
From Heterogeneous Web Streams to Personalized Situation 
Detection and Control 

Mingyan Gao, Vivek K. Singh, and Ramesh Jain, 

University of California, Irvine 

 

Abstract 
The Web now has enormous volume of heterogeneous data from different sensors and humans being 
continuously reported from different locations. These data flows can be considered as spatio-temporal-
thematic streams. Combined effectively, these streams can be used for detecting situations and saving 
lives and resources in different applications like disaster mitigation, health, traffic, business planning, and 
social movements. We describe a framework to combine streams from heterogeneous data sources (e.g. 
weather data, twitter streams, and traffic information), process them to detect situations, and use the 
detected situations to aid millions of users. This system uses a unified data model to integrate different 
web streams, and provides a set of generic operators to detect spatio-temporal characteristics of individual 
or combined data streams to detect complex situations. The detected situations can be combined with 
user parameters to provide personalized information and action alerts. We demonstrate the efficacy of the 
framework and the developed system using multiple application examples. 
 
 

1. INTRODUCTION 
Detecting situations in time to take appropriate actions for saving lives and resources will impact multiple 
fields like disaster mitigation, health, security, traffic, business planning, and social movements. The data 
required for answering problems in most of these applications is already publically available as real-time 
web streams. Consider hurricane mitigation as an example. There are data streams for hurricane status 
(e.g. NOAA.gov), weather forecast (weather.com), population demographics (census.gov), rescue shelters 
(redcross.org), and traffic directions (maps.google.com). Combined effectively, these data sources can be 
used to detect and respond to various emerging situations. 
 
With the proliferation of mobile phones, internet of things, planetary-scale sensing, location based 
computing, and social networks, the web is clearly moving away from its original underpinnings in 
cyberspace and merging into the physical space. Enormous amounts of data pertaining to different 
observed characteristics across space and time are being captured and shared over the web. Hence, 
mechanisms for integrating and reasoning with such spatio-temporal data streams will impact multiple life 
decisions. 
 
We see two major challenges in this area: 
1. Data Fragmentation: The data streams live in silos. Heterogeneous data sources (weather.com, 
traffic data), formats (e.g. KML vs. RSS feeds vs. images vs. maps), and spatio-temporal characteristics 
make the integration non-trivial. Efforts at combining data (when undertaken), tend to be closely coupled 
with the sources/formats and require computer science expertise. 
2. Going from Micro to Macro (Situations): Currently there is a semantic gap between the high 
level concept space used by humans for decision-making and the torrent of low level data which is 
available on the Web. The decisions must be made based on situations, but the data is in attribute data 
streams. 
 
The solution to both these problems lies in realizing the fundamentally different nature of these real-world 
data streams. Each new data nugget now comes inscribed with space and time meta-data. Hence, space 
and time are central to integration and processing of different data streams. 
 
Looking beyond the media format details (e.g. KML, JSON, images, sensors, tweet streams), the proposed 
framework focuses on the commonality across different streams. By using a simple unified representation 
(based on space-time-theme) it indexes and organizes all data into a common representation. Similarly, for 
going from individual data nuggets (micro-events) to macro-situations it uses a set of generic spatio-
temporal analysis operators. A basic assumption in this approach is that spatio-temporal situations are 
determined by evaluating a large number of data streams that represent different attributes measured by 
either physical sensors or observed by human-sensors. This means that an engine that is programmed 



using operators to detect complex events over vast number of data streams can be used to define and 
detect any arbitrarily complex situation. 
 
We define a situation as: �An actionable abstraction of observed spatio-temporal descriptors�. 
 
This definition emphasizes characterization of situations based on measurable spatio-temporal descriptors. 
Focus on spatio-temporal data (which is the most common connotation associated with situations), 
scoping of problem only to observable data, and an emphasis on actionable abstractions (as defined 
explicitly by human domain experts) allows development of a computational framework to define diverse 
situations and take appropriate actions. 
 
Based on framework, we present a system called 4EventShop4 which provides operators for data stream 
ingestion, integration, situation characterization, and sending out alerts. The system can be graphically 
configured to detect different situations and undertake corresponding actions. A modular approach makes 
the system reconfigurable for different applications 4on the fly4, and a simple GUI makes it accessible to 
large number of users. Hence, it provides non-technical users an opportunity to experiment with different 
data streams and integrate them for diverse applications, thus democratizing the process of app-building 
or even the area of situation-awareness. 
 
We demonstrate the efficacy of the system using multiple example applications. 
 
The main contributions of this work are: 
1. Describe a generic approach to select, import, and combine real-time data streams and operate on them 
to detect real world situations for generating appropriate information and actions. 
2. Providing a system which allows easy experimentation by users for diverse applications. 
 
The rest of the paper is organized as follows. We review related work in section 2. Section 3 introduces 
the overall framework and our approach. We describe the system architecture and detailed design of 
EventShop in section 4. Section 5 demonstrates the utility of the framework and the system through 
multiple example applications. The paper concludes at section 6. 
 
 

2. RELATED WORK 
The proposed work lies at the intersection of multiple active areas including Geographical information 
systems (GIS), knowledge representation, web service choreography, media processing, event-based-
computing, situation awareness, and social media analysis. Situation awareness is an active area of 
research. The most commonly cited definition of situations is 4the perception of elements in the 
environment within a volume of time and space, the comprehension of their meaning, and the projection 
of their status in the near future4 [Endsley 1988]. However other definitions like 4knowing what is going 
on so you can figure out what to do4 4[Adam 1993] abound, and there is no clear consensus. In this work 
we propose a computational definition of situations which is closely tied to spatio-temporal analytics. 
 
Our work is also inspired by media processing research for events and scene detection (e.g. [Oliva and 
Torralba 2001]). We borrow multiple ideas on raster data processing but the semantics of our work are 
very different (space-time). Similarly, we follow the layered notion of information and knowledge 
representation as frequently used in knowledge representation literature [Rowley 2007]. 
 
There has been a growing interest in web service choreography [Arkin et al. 2002] and semantic web 
services [McIlraith et al. 2001]. However, most of these efforts focus on well-structured (typically 
ontological) data. We on the other hand make the unified representation extremely simple (STT), which 
allows many web streams to integrate easily. Mashups and domain specific mashup tools (e.g. 
MashArt[Daniel et al. 2009]) have started integration of web content. However, most web mashups 
remain either very shallow (only visual integration, not deeper data integration or analysis) or require IT 
expert integrators [Chattiet al. 2011]. Efforts like Yahoo Query Language, Google Tables, Yahoo Pipes, 
and MashArt provide easy, modular, computational tools for users to integrate and analyze web data. 
This resonates deeply with our 4EventShop4 system. Following similar lead, we want to make spatio-
temporal analytics and action taking modular, intuitive, and accessible to large number of users via a 
simple GUI. 
 
Multiple recent attempts have used social web (e.g. blogs, Twitter, Facebook) [Bansal and Koudas 2007] 
[Sakaki et al. 2010] to detect real world events and situations. However our approach is broader and 
includes social media, sensors, and stream data.  
 



Lastly, the concepts of 4raster algebra4, and spatial analytics are similar to those described in GIS 
literature. Commercial systems like ArcGIS provide multiple operators on spatial analysis. However those 
tools have limited temporal analytics, or streaming data support. Some commercial systems (e.g. GeoIQ) 
have started to explore real-time geo-analytics, but they do not consider the control aspects or 
personalization of situations. 
 
 

3. OVERALL FRAMEWORK 
Our overall approach is shown in Figure 1. We are building towards 4Social Life Networks4 which is a 
way to connect people to the right resources based on the situations detected [Jain et al. 2010; Jain and 
Sonnen 2011]. 

 
 

 
The proposed framework considers inputs from human-users as well as any sensor or archived data source. 
The human users can undertake different roles including data producers, consumers, volunteers, 
application experts, and analysts. The data streams over the web (e.g. tweets, weather.gov feeds) are 
translated into a unified format and made amenable for different situation detection operators. Based on 
application logic, different situation detection operators can be applied. The detected situations (4flu 
outbreak4 in New England) can be combined with user parameters (e.g. 4high temperature4, location) 
to send personalized action alerts (e.g. 4Report to CDC center on 4th street4). The analytics are also 
available to a central analyst who can then take large-scale (state, nation, corporate, or world-wide) 
decisions. 
 
3.1 Key Concepts 
a) Personalized Actionable Situations 
Traditional situation detection and decision making has focused on single large scale (e.g. over city, state, 
country) decision-making. The decisions once made are broadcasted. This is true from health warnings, to 
weather alerts, to advertisements. Today, we have tools to individually access each user4s inputs and 
combine this with the surrounding situation detected around her. Thus each user can now get a 
personalized (unicast) alert based on specific situation detected for her. 
 
b) Use of Spatio-temporal-thematic Streams 
Let us define a spatio-temporal-thematic data stream as: 4An uninterrupted flow of data points, each 
point of which can explicitly be assigned a spatio-temporal coordinate, and an application theme4. We 
explicitly consider streams (and not static or on-disk data) to be our primary data model as practical 
situations need to be detected in real time to save lives and resources. The prominence of Twitter, 
Facebook, Stock-market, and satellite data streams in the last decade has convinced us of the importance 
of this approach. All our operators and representations work on streams and standing query notation. 
 
c) Data Unification 

    Figure 1. The Overall Framework 



Space, time, and theme (STT) (i.e. where-when-what) are the fundamental axes to organize different 
types of data [Perry 2008]. All incoming spatio-temporal-thematic data points to the framework are 
converted to, and represented in a common STT format. The framework uses a STTPoint as a 
fundamental data structure. A STTPoint is represented as: 

STTPoint =¡ latitude, longitude, timeStamp, theme, value ¿. 
 

A flow of STTPoints becomes a STT Stream: 
STTStream = (ST TPoint0, ..., STTPointi, ...). 
 

Values in STTPoints that are collected in a time window over STT stream can be combined and 
aggregated to form a two-dimensional data grid. The data grid together with related STT information is 
called E-mage, represented as: 

E-mage =¡ SWCoord,NECoord, latUnit, longUnit, timeStamp, theme, 2DGrid ¿. 
 

The SWCoord and NECoord are the southwest and northeast spatial coordinate to which the value at the 
bottom-left and the top-right cell in the 2D grid corresponds. The unit of latitude and the unit of 
longitude specify the actual spatial distance, such as 40 miles or 0.1 latitude,of the width and length of 
each cell in the grid. timeStamp of an E-mage is the end time of the time window over which the 
STTPoints are collected, which is normally equal to the timeStamp of the last STTPoint in the time 
window. In the following discussion, the term E-mage may refer to the 2D grid in the E-mage, which 
should be clear from the context. 
 
A flow of E-mages forms an E-mage Stream, i.e. 

E-mage Stream = (E-mage0֒ ⊲⊲⊲֒E-magei֒ ⊲⊲⊲). 
 
Building block of the 2D grid in an E-mage is a single cell. The cell together with STT information is 
called stel (spatio-temporal element), 

stel =< SWCoord֒NECoord֒ latUnit֒ longUnit֒ timeStamp֒ theme֒ value >. 
 

A stel is a special E-mage, where the size is 1 by 1. As described in section 4, some operators take input 
and generate output of this special E-mage stream, called stel stream, 

stel Stream = (stel0֒ ⊲⊲⊲֒ steli֒ ⊲⊲⊲). 
 

Please refer [Singh et al. 2010] for more details on the data structure. Creation of each data structure and 
the complete life cycle of data are described in section 4. 
 
3.2 Detecting Situations from Heterogeneous Streams 
The process of moving from heterogeneous streams to situations is shown in Figure 2. The unified STT 
format employed (level 1) records the data originating from any spatio-temporal bounding box using its 
numeric value. Aggregating such data results in two dimensional data grids (level 2). At each level the 
data can also be characterized for analytics. The situational descriptor (level 3) is defined by the user 
(application expert) as a function of different spatio-temporal characteristics.  



 
 
 
3.2.1 Data Representation Levels. 
Level 0: Diverse Raw Data 
We support data from different sources. Any sensor data can be associated to a stream based on its 
location and frequency of creation. Human sensor data, such as tweets and status updates can also be 
analyzed and converted to measurements related to a particular theme or attribute. Some data sources 
have tables or databases that are frequently updated to give certain sensory data collected by different 
agencies. Hence, we support as many different types of raw data as may be relevant. The types of data 
streams supported in the system will evolve as it is used for diverse applications. For computational 
purposes we normalize all data streams to numeric streams. 
 
Level 1: Unified Representation 
Heterogeneous data needs to be unified. Also, too much data can lead to high cognitive and data 
processing costs. This layer converts individual attributes into information in terms of 4what-when-where4 
i.e. STTPoint, and facilitates aggregation of information in next (i.e. E-mage) level. 
 
Level 2: Aggregation 
Spatial data can be naturally represented in the form of spatial grids with thematic attributes. As ex- 
plained, the framework considers E-mages, and E-mage Streams as its data model. This image-like 
representation allows application of a rich collection of image and video processing operators ranging from 
segmentation, aggregation, detecting spatial and temporal patterns, and tracking patterns across space 
and time. Such a representation also aids easy visualization, and provides an intuitive query and mental 
model. 
 
Level 3: Situation Detection and Representation 
The situation at a location is characterized based on spatio-temporal descriptors determined by using 
appropriate operators at level 2. The final step in situation detection is a classification operation that uses 
domain knowledge to assign appropriate class to each stel. This classification results in a segmentation of 
an E-mage into areas characterized by the situation there. Once we know the situation, appropriate 
actions can be taken. (See Figure 11 for an example.) 
 
3.2.2 Operators.  
Multiple operators need to be provided for analysis and characterization of temporal E-mage streams. The 
operators considered include Filter, Grouping, Aggregation, Spatio-temporal Characterization, and Spatio-
temporal Pattern matching. More details are provided in section 4.2.2. 
 

    Figure 2.  Approach for detecting Situations 



3.3 Personalized Action Alerts 
The situations detected can be combined with individual user parameters for customized action taking. 
We focus on action recommendation using the E-C-A (Event-Condition-Action) [Bailey et al. 2002] 
[Montanari et al. 2007] approach. The individual parameters can be spatio-temporal coordinates, as well 
as personal micro-events (e.g. 4sneezing4) detected. The spatio-temporal coordinates can be used to 
direct users to nearest location satisfying certain conditions. Micro-events on the other hand, can be used 
to configure different E-C-A templates for different user events. Multiple such E-C-A templates can be 
registered to provide customized alerts to all recipients. 
 
 

4. SYSTEM DESIGN 
Based on the framework, we have built a system called EventShop. The system architecture is shown in 
Figure 3. EventShop includes both a front end GUI (Graphical User Interface) as well as a back end 
stream processing engine. In the front end, EventShop borrows the idea of PhotoShop by providing a 
user-friendly GUI that allows end users to register new data stream sources and formulate queries by 
combining a rich set of built-in operators. Users are also provided with a GUI tool which allows them to 
send personalized alerts to relevant people. In the back end, data sources and queries requested from the 
front end are stored into data source and query databases. Based on the information of registered data 
sources, EventShop continuously ingests spatio-temporal-thematic data streams and converts them to E-
mage streams. Meantime, directed by the registered queries, EventShop pulls E-mage streams from data 
ingestors to query processor, which process the E-mage streams in each of the instantiated query 
operators. Besides being converted to E-mage streams, the raw data stream, (e.g. tweet stream) is also 
made persistent into raw data storage. Raw data together with query results provides necessary personal 
as well as local situation information to Personalized Alert Unit. 
 

 
 
 
 
In the following discussion, we focus on the description of back end design. The back end system consists 
of three major components, data ingestor, stream query processor, and personalized action alert unit. 
 
4.1 Data Ingestor 

    Figure 3.  System Architecture of EventShop 



After a new data source is registered and inserted into the data source database, back end controller 
creates new instances of STTPointIterator as well as EmageIterator (as shown in Figure 4) for this data 
source and add them to the data ingestor. Data ingestor then connects to the data source and takes the 
raw spatio-temporal-thematic data stream as input, and relies on these iterators to convert the raw data 
stream into an E-mage stream. Details of iterators are described below. 

R
a

w
 C

S
V

/K
M

L 
S

tr
e

a
m

R
a

w
 I

m
a

g
e

 S
tr

e
a

m

 
 
 
 
4.1.1 Data Source.  
A data source registered by end users needs to include the following information to enable data ingestion 
process: 
1. Theme, which is the central topic discussed in a data source. For example, hurricane, asthma, 
population, temperature, shelter locations, etc; 
2. URL, which is the API access link of a data source. For instance, Twitter opens its Stream and Search 
API which allow users to query tweet stream. Sensor data, such as traffic sensors deployed by 
PeMS(Caltrans Performance Measurement Systems), is also often available online for user access. 
3. Data Type. Data sources provide raw data stream in different formats. In the case of Twitter, 
Facebook, and varieties of sensors, single data point, such as a tweet, a status update, and a temperature 
reading, is the unit that is generated and appended to data stream. Some data sources aggregate their 
spatio-temporal-thematic data and provide them only in geo image format, e.g. pollen count data 
(http://pollen.com/images/usa map.gif). And some other data sources provide their data collected in a 
time window in array format, such as in CSV(comma-separated values) and KML(Keyhold Markup 
Language) structure. This type of data gets updated at each time window and essentially forms an array 
stream. A data source needs to declare itself as one of the types above. 
4. Type Specific Parameters. Type specific parameters are also required in data collection process. 
1) For raw spatio-temporal-thematic data stream, users need to specify the attributes that they are 
interested in. For Twitter and other social media sources, this is a bag of keywords that can cover a 
specific theme. For traffic and temperature sensors, attributes such as average speed, lane occupancy rate, 
max temperature and other measures recorded at sensors, need to be specified. 
2) For geo image stream, users can either specify the geo coordinate system adopted by the original data 
sources or provide transformation matrices that can be used to convert original geo images to E-mages 
which follow the equirectangular projection system. To map image colors to values in E-mages, users can 
choose between converting images to grey-scale E-mages or assigning values to certain bins of image 
colors. 
3) For array data stream, depending on the data format, users are required to specify column names or 
tag names from where the spatial coordinate and value of a data point can be extracted. 

    Figure 4.  System Architecture of Data Ingestor 



5. Frame Parameters. Output of data ingestor is E-mage Stream. Parameters that are sufficient for 
specifying the size, resolution and generation frequency of an E-mage (or a frame, borrowing the concept 
of 4frame4 from video) are necessary in the creation of E-mage stream. A set of frame parameters 
specifies the size of time window (e.g. 10 seconds, 1 hour, 1 day), the synchronization time point (e.g. 
creating an E-mage at every 10th second, or at 6AM everyday), unit of latitude (0.01 latitude, 0.1 
latitude), unit of longitude, spatial boundary including southwest and northeast latitude and longitude 
values (e.g. for US, southwest point is (24, -125), and the northeast point is (50, -66)). That is,  

FP = —window, sync, latUnit, longUnit, swLat, swLong, neLat, neLong˝. 
This set of frame parameters which is used to guide the framing of raw spatio-temporal-thematic data 
stream to create E-mage stream for a data source is called Initial Frame Parameters. We will later 
introduce Final Frame Parameters as required by each query. 
 
4.1.2 System Design of Data Ingestor. 
As shown in Figure 4, a data ingestor is comprised of two types of iterators, STTPointIterator and 
EmageIterator. 
 
1. STT Point Iterator 
A STTPointIterator is a generic iterator that generates one single STTPoint for each raw data point in 
spatio-temporal-thematic data stream, and outputs the STTPoint at each next() function call. We call a 
specific STTPointIterator for a data source a wrapper. For example, we can create a wrapper for 
hurricane related tweet stream, or create a wrapper for Foursquare check-in stream at CDC. A wrapper 
converts each single data point in the raw spatio-temporal-thematic data stream into a STTPoint. For 
example, for each incoming tweet in the Twitter stream of a specific topic T, (e.g. hurricane), through the 
meta-data associated with the tweet, the Twitter wrapper finds out time tweet time and location tweet 
location of the tweet, and generates one STTPoint (tweet location֒ tweet time֒ T֒ 1). Value in the result 
STTPoint is decided by the wrapper. For example, it could be the count, e.g. 1, of the tweet, or the 
temperature value, depending on the applications. In future, we will open APIs that allow users to 
implement their own wrappers to ingest more data streams. 
 
2. E-mage Iterator 
Guided by the initial frame parameters, an EmageIterator generates one E-mage at each time window, 
and stores the E-mage in its internal buffer until query processor pulls the E-mage by calling next() 
function. As described above, based on the data source type, E-mages could be generated from STT 
stream, geo image stream and array stream. 
1) STT E-mage Iterator. By iterating and combining collected STTPoints from the STT stream of a 
data source, STTEmageIterator generates an E-mage stream for the data source. Based on the initial 
frame parameters and the spatial and temporal coordinates stored in a STTPoint, a STTPoint is spatially 
mapped to a cell in the result E-mage. Suppose the original STTPoint is collected at (lat֒ long), and the 
target cell is cell(i֒ j). Now given the initial frame parameters FP, 

� � ��������.	
����

�������
�, and � �������.	
���

������
� . 

 
The value at the cell(i֒ j) is normally the sum of values of all the STTPoints that are mapped to the cell. 
Depending on the applications, however, the aggregate could also be max֒min֒ average. The system 
defines a set of aggregates from which users can select to combine values. 
 
2) Geo Image Stream Iterator. If data points from a data source are already aggregated as a geo 
image, E-mage can also be created or imported directly from the STTPoints in these geo image formats. 

The result E-mage has ���������.	
���

������
�  number of rows, and ����������.	
����

�������
�   number of columns. And the 

value at a cell(i֒ j) in E-mage is computed from the original or normalized values at the pixels of the 
original geo image that are projected to this cell. Computation of projected area depends on the geo 
coordinate projection system.  
 
3) Array Stream Iterator. Similar to STT E-mage Iterator, each single value in the array is associated 
with a spatial coordinate, which can be used to decide the E-mage cell to which the value is mapped. 
 
4.2 Stream Query Processor 
Different from traditional one-time query issued to database, query in EventShop is standing query. A 
standing query needs to be registered and instantiated in the system before related data streams flow into 
the system and get processed. 
 
For each operator of each registered query, as specified by its parameters, back end controller creates an 
operator instance that performs the real computation. Next, back end controller connects these operator 



instances as defined in the logical operator tree of the query and forms a runtime operator tree in the 
stream query processor. Then, as required in the query, controller pulls E-mage streams from the 
EmageIterators of the appropriate data sources, and feeds the streams to the runtime operator tree. Each 
operator instance processes the E-mage streams pulled from upstream operators and buffers the results in 
its internal buffer. The E-mage stream output from the last operator instance is the output of the entire 
query. System architecture of query processor is shown in Figure 5. 
 

 
 
 

 
4.2.1 Query 
A query registered by end users needs to specify two parts of information, a Final Frame Parameters and 
a logical operator tree. 
 
Queries may need to access the same data source but combine them with other data sources at different 
spatial bounding box, resolution or time window. Therefore, every query specifies a set of final frame 
parameters, which should be followed by all input E-mages streams. E-mages pulled from data ingestors 
need to be first mapped to E-mages following the final frame parameters. 
 
The system has a Resolution Mapper (RM) component, which takes an E-mage stream of a data source, 
the corresponding initial frame parameters, and final frame parameters as requested by a query as input, 
and generates a new E-mage stream following the final frame parameters. In the RM component, we allow 
users to select the strategy to perform frame mapping. If E-mages at coarser frame parameters are 
mapped to finer frame parameters, the set of strategies includes interpolation, repeat, and split. If the 
mapping is performed on the other way, users can choose strategy like sum, max, min, avg, and majority, 
for conversion. 
 
The logical operator tree specifies the operator flow in this query. Nodes in the operator tree represent 
configured operators, and the directed edges between nodes denote the the E-mage flows from the 
upstream to downstream operators. In our system, users sequentially configure operators before actually 
issue the query. The complete sequence of operators forms the operator tree of this query. We show 
examples of logical operator tree in application section. This operator tree is parsed, instantiated and 
converted to a runtime operator tree by the back end controller. The runtime operator tree is then added 
to the stream query processor to do the actual processing. 

 
4.2.2 Operators 
Operators take E-mage streams from upstream operators as input, combine and process them, and create 
a new E-mage stream as output. Physically, operators are instantiated as EmageIterators. Each operator 
in the system maintains a buffer that stores the E-mages processed by it. Downstream operators 

    Figure 5.  System Architecture of Query Processor 



continuously check and pull the next E-mage from the buffers. The final E-mages are stored in the buffer 
of last operator until they are pulled by the user front-end. 
 
We have defined seven class of commonly used operations to perform on E-mages. For the complete 
description of data model and operation algebra, please refer to [Singh et al. 2010]. The operators are 
defined in a closed algebraic structure, which can be easily combined to form queries. In future, we plan 
to provide interfaces to allow users to define customized E-mage operators. 
 
We provide detailed parameter settings of each operator in EventShop. While the list of options/ 
configurations for each operator is extensible, here we list the currently implemented options. A summary 
of operators is presented as Figure 6. 
 

Operator Input Output Parameters 

Filter E-mage Stream E-mage Stream • Value range predicate 

• Time interval predicate 

• Spatial bounding box predicate 

• Normalize Values? Y/N 

Yes, Target Value Range 

Grouping E-mage Stream E-mage Stream • Grouping Method 

� K-Means 

� Number of segments 

� Thresholding 

� Threshold of each segment 

• Split? Y/N 

• Color? Y/N 

� Yes, Color code for each segment 

Aggregation K * E-mage 

Stream 

E-mage Stream • Aggregate: {max, min, sum, avg, sub, 

mul, div, and, or, not, xor, convolution} 

• Normalize Values? Y/N 

Yes, Target Value Range 

Spatial 

Characterization 

E-mage Stream stel Stream • Spatial Characteristics: {max, min, avg, 

sum, epicenter, coverage} 

Spatial Pattern 

Matching 

E-mage Stream stel Stream • Pattern Input Method 

� From file 

� Create a new one 

� Number of rows 

� Number of columns 

� Distribution 

� 2D Gaussian 

� 2D linear 

• Normalize pattern size? Y/N 

• Normalize pattern value? Y/N 

Temporal 

Characterization 

stel Stream stel Stream • Time Window Size 

• Temporal Characteristics: {displacement, 

velocity, acceleration, periodicity, 

growth rate} 

Temporal 

Pattern 

Matching 

stel Stream stel Stream • Time Window Size 

• Pattern Input Method 

� From file 

� Create a new one 



� Sampling rate 

� Pattern duration 

� Distribution 

� Linear 

� Exponential 

� Periodic 

• Normalize pattern size? Y/N 

• Normalize pattern value? Y/N 

 

 
1. Filter 
Filter takes an E-mage stream as input, and filters each E-mage in the stream based on 
(a) a value range; 
(b) a spatial bounding box; 
(c) a time interval; 
(d) Values of an E-mage can also be normalized into a new range of values by using Filter operator. 
 
2. Grouping 
Grouping operator segments each E-mage in an E-mage stream based on a grouping method. Grouping 
methods supported are K-means and Thresholding. 
(a) For K-Means, users need to specify the number of groups. The converging threshold is automatically 
selected by the system. For thresholding, users provide the thresholds for each group. 
(b) Users can specify whether to split the segmented E-mage into multiple E-mages or create a single 
E-mage with cell values corresponding to the assigned segment. 
(c) If the result E-mage is not split, the users can select a color code for visualizing each segment. 
 
3. Aggregation 
Aggregation operator combines E-mages from two or more E-mage streams using aggregates. E-mages are 
aggregated per cell. For example, for each (i֒ j) pair, the sum aggregate adds cell(i֒ j) of E-mage from 
each input stream, and stores the sum value at cell(i֒ j) of the new E-mage. Note that the frame 
parameters followed by these E-mages need to be the same to be combined. In addition, the system allows 
one or more operands of aggregation operator to be scalar or 2D pattern, in which case, every E-mage in 
E-mage streams can be combined with the scalar or the pattern. 
(a) Aggregates supported are max֒min֒ sum֒ avg֒ sub֒ mul֒ div֒ and֒ or֒ not֒ xor֒ convolution. Some 
aggregates, such as sub and div, can only be applied between two E-mages. not is only allowed on one E-
mage. 
(b) Users can choose to normalize values of the resulting E-mages. 
 
4. Spatial Characterization 
Spatial characterization operator works on a single E-mage stream and computes a spatially relevant 
property of each E-mage in the E-mage stream. The output is a stel stream. Each stel in the stream stores 
the spatial coordinate where the measure is taken, and the associated value. 
(a) Following characterization measures are allowed, max֒ min֒ sum֒ avg֒ epicenter֒ coverage. For some 

characteristics spatial-location is not relevant (i.e. sum, avg, coverage) and is dropped. 
 

5. Spatial Pattern Matching 
Spatial pattern matching operator takes E-mages from an E-mage stream and a two-dimensional pattern 
as inputs, and tries to match the pattern in the E-mage. The output of this operator is a stel stream. The 
output stels record the location of highest match, and the corresponding similarity value. 
(a) The 2D pattern can be input in two ways, either uploaded from an image file or generated by the 
system. Image files in most of the common image formats, such as bmp and png, are allowed as input. 
The system also allows users to create some commonly used 2D patterns. The users need to specify the 
resolution,(i.e. number of rows and number of columns of the pattern), and a spatial distribution 
including Gaussian2D and Linear2D. To generate a Gaussian pattern, the center point coordinate, x,y 
variance and the amplitude are needed. For 2D linear pattern, a starting point, starting value, directional 
gradient and value gradient are required. 
(b) Users can choose to normalize the pattern resolution as well as values for matching purpose. 

 
6. Temporal Characterization 

    Figure 6.  Summary of Operators 



Temporal characterization operator takes a window of stels from a stel stream, and computes its 
characteristics like displacement֒ velocity֒ acceleration֒ periodicity֒ growthrate. The output of this 
operator is again a stel stream. 
(a) Users need to specify the time window (in seconds), over which the measure is taken. 
 
7. Temporal Pattern Matching 
Temporal pattern matching operator takes 1D pattern and a window of stels from a stel stream as input, 
and tries to match the pattern over the window of stels. Output of this operator is a stel stream, where 
stel stores the center position of the sub window of stels where the pattern matches with the highest 
similarity value, and the similarity value. 
(a) Users specify the window size in seconds, over which the pattern is to be matched. 
(b)The pattern can be input from a file (CSV format) or generated in the system. Currently, we allow 
linear, exponential, periodic patterns. For generating a pattern, the users need to specify the sampling 
rate and the duration. For example, the sampling rate could be 1 value per 5 seconds, and the whole 
pattern duration is 30 seconds. For linear pattern, parameters include slope and Y-intercept. Exponential 
pattern need the base value and the scale factor and Periodic patterns use frequency, amplitude, and 
phase delay. 
(c) Similar to spatial pattern matching, the users could choose to normalize the pattern size, pattern value, 
or both. 
 
Note that in the current system, we handle spatio-temporal operators (e.g. temporal pattern matching on 
velocity of epicenter of a hurricane) by applying temporal operators on the outputs of spatial operators. 
See section 5.3 for an example. 
 

4.3 Personalized Alert Unit 
Our approach is based on E-C-As (Event-Condition-Actions) [Montanari et al. 2007]. If the user matches 
certain personal conditions AND lies in an area with prescribed situation, she can be directed to the 
nearest location matching certain other situation conditions AND / OR sent an alert message. 
1) User conditions: Can be configured on a social media data-source using a bag-of-words approach. 
These user conditions are predicates of queries that are issued to the raw data storage for retrieving user 
information, such as user ID, for alerting purpose. 
2) Surrounding Situation parameters: Thresholds on a situation detected at user4s spatio-temporal 
coordinates. The situation is specified as a standing query in EventShop. Thresholds are applied on the 
result of this standing query. 
3) Target Situation parameters: Thresholds for a desired situation where a user should be directed to. 
Similarly, the target situation is also specified as a standing query. 
4) Message: The message can consist of: 

a) Information about users current situation. 
b) Information about nearest target location. 
c) Additional information (e.g. Personal message, authority contact). 

Currently, the system can send alerts to Twitter users. 
 

5. APPLICATION STUDY 
We have implemented the system as described in section 4, which is available at 
http://auge.ics.uci.edu/eventshop/. Front end GUI of EventShop is implemented in JavaScript, and it is 
able to send requests to back end controller through Ajax calls. The back end controller which receives 
requests and sends response to front end is written using Java Servlet. Data ingestor component is 
implemented in Java. Implementation of runtime operators makes use of OpenCV packages and is written 
in C++. 
 



 
 
 
 
A snapshot of EventShop is shown in Figure 7. The basic components are: 
a) Data-source Panel: To register different data sources into the system. 
b) Operators Panel: Different operators that can be applied to any of the data sources. 
c) Intermediate Query Panel: A textual representation of the intermediate query currently being 
composed by the user. 
d) Registered Queries: A list of configured queries registered with the system. 
e) Results Panel: To see the output of the query (which can be presented on a map, timeline, as a 
numeric value or a combination). 
 
We demonstrate three applications running on EventShop in the following sub sections. Users are free to 
create new applications by adding new data sources and registering new queries into the system. 

 

5.1 Application for Thailand Flood 
We demonstrate a real application of EventShop on suggesting safe locations to people who are trapped in 
Thailand flood. To realize the goal, we first segment the flooding areas into three groups based on 
flooding condition and shelter sufficiency. Then for those people who tweeted about flood from the 
dangerous areas, we send tweets to them and direct them to the nearest shelters in safe areas. 
 
Data Sources 
Data sources employed in this application include the map of flood affected areas across Thailand, and 
shelter map, which are updated every a few hours. We also collect tweets sent from southern Thailand 
with keywords 4#ThaiFlood4, 4#Flood4, and 4#ThaiFloodEng4. Figure 8 shows the parameters used 
in ingesting the three data sources. Sample E-mages created from data sources are shown in Figure 9. 
 

    Figure 7. The GUI of EventShop 



Theme URL Type Time 

Window 

Synchron

ization 

Point 

Spatial 

Bounding 

Box 

Spatial 

Resolution 

Flooding 

Area 

http://www.thaiflood.com

/floodmap 

KML 

Stream 

6 hours 0 ms Southern 

Thailand 

0.01 Lat x 

0.01 Long 

Shelter 

Map 

http://shelter.thaiflood.co

m/webservice/request.km

l 

KML 

Stream 

6 hours 0 ms Southern 

Thailand 

0.01 Lat x 

0.01 Long 

Thai Flood 

Tweet 

Twitter Search API Text 

Stream 

6 hours 0 ms Southern 

Thailand 

0.01 Lat x 

0.01 Long 

 

 
 
 
 
 
 
 
 
 
 
 
 
Queries 
Final frame parameters of this query are ¡6 hours, 0, Southern Thailand, 0.01 lat x 0.01 long¿, same as the 
initial frame parameters of all three data sources. 
 
1. Grouping Query 
The logical operator tree of the grouping query and parameters of each operator are presented in Figure 
10(a). 
 
2. Personalized Alerts 
As described in section 4.3, four parameters should be specified to send personalized alerts. We identify 
people who sent tweets about flood from southern Thailand as satisfying user conditions. If an area is 
segmented as group 0 or group 1, we identify that area as under threat of flood while lacking shelter 
protection. The target is to move people to the nearest shelter which is located in an area segmented to 
group 2. We send information about the nearest shelter location to users. 
 

Grouping

Normalize Values? Y

Target Range [0,1]

(same for all 3 

instances)

Astham 

Source

Final FP

<1 day, 0ms, US, 

0.1latx0.1long>

(same for all 3 RMs)

Twitter 

Source

Thresholding

[0, 1),[1,2),[2,3)

Split? N

Color? Y

green,yellow,red

Sum

Normalize Value? N
Aggregation

Filter Filter Filter

Resolution 

Mapper

Resolution 

Mapper

Resolution 

Mapper

Pollen 

Source

 

    Figure 8.  Thailand Flood Application: Data Sources 

   (a) Flood Affected Areas   (b) Shelter Map                  (c) Tweets on Thai Flood      Figure 9.  Thailand Flood Application: Sample E-mages 



 
 
 
 
 
 
Results 
Grouping query result as well as alert settings as shown in Figure 11. A snapshot of our twitter account 
sending tweets is shown in Figure 12. Some of our tweets are being re-tweeted by tweet receivers. Our 
Twitter account is @SocLifeNetworks. 

 
 

(a) Flooding Area Grouping Query   (b) Asthma Index Query 

Figure 10.  Logical Operator Tree for Queries 

           Figure 11.  GUI of Alert System and E-mage Result of Grouping Query 



 
 
 
 

5.2 Application for Asthma Relief 
In this experiment, we combine data from three data sources related to asthma study, and then segment 
the aggregated data over entire US into three danger zones based on the values in E-mages. 
 
Data Sources 
The severeness of an environment to an asthma patient is related to the pollen count and air quality in 
that area. From crowd sourcing aspect, if many people from a specific area discuss about asthma, it 
usually suggests that the situation in that area is not very friendly to asthma patients. Parameters of each 
data source used in this study are shown in Figure 13. The keywords selected for the Twitter source 
include 4asthma4 and 4allergy4. Figure 14 shows sample E-mages from the three data sources. 

Theme URL Type Time 

Window 

Synchro

nization 

Point 

Spatial 

Bounding 

Box 

Spatial 

Resolutio

n 

Pollen 

Count 

http://pollen.com/images/usa_ma

p.gif 

Geo Image 

Stream 

1 day 0 ms US 0.1 Lat x 

0.1 Long 

Air 

Quality 

http://www.epa.gov/airnow/toda

y/forecast_aqi_20111101_usa.jpg 

Geo Image 

Stream 

1 day 0 ms US 0.1 Lat x 

0.1 Long 

Asthma 

Tweet 

Twitter Search API Text Stream 6 hours 0 ms US 0.1 Lat x 

0.1 Long 

 

 
 
 
 

   Figure 12.  Alert Tweets sent from EventShop 

   Figure 13.  Asthma Application: Data Sources 



 
 
 
 
Query 
The final frame parameters specified for this query are ¡1 day, 0, US, 0.1 lat x 0.1 long¿. E-mages coming 
from the three data sources with distinct initial frame parameters are mapped to E-mages following the 
same final frame parameter by Resolution Mapper. The final E-mages from each data source will be 
generated every day at 12AM with the spatial resolution as 260 x 590. 
 
Logical operator tree of the 4Asthma Index4 query and operator parameters are shown in Figure 10(b). 
Note that the actual settings for data sources, combination operations and threshold values should be 
guided by domain experts. 
 
Results 
One result E-mage of asthma index query is shown in Figure 15. 

 
 
 
 
 

5.3 Application on Simulated Hurricane Data 
In this experiment, we use simulated hurricane data to demonstrate the power of EventShop in 
performing spatio-temporal characterization and pattern matching queries, as well as the ability in 
continuously updating query results in real time. 
 
Data Sources 
We implemented a STTPoint simulator which generates STTPoints as specified by an initial set of frame 
parameters. We select 4 locations as centers of 4 2D-Gaussian distributions. We also specify amplitude 
and variance for each of the distribution. In addition, at each time window, we introduce a hurricane 
pattern at some random selected location in the generated E-mage. The parameters of the data sources 
are listed in Figure 16. A sample E-mage can be seen as in Figure 18. 
 

(a) Pollen Levels                    (b) Air Quality Data                      (c) Reports on Asthma 

          Figure 14.  Asthma Application: Sample E-mages 

          Figure 15.  Result E-mage of Asthma Index Query 



Theme URL Type Time 

Window 

Synchronization 

Point 

Spatial 

Bounding Box 

Spatial 

Resolution 

Simulated 

Hurricane Data 

Local Memory 

Buffer 

STT Stream 10 sec 0 ms US 0.1 Lat x 

0.1 Long 

 

Queries 
We demonstrate two queries in this application. The aim of the first query is to search for hurricane in E-
mages. Since our E-mages are generated every 10 seconds, the query result also gets updated accordingly 
every 10 seconds. Based on the first query, the second query studies the velocity of the hurricane being 
followed. To be specific, the following question is asked: does the velocity increase exponentially with base 
value 2 and scale value 1?  
 
The final frame parameters for the two queries are the same as the initial frame parameters, i.e. ¡10s, 0, 
US, 0.1 lat x 0.1 long¿. Logical operator trees and operator parameters of the two queries are shown in 
Figure 17(a) and 17(b). 
 

Spatial Pattern 

Matching

Simulated Data 

Source
Hurricane 

Pattern

Input Method: file

Normalize Size? N

Normalize Value? N

Temporal 

Characterization

Time Window: 30s

Characteristics: velocity

Temporal 

Pattern 

Matching

Time Window: 30s

Create Exponential Pattern

Base value: 2

Scale fator: 1

Normalize Value? Y

 
 

 

 

 

 
Results 
Result of query 1 includes a geo coordinate as well as the similarity value, which are updated every 10 
seconds. Figure 18 shows the map, timeline and numeric output view of this query. Result of the second 
query is a similarity value which gets updated every 10 seconds. Figure 19 shows the results in timeline. 
Given that the hurricane location is randomly generated at each time window, the velocity of the moving 
hurricane also shows randomness. 

          Figure 16.  Hurricane Application: Data Sources 

(a) Query 1      (b) Query 2 

Figure 17.  Logical Operator Tree for Queries 



 
 

 

 
 

 
6. CONCLUSIONS 

Spatio-temporal data streams with data about different attributes are becoming increasingly common on 
the Web. We need tools to ingest, integrate, and analyze such streams for real-time situation awareness. 
We have described a generic approach for heterogeneous stream integration, situation detection, and 
personalized decision making from these streams. The presented system provides an easy, modular way for 
different users to detect different situations and send personalized alerts to millions of users. The 
applications abound in areas like emergency mitigation, health care, traffic, and business analytics. 
Through three different applications we have demonstrated the efficacy of the proposed approach for 
detecting situations, and taking actions. 
 
Future work remains in defining a declarative language for all the operators defined, building a multi-user, 
multi-query optimized system, and supporting a generic reasoning and control action mechanisms. 

          Figure 18.  Hurricane Application: Result of Query 1 

          Figure 19.  Hurricane Application: Result of Query 2 



 
 
REFERENCES 
Adam, E. 1993. Fighter cockpits of the future. In DASC. 
Arkin, A., Askary, S., Fordin, S., Jekeli, W., Kawaguchi, K., Orchard, D., Pogliani, S., Riemer, K., 
Struble, S., 
Takacsi-Nagy, P., et al. 2002. Web service choreography interface (wsci) 1.0. Standards proposal . 
Bailey, J., Poulovassilis, A., and Wood, P. 2002. An event-condition-action language for xml. In WWW. 
Bansal, N. and Koudas, N. 2007. Blogscope: a system for online analysis of high volume text streams. In 
VLDB. 
Chatti, M., Jarke, M., Specht, M., and Schroeder, U. 2011. Model-driven mashup personal learning 
environments. Int. 
Journal . 
Daniel, F., Casati, F., Soi, S., Fox, J., Zancarli, D., and Shan, M. 2009. Hosted universal integration on 
the web: The 
mashart platform. SOC. 
Endsley, M. 1988. Situation awareness global assessment technique (sagat). In NAECON. IEEE. 
Jain, R., Singh, V., and Gao, M. 2010. Social life networks. 
Jain, R. and Sonnen, D. 2011. Social life networks. 
McIlraith, S., Son, T., and Zeng, H. 2001. Semantic web services. IS. 
Montanari, M., Mehrotra, S., and Venkatasubramanian, N. 2007. Architecture for an automatic 
customized warning 
system. In ISI. 
Oliva, A. and Torralba, A. 2001. Modeling the shape of the scene: A holistic representation of the spatial 
envelope. IJCV. 
Perry, M. 2008. A framework to support spatial, temporal and thematic analytics over semantic web data. 
Ph.D. thesis, 
Wright State University. 
Rowley, J. 2007. The wisdom hierarchy: representations of the dikw hierarchy. Journal of Information 
Science. 
Sakaki, T., Okazaki, M., and Matsuo, Y. 2010. Earthquake shakes twitter users: real-time event detection 
by social sensors. 
In WWW. 
Singh, V., Gao, M., and Jain, R. 2010. Social pixels: genesis and evaluation. In ACM MM. 


