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found in incompressible inviscid ¯uids5,19. The smooth variation of
the properties (such as size and shape16, collective mode frequen-
cies24±26 and thermodynamics27) of dilute Bose gases as a function
of g, and the correspondence between our results and the
behaviour of rotating liquid 4He, strongly suggests that the
symmetry-breaking phenomena we have described in the weak-
coupling limit should occur over the entire range of g in a
qualitatively similar manner.

There are, however, notable quantitative differences. In the small-
g limit, we ®nd that the core size and inter-vortex spacing are both
comparable to the non-interacting ground-state width jr, and that
the mean square radial (but not axial) dimension of the cloud grows
linearly with l to accommodate more vortices. In the strong-
coupling limit, however, the core size becomes comparable to the
healing length y < jrg

2 1=5, which can be much smaller than the
radial extent R�0� < jrg

1=5 of the non-rotating cloud16. Under these
conditions, the spacing between vortices is set by the condition20

that the mean vorticity (that is, the vortex density) be equal to 2.
An extension of the Thomas±Fermi approach16 to rapidly rotating
gases in the large-g limit then predicts that the radius of the cloud
diverges as  approaches qr according to R�� � R�0�q2 3=5

eff , where
qeff [ �q2

r 2 2
�1=2 is the effective trap frequency, taking centrifugal

forces into account. With increasing  the condensate also ¯attens,
and its axial:radial aspect ratio shrinks as Z��=R�� < qeff =qr ,
where Z() is the axial extent of the cloud. The angular momentum
per particle diverges as (qeff/qr)

-6/5. M
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Methods

Using the Gross±Pitaevskii approach for trapped Bose gases16, we consider

variational condensates of the form

ª�r� �
m̂.0

cmxm�r� �1�

where the complex coef®cients cm are the probability amplitudes for ®nding a

condensate atom in the low-energy angular-momentum eigenstates of the

harmonic oscillator potential, xm�r� � eimfrme 2 ��r=jr �
2��z=jz �

2�=2=�p3=2m!j2
r jz�

1=2.

Here ji [ �~=Mqi�
1=2 for i � r or z, M is the atomic mass, and qi is the

oscillation frequency.

The angular momentum per particle in the state (1) is l~ � Sjcmj
2m~, and

the kinetic plus trap potential energy per particle is:

Eideal�ª� � ^jcmj
2m~qr � l~qr �2�

Thus the energy of a rotating non-interacting Bose±Einstein condensate

depends only on its angular momentum l, and not on the detailed form of the

superposition (1), indicating a large degeneracy18.

In a real gas, interactions between the atoms break this degeneracy and select

a particular linear combination to be the lowest energy state for each l. The

Gross±Pitaevskii interaction energy per particle is:

Eint�ª� [
2p~2aN

M #jª�r�j4d3r �3�

We have numerically determined the complex amplitudes {cm} in equation (1)

that minimize the total energy in the laboratory frame, Elab � Eideal � Eint,

subject to the constraint of ®xed angular momentum per particle. Our

calculations are exact in the small-g limit, where the use of a single Gross±

Pitaevskii condensate is equivalent to degenerate many-body perturbation

theory at zero temperature (D.S.R., unpublished results). This result incorpo-

rates the effects of small symmetry-breaking perturbations.

The minimum value of Eint for given l can be written g~qreint(l), where eint(l)

is dimensionless and depends only on the sign of g for small g. Then the angular

velocity �l� [ ]Elab=~]l � qr�1 � g]eint=]l�. This function can be inverted to

produce l(), which in the weak-coupling limit depends only on � 2 qr�=g

(Fig. 2). We note that rotating gases expand (and hence become more dilute)

with increasing l. Thus for positive g the interaction energy decreases with

increasing l, and we ®nd that �l � , qr . For negative g, however, �l� > qr for

l Þ 0, and centrifugal forces destabilize all rotating states.
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The need to characterize and forecast time series recurs through-
out the sciences, but the complexity of the real world is poorly
described by the traditional techniques of linear time-series
analysis. Although newer methods can provide remarkable
insights into particular domains, they still make restrictive
assumptions about the data, the analyst, or the application1.
Here we show that signals that are nonlinear, non-stationary,
non-gaussian, and discontinuous can be described by expanding
the probabilistic dependence of the future on the past around
local models of their relationship. The predictors derived from
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this general framework have the form of the global combinations
of local functions that are used in statistics2±4, machine learn-
ing5±10 and studies of nonlinear dynamics11,12. Our method offers
forecasts of errors in prediction and model estimation, provides a
transparent architecture with meaningful parameters, and has
straightforward implementations for of¯ine and online applications.
We demonstrate our approach by applying it to data obtained
from a pseudo-random dynamical system, from a ¯uctuating
laser, and from a bowed violin.

The past decade has seen the introduction of many new tech-
niques for modelling signals produced by complex systems, but the
potential power of these methods is matched by the ease with which
they can produce misleading or incorrect results1. We show here that
it is possible to obtain the desirable features of many of these
particular algorithms in a probabilistic setting that is more broadly
and reliably applicable.

Non-recursive approaches to time-series analysis relate a time-
dependent input feature vector x to an output observable y. x might
be the time-lag vector for an embedding that retrieves unseen
internal degrees of freedom from an accessible observable, or
perhaps a set of wavelet coef®cients for a system with multiple
timescales; y could be the future value of a series. The simplest
model of their relationship uses linear coef®cients to combine
possibly nonlinear basis functions, yn � SM

m�1bmfm�xn�, for example
a global polynomial model. If the coef®cients are moved inside the
nonlinearity, yn � SM

m�1f m�xn; bm�, exponentially fewer terms are
typically needed to approximate the relationship to a given error,
but an iterative search is needed to ®nd good values for the
coef®cients. Increasing the model size ensures that there are many
good local minima for the search to ®nd, while over-®tting can be
prevented by regularization, maximizing the agreement of the
model with prior beliefs as well as with the data13.

These insights into functional approximation and high-dimen-
sional search lie behind the success of approaches such as neural
networks and radial basis functions. However, the decision to ®t a
function can itself be restrictive. Global regularizers that maximize
smoothness are inappropriate for describing local features that
might be sharp. Large models can be dif®cult to interpret, and
answer only questions for which they are trained. Although the
appealing alternative of probability density estimation is conven-
tionally thought to require impractical amounts of data for routine
use, it becomes not only feasible but also easier to apply if the
density is expanded around local models.

We will seek to ®nd the joint density p(y, x) for the dependence of
y on x from a set of experimental measurements {yn; xn}N

n�1. This

will be factored over clusters cm, each containing the product of
three terms:

p�y; x� � ^
M

m�1

p�y; x; cm�

� ^
M

m�1

p�yjx; cm�p�xjcm�p�cm�

�1�

Here p(cm) is the weight of a cluster, given by the fraction of the data
that it explains; p�xjcm� is the domain of in¯uence in the input
space of the cluster, and will be taken to be multivariate gaussian
N(mm, Cm) in terms of a mean mm and covariance matrix Cm (or
separable gaussians in a high-dimensional space for ef®ciency). The
remaining item expresses the output behaviour of the cluster, and
will taken to be gaussian with a functional dependence of the mean,
p�yjx; cm� � N�f�x; bm�; Cy;m�. The role of the function f�x; bm� can
be seen by calculating the expected value of y given x;

hyjxi � #yp�yjx�dy

� #y
p�y; x�

p�x�
dy

�
SM

m�1f�x; bm�p�xjcm�p�cm�

SM
m�1p�xjcm�p�cm�

�2�
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Figure 1 Forecasting a linear feedback shift register. Data from a 15-dimensional

pseudorandom linear feedback shift register, and free-running predictions of

a model trained on 10% of the repeat cycle (3,276 points, 20 clusters, 5,160

parameters,10 expectation-maximization iterations). The model's initial condition

was randomly perturbed by 20% from that of the digital shift register, showing that

the correct sequence is a stable attractor.
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Figure 2 Modelling of a laser ¯uctuating near the gain threshold. Top, the time

series. Middle, the data (dots) in a three-dimensional time-lag space and the

resulting cluster means (circles) and covariances (lines). Bottom, the prediction

surface derived from the resulting density, shaded by the conditional uncertainty

in the prediction, plotted above the input density estimate. An animation of the

convergence of this model is available at http://www.media.mit.edu/physics/

publications/papers/cwm.
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The prediction is a sum of local models, with the gaussians
providing the nonlinear interpolation rather than serving as a
basis for functional approximation. In the limit of a single cluster
this reduces to a global version of the local model; as the number of
clusters is increased, the density can handle deviations from the
assumptions of the local model. The choice of f (or choicesÐmore
than one kind of function can be included) provides a means to
explicitly build past practice, such as linear systems theory, into a
domain.

A smooth local model expresses the belief that nearby points
behave similarly, but as the clusters may be widely separated this
architecture can also represent discontinuities. Because clusters are
used only where there are data to explain, it is possible to describe
low-dimensional structure in a high-dimensional space, and inter-
polation and extrapolation are well-behaved as they are done by
weighted combinations of local models. As an example, a time series
was generated by a 15-dimensional binary map:

xn � xn 2 1 � xn 2 15 �mod 2� �3�

This is a maximal length shift register, generating ideal pseudo-
random bits up to the repeat period of 215 2 1 samples. 10% of this
full sequence (3,276 points) was used to build a model (as described
below) in a 15-dimensional lag space. The free-running output from
the resulting model using 20 linear covariance clusters is shown in
Fig. 1. Not only is the exact sequence correctly reproduced, but it is
also an attractor for randomly perturbed starting values14.

The parameters for this example were found in just 10 iterations
of an iterative expectation-maximization procedure15. The expec-
tation step calculates the joint probabilities of data points and
clusters, p�yn; xn; cm�, and inverts this expression to ®nd the poster-
ior probabilities of the clusters given the data:

p�cmjyn; xn� �
p�yn; xnjcm�p�cm�

p�yn; xn�

�
p�yn; xnjcm�p�cm�

SM
l�1p�yn; xnjcl�p�cl�

�4�

The clusters will interact through the sum in the denominator to
specialize in data they best explain.

The maximization step then ®nds the most likely parameters
given the posteriors. For the cluster weights this is de®ned by:

p�cm� � #p�cmjy; x�p�y; x�dydx

<
1

N ^
N

n�1

p�cmjyn; xn�

�5�

The second step follows from the assumption that the experimental
data were drawn from the joint density. Given p(cm), the cluster-
weighted expectation of any function J(x) is de®ned to be:

hJ�x�im [ #J�x�p�xjcm�dx

� #J�x�p�y; xjcm�dxdy

� #J�x�
p�cmjy; x�

p�cm�
p�y; x�dxdy

<
1

Np�cm�
^

N

n�1

J�xn�p�cmjyn; xn�

�
SN

n�1J�xn�p�cmjyn; xn�

SN
n�1p�cmjyn; xn�

�6�

The apparently formal introduction of y in the second line lets the
estimation proceed based on both the cluster location in the input
space and how well its model performs in the output space. For
online applications that require updating the estimates based on a
new measurement without reanalysing the prior data, the clusters
can be used to approximate the sum over previous points:

hJ�x�i�N�1�
m �

1

�N � 1�p�cm�
^
N�1

n�1

J�xn�p�cmjyn; xn�

<
Np�cm�hJ�x�i�N�

m � J�xN�1�p�cmjyN�1; xN�1�

Np�cm� � p�cmjyN�1; xN�1�

�7�

The cluster-weighted expectation is used to ®nd the cluster means
and covariance matrices

mm � hxim

�Cm�ij � h�xi 2 mi��xj 2 mj�im

�8�

Taking the local models to have linear coef®cients and maximizing
the likelihood of the data results in a cluster-weighted regression for
the model parameters13;

bm � B 2 1
m ×Am �9�

with �Bm�i;j � h f i�x�f j�x�im and �Am�i;j � h yi f j�x�im. Finally, the
output covariance matrices are found from:

Cy;m � h�y 2 f�x; bm��×�y 2 f�x; bm��
Tim �10�

Here superscript T indicates the matrix transpose. Iterating the
expectation and maximization steps leads to the most likely
arrangement of clusters that can be reached from the initial
conditions. As there are many nearly equivalent solutions, the
®nal likelihood does not depend sensitively on the initialization.
For this reason, simple out-of-sample cross-validation16 instead of
full bayesian Monte-Carlo Markov chain integration17 is used to
determine the single hyper-parameter, M, the number of clusters.

Once the density has been found, other quantities of interest can
be derived. The error in the forecast is given by the expected output
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Figure 3 Clustering stationary and non-stationary data. Top, two-dimensional

projection of cluster means and variance for stationary data, a ¯uctuating laser

(set A from ref.1), using time as one input degree of freedom. Bottom, clustering

for non-stationary data, a particle in a drifting multiple-well potential (set D from

ref. 1). For stationary data, the clusters expand in time to encompass all of the

data; for non-stationary data, they shrink down to the local scale that maximizes

the overall likelihood.
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covariance matrix:

hCy;mjxi � SM
m�1�Cy;m � f�x; bm�×f�x; bm�

T�p�xjcm�p�cm�

SM
m�1p�xjcm�p�cm�

2 hyjxi2

�11�

This gives the width of the output distribution, without assuming
gaussianity because multiple clusters can overlap. During training,
the agreement between the predicted and measured error also
provides a self-consistency check on the validity of the model.
The availability of the input density estimate

p�x� � ^
M

m�1

p�xjcm�p�cm� �12�

provides complementary information, showing where the predic-
tion uncertainty is large because few data were available to estimate
the model. In the limit of gaussian forecasting errors, the log of the
output uncertainty is equal to the source entropy, and hence the
sum of positive Lyapunov exponents. The radial correlation integral
of the density can be calculated analytically as well, giving the
correlation dimension of the density13.

Figure 2 shows these derived quantities for a familiar experi-
mental data set, the intensity of an NH3 laser ¯uctuating near the
gain threshold18. The conditional uncertainty associated with the
divergence near the reinjection of the oscillator is readily apparent.
An animation of the rapid convergence of this model is available
(see Fig. 2 legend), showing prediction errors comparable to those
obtained by competing techniques in ref. 1.

Because the clusters grow or shrink to maximize the overall model
likelihood, they can be used to determine the local relevance of
input degrees of freedom. Figure 3 shows the variance of clusters for

data sets that are stationary (the laser) and non-stationary (the
trajectory of a particle in a drifting multiple-well potential), using
time as an input degree of freedom. For the stationary case they
expand to encompass the whole data set; for the non-stationary case
they shrink to an appropriate local scale without needing to de®ne a
global factor for weighting the past.

As a ®nal example showing the modelling of a complex driven
nonlinear system, Fig. 4 plots time-series data recorded from a
violin, with the output audio as well as the relevant player inputs
(bow and ®nger positions) used to perform an input±output
embedding19,20. A spectral representation was used that tracks the
frequency and amplitude of harmonics, in order to ignore the
perceptually less-relevant phase information in modelling the
underlying process. The resulting model can reproduce the response
of the violin both in-sample and with new player input (see Fig. 4
legend), providing a computationally ef®cient alternative to ®rst-
principles physical modelling and sound sampling.

Cluster-weighted modelling is both old and new. It is a simple
special case of the general theory of probabilistic networks21,22,
but one that can handle most of the limitations of practical data
sets without unduly constraining either the data or the user.
This architecture is appropriate for stationary systems described
by a single global model, or non-stationary systems described by
unrelated local models. For the more complex case of a multi-
stationary or long-memory process, it is necessary to introduce
internal degrees of freedom into the model. Without a priori insight
into the model architecture, this presents a dif®cult problem of
architecture selection; an open question is whether it is possible to
solve this problem through the kind of probabilistic factoring and
sampling that we have shown here to be so convenient for determin-
ing model allocation.
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Figure 4Modelling of a bowed violin. Left, measurements on a violin, showing the

bow velocity, player's ®nger position, resulting audio time series and harmonic

structure. Right, the audio re-synthesized from the sensor data by a model trained

in the joint input±output space. Audio samples areavailable at http://www.media.

mit.edu/physics/publications/papers/cwm


