

As one of the reasons for on-the-
y dynamic scheduling is to support multitasking, it should
be instructive to test the performance while running more than one independent process using
the faster �lter processors (literally the same executable code, invoked repeatly with di�erent
command-line arguments). Results of this experiment are given in Table 3.

A single DCT stream processor computes an 8�8 DCT/IDCT pair on 256�256 images (as in
an MPEG encoder) at 81.0 frames/second. A single motion estimator performs 16�16 motion
estimation on the same images at 6.6 frames/second. The corresponding theoretical maximum
speeds are 115.2 and 55.8; the ine�ciency in the latter case comes because the current motion
estimator cannot accept input in a continuous stream, and enormous overhead is incurred in
starting and stopping the stream every 256 samples. A typical Cheops system, then, cannot
perform motion-compensated DCT video encoding in real time, but is very useful in acceler-
ating the process. For computer graphics applications, a single multiply-accumulate processor
renders 6.7 Msamples/second (theoretical maximum 8.0) and a single remap/composite proces-
sor remaps and z-bu�ers 3.7 Msamples/second (theoretical 3.9). Without z-bu�ering the remap
processor runs at double the quoted speed.

CONCLUSIONS AND FUTURE WORK

6All �gures given in this section are for a data
ow clock of 32MHz.
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As of this writing, eight Cheops systems are in operation, and the fundamental hardware
and software principles have proven sound. Dynamically-scheduled data-
ow systems (or more
accurately, hybrid systems) appear feasible solutions for compact, relatively inexpensive video
processing applications. Nevertheless, as this work is being conducted in a laboratory environ-
ment, the underlying system undergoes constant improvement. We are attempting to increase
the e�ciency of the resource manager, and plan to allow cooperative operation among NOR-
MAN daemons running on di�erent processor modules. We feel that data-
ow architecture is
a feasible model for future inexpensive, programmable digital video decoding hardware, and
have begun design work on a single DSP/graphics processor chip based on the lessons we have
learned from the Cheops system.
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FIGURES AND TABLES
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(e.g. rasters)
each 48 bits wide, 
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Global Bus
control and
general data
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32 bits wide,
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(High-Speed
Interface)

(Plug-In 
Submodule)

Figure 1: The Cheops system consists of three di�erent types of modules connected by three
buses.

run-time on-the-
y

256�256 512�512 768�768 256�256 512�512 768�768

1 processor 20.0 6.9 3.5 18.8 6.9 3.5

2 processors 24.1 8.0 4.0 29.5 9.4 4.7

3 processors 30.0 9.6 4.7 30.0 9.4 4.7

4 processors 30.0 9.6 4.7 30.0 9.4 4.7

theoretical max 66.1 17.9 8.1 66.1 17.9 8.1

best % of theoretical max 45.4% 53.6% 58.0% 45.4% 52.6% 58.0%

Table 1: Performance of the Cheops system (displayed frames per second) on two-dimensional
separable �ltering of color image sequences with two di�erent resource scheduling strategies and
various numbers of �lter processors available. Older (half-speed) �lter processors were used in
this experiment. Theoretical maximum rates assume only two transpose processors and no
scheduling or setup overhead.
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Converter)
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SRAM ROM80960

Figure 2: Highly simpli�ed diagram of the Cheops processor. Blocks labeled SP represent
stream processors. Not shown is the control register datapath by which the 80960 processor
con�gures and controls the stream processors. Note that the \bidirectional" datapaths to the
crosspoint are actually separate 16-bit input and output paths; note also that a stream processor
may in some cases accept data from two input streams or produce two output streams.
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RAMData

Address
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Figure 3: Block diagram of a typical stream processor. The second stream datapath exists only
on two-input and/or two-output processors. The static RAM is needed only on two-phase de-
vices or those that require local storage of information such as lookup tables. Depending on the
intended function of the unit, the block labeled \processor" may be one or more programmable
gate arrays, DSP processing devices, or ASICs.
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Figure 4: Currently supported stream processing operations. Horizontal arrows represent the
stream datapath (through the crosspoint), while vertical arrows are the lower-speed control
register interface. Processors marked with a diagonal slash are used in a two-phase fashion.
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Figure 5: A simple task { taking the discrete cosine transform of the di�erences between two
two-dimensional blocks of data { represented as a data-
ow diagram.

Figure 6: Nine-slot Cheops system in a 
oor-standing cabinet, with memory (left) and processor
(right) modules removed. Smaller systems occupy horizontal card cages and can be placed
underneath a video monitor.

256�256 512�512 768�768

1 processor 34.3 12.0 6.1

2 processors 43.8 14.4 7.8

3 processors 53.3 15.1 8.1

4 processors 53.3 15.1 8.2

theoretical max 84.6 21.8 9.8

best % of theoretical max 63.0% 69.2% 83.7%

Table 2: On-the-
y portion of preceding performance experiment repeated with faster �lter
processors.
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Figure 7: Stream-processor submodules, each containing two units (from left):
remap/composite and DCT, dual multiply-accumulate/�lter, playing cards for size compari-
son.

one 256�256 two 256�256 three 256�256 four 256�256

rate (fps) 53.3 26.9 17.7 13.3

theoretical max 84.6 42.3 28.2 21.2

% of theoretical max 63.0% 63.6% 62.8% 62.7%

Table 3: Performance of scheduled-on-the-
y Cheops system (displayed frames per second) for
one, two, three, and four simultaneous executions of preceding 256�256 �ltering task. Four
�lter processors and two transpose processors are available.
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