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Abstract

An inference�based method for modeling

complex non�linear systems is presented

that integrates current approaches to mod�

eling of microwave devices within a gen�

eralized non�linear framework� Familiar

techniques for characterizing and emulat�

ing linear and non�linear systems are em�

bedded in an automated weighting mech�

anism� so that globally complex behavior

is approximated by a number of simple lo�

cal models� The framework handles non�

Gaussianity� non�stationarity and disconti�

nuity� It o�ers meaningful parameters� such

as linear �lter coe�cients or Volterra ex�

pansion coe�cients� as well as detailed error

estimates�

� Introduction

Microwave device technology has evolved into ap�
plication domains where its emulation and char�
acterization with linear techniques are no longer
satisfactory� Although non�linear e�ects appear in
many systems to such an extent that failure or suc�
cess of ambitious design goals depend on them� the
measurement technology as well as the data repre�
sentation in state of the art analyzer systems still
relies on the assumption of linearity� As a result�
most of the interesting and useful non�linear be�
havior of microwave devices is either missed or ne�
glected�

Non�linearity is di	cult to model as well as to
characterize
 while physical models ��� require im�
practical amounts of computation� reliable electri�
cal models are device�specic and tedious to de�
sign ���� Motivated by successful inference ap�
proaches to system characterization in other en�

gineering domains� we present an approximation
architecture that characterizes a device based on
analysis of empirical data collected from the device
under test �DUT�� The framework is based on sim�
ple local models that share the input data space�
weighted by global Gaussian kernels� Although the
model�s local structure is based on conventional
well�understood modeling practice and theory� it
is able to predict globally complex and non�linear
behavior�

While section � of this work presents the
framework as a general function approximation
framework� section � introduces two local archi�
tectures that are specically suitable to modeling
microwave devices� The rst architecture is con�
cerned with a time domain approach� Linear sys�
tems theory has shown how linear autoregressive
models can approximate a linear lter of arbitrary
complexity given an arbitrary number of tabs in
the autoregressive model �IR�Filter�� Non�linear
systems theory has shown how internal degrees of
freedom of a physical system can be reconstructed
from input and output observables of the system
��� ��� This reconstructed state space can be used
to predict arbitrarily non�linear systems� In be�
tween these two extreme cases there are many sys�
tems that behave linearly at a local scale but show
non�linear behavior when driven over a wide range
of input signals� As an example of such a system we
introduce a data set of simulated amplitude modu�
lated input and output signals from an Ebers�Moll
transistor model �g��� ����� This circuit can be
e	ciently described and predicted by linear mod�
els that are embedded in the non�linear function
approximation framework�

References ��� and ���� introduced the non�
linear S�parameter equivalent for weakly non�
linear multi�port devices� As described by the
Volterra theory� non�linear interaction between fre�
quency components can be modeled by polyno�
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mials beyond the rst order linear terms� Such
model is able to characterize harmonic responses
at the output�port due to non�linear coupling be�
tween harmonic components at the input�ports� up
to an arbitrary order of approximation� We show
how the Volterra approach to device modeling is
integrated into our global framework� Although
Volterra approximations perform well on the lo�
cal scale� their accuracy degrades over a larger dy�
namic range and a wider frequency span� Once
again our algorithm overcomes this problem� as it
optimally allocates a series of local models describ�
ing di�erent input�output behavior�

� Global Architecture

To start� we take a set of experimental measure�
ments by driving a device with signals vn at the
input port and measuring the output signalswn at
the output�port� vn is drawn from pv�v� � where
pv�v� describes the unconditioned probability of v
given a specic application� Let x and y be any
quantities of interest in the time or frequency do�
main derived from v and w� such as complex co�
e	cients describing the incident� transmitted� and
re�ected energies at the device �g� ���

Given the set of measurements fyn�xngNn��� we
infer the joint probability density p�y�x�� which
lets us derive conditional quantities such as the ex�
pected value of y given x� hyjxi� and the expected
covariance matrix of y given x� hCyjxi� The value
hyjxi serves as prediction of the target value y and
hCyjxi serves as its error estimate ����

The joint density p�x�y� is expanded in clus�
ters labeled cm� each of which contains an input
domain of in�uence� a local model� and an output
distribution�

p�y�x� �

MX
m��

p�y�x� cm� ���

�
MX
m��

p�yjx� cm� p�xjcm� p�cm�

The kernel probability functions p�yjx� cm� and
p�xjcm� are taken to be Gaussian so that
p�xjcm� � N ��m�Cm� and p�yjx� cm� �
N �f�x� �m��Cy�m�� where N ���C� stands for
the multi�dimensional Gaussian distribution with
mean vector � and covariance matrix C� The
function f�x� �m� with unknown parameters �m is
taken to be a linear coe	cient model of the form

y �

MX
m��

�mfm�xn� ���

Given this density estimate we infer a conditional
forecast

hyjxi �

PM

m�� f�x� �m� p�xjcm� p�cm�PM
m�� p�xjcm� p�cm�

���

as well as a conditional error forecast�

hCyjxi � ���PM

m���Cm�y � f�x� �m�f�x� �m�
T � p�xjcm� p�cm�PM

m�� p�xjcm� p�cm�

�hyjxi�

� Local Models

��� Time Domain Approach

So far the local models f�x� have only be con�
strained to be of form ���� In this section we spec�
ify a local architecture that allows one to model
weakly non�linear multi�port networks in the time
domain�

If the output time�series at time t and at a
given operating point is a linear function of the
input signals at time t� the output model is of the
form

y�t� � �� �

DX
d��

�d � xd�t� ���
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Figure �� Approximation of � �out of �� frequency components� The rows represent the approximation
results of �a� a linear model� �b� a �th�order�polynomial� �c� ��cluster�local�linearmodel� �d� ��clusters�local�
quadratic model�

If the system has some sense of memory we may
use lagged values of the input time series to aug�
ment the state vector� In this approach of �weak�
state space reconstruction the model becomes

y�t� � �� �

DX
d��

KX
k��

�d�k � xd�t� k � �� ���

where k is the number of lags and � is the time lag�
This approach avoids the stability problems of the
embedding method� but retains the notion of state
augmentation and allows for present output to be
conditioned on past system states ����

��� S�Parameter Approach

In this section we specify a local architecture to
represent and predict RF multi�port networks in
the frequency domain� A linear multi�port network
is completely specied by its scattering and re�ec�
tion parameters S���i�j � where i refers to an input
and j to an output signal� and the device load can
be described by linear superposition of input signal
components� However� transfer and re�ection co�
e	cients of non�linear devices can only be specied
as functions of all input frequency components�
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Figure �� Approximated data from a simulated amplier �b����� b����� b������ The x�axis gives the number
of a test run� the y�axis indicates the energy in the component� Original and predicted output data a�
sorted by the energy of the fundamental� b� sorted individually by the energy of the particular component�
The noise in the predicted f� and f� plot indicates a slight prediction error�

Starting from g�� we need to identify the ef�
fect of combinations of input signals ai on the out�
put signals bj � Restricting input and output to
harmonic signal components� we denote the in�
put component associated with the fundamental
f�� and the harmonics f�� f���� by ai���� ai���� �� re�
spectively� We designate the corresponding output
components by bi���� bi���� ���

The S�parameter approach for linear mi�
crowave devices is extended into non�linear trans�

mission kernels Hn using the Volterra theory ����
��� Hn�ji�i���in�f��f����fn� describes the n�th order ef�
fect of frequency components fk at the input port
ik on the frequency components f� � f� � �� � fn
at output port j� where conjugate complex compo�
nents are denoted by a negative fi ����� While the
pure Volterra approach requires a detailed expan�
sion of the Volterra series� we avoid this step by
allowing any polynomial interaction between real
and complex parts of signal components up to the



desired order O� The increase in the number of
terms is compensated by a gain in symmetry that
facilitates the parameter search�

Thus the local model is dened as

y �
X

e��e�����eD��O

� � xe�� � xe�� � ��� � xedD ���

and the order of the local model is traded o� with
the complexity of the global architecture �g����
While the polynomial expansion is very e	cient
within a limited input domain of interest� wide
ranges of frequency and amplitude are best cap�
tured by an e	cient split of the application domain
into sub�domains of in�uence�

� Parameter Estimation

The model parameters are found from a variant
of the Expectation�Maximization �EM� algorithm�
which computes the most likely cluster parame�
ters by iterating between an expectation step and
a maximization step ��� ��� Conventional EM up�
dates are used to estimate the unconditioned clus�
ter probabilities p�cm�� cluster locations �m and
covariances Cm� Pseudoinverses of the cluster
weighted covariance matrices are used to update
the local model parameters �m�

E�step� Given a starting set of parameters� we
nd the probability of a cluster given the data�

p�cmjy�x� �
p�y�xjcm� p�cm�

p�y�x�
���

�
p�y�xjcm� p�cm�PM
l�� p�y�xjcl� p�cl�

where the sum over clusters in the denominator
lets clusters interact and specialize in data they
best explain�

M�step� Now we assume the data distribu�
tion correct and maximize the likelihood function
changing the cluster parameters� starting with the
cluster weights�

p�cm� �

Z
p�cmjy�x� p�y�x� dy dx ���

�
�

N

NX
n��

p�cmjyn�xn�

Given p�cm� we dene the cluster�weighted expec�
tation of any function ��x� as

h��x�im �

Z
��x� p�xjcm� dx ����

�
�

N p�cm�

NX
n��

��xn� p�cmjyn�xn�

which lets us update the cluster means and the
cluster weighted covariance matrices �

�m � hxim ����

�Cm�ij � h�xi � �i��xj � �j�im

The derivation of the maximum likelihood solution
for the model parameters yields

�m � B��m � Am ����

with �Bm�i�j � hfi�x� � fj�x�im and �Am�i�j � hyi �
fj�x�im� Finally the output covariance matrices
associated with each model are estimated�

Cm�yy � h�y � f�x� �
m
�� � �y � f�x� �

m
��T im ����

We iterate between the E� and the M�step un�
til the total likelihood of the data� as dened by
the product of all data likelihoods �equ��� does not
increase further �g� �b��
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Figure �� convergence of a ��cluster�locally�
quadratic Volterra coe	cient model

�

� Experimental Results

��� Time Domain Approach

Fig�� illustrates the test device� simulated to gen�
erate data for the demonstration of the time do�
main approach� a bi�polar junction transistor is



embedded in a self�biased circuit functioning as a
simple amplier ����� Di�erent operating points of
the device are selected by applying dc�potentials
to Vbb and Vcc � An amplitude modulated signal is
added to the dc�o�set at Vbb� The modeling task
consists in predicting the output�currents IBE and
ICE � given the input voltages�

Vcc

Vbb

Vb

Rb

B

E

Re

Vce

C

Rc Ic

Figure �� Test device for the time domain ap�
proach� a self�biasing transistor circuit� �����

Fig��a� shows how the data interpolates be�
tween bias points� For training a selection of bias
points was used� while the test set was chosen from
a larger number of bias points� The predicted out�
of�sample test data is unrecognizibly similar to the
true simulated output data and the relative RMS

was smaller than ����� across the data set�

���� uses radial basis functions to model input�
output patterns for di�erent bias points� Basis
terms are xed in specic input locations� so that
bias points that haven�t been observed in training
can be computed by explicitly interpolating the
basis functions of adjacent training points� Our
result matches the error reported in ����� Yet� in
our system clusters automatically go where they
are needed and interpolate appropriately� Hence
our algorithm is not specic to the transistor ex�
ample where bias points are chosen discreetly� but
works for arbitrary devices� Also� the architecture
remains general and applicable in di�erent settings

such as the one introduced in the next section�

��� S�Parameter Approach

Fig���� illustrates how local and global complex�
ity contribute to the approximation result in the
S�parameter approach� The data is taken from a
device with a single input component at ��� GHz
and � harmonic output components at ���� �� ���
and � GHz� It is approximated by combinations of
varying numbers of clusters and varying polyno�
mial order� The purely linear approximation ��a�
is unable to capture the data characteristics and
the fth order polynomial model ��b� still performs
purely� The approximation with � linear models
��c� is doing well� while the approximation with
only � second order polynomials is practically per�
fect ��c��
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Figure �� Test Device for S�parameter approach�

The model was further tested on data obtained
from realistic simulations of an amplier �g���
with two input�ports �input � and � at port � �
and a single output�port � ����� There were one
input component ���� GHz� at input�port � and
three components ����� � and ��� GHz� at input�
port �� causing output components at ���� � and
��� GHz� Thus� the model predicts a ��dimensional
complex output vector� given a � dimensional com�
plex input vector�

Multiple simulations were done with strongly
varying boundary conditions� Fig�� shows the ap�
proximation results from a particular simulation�
The relative RMS error was at worst ������ for the
fundamental and ���� for the second harmonic
 on
some of the test sets a signicantly better perfor�
mance was achieved� Local third order approxi�



a� 200 400 600 800 1000 1200 1400 1600 1800

0
1
2 predicted

measured
I
CE

−0.1

0

0.1 predicted

measuredI
BE

0
20
40

V
CE

−5
5

15
V

BE

0

40
Bias

2

5

9
Bias

1

b� 100 200 300 400 500

−0.4
0

0.4 predicted
measured

I
CE

−0.3

0

0.3
predicted

measured
I
BE

−40
0

40
V

CE

−4
0
4

V
BE

Label

200 400 600 800 1000 1200 1400

predicted

measured

predicted

measured

Figure �� Time domain modeling� a� Amplitude modulated data from the ebers�moll transistor circuit� the
two top rows represent the two bias points� the two middle rows the input voltages and the two bottom
rows the predicted output currents� where the prediction is plotted above the measured �simulated� data
to illustrate the similarity� b� data from the same circuit� but with stronger non�linear behavior� row �
and � indicate the input voltages and the two bottom rows indicate the predicted output currents� The left
column shows part of the training data� the right column shows test data�

mations performed best� which was expected given
data ranging from the fundamental to the second
harmonic� The di�erence between single and mul�
tiple cluster models should become more signi�
cant when absolute frequency will be varied and
added to the feature vector�

� Conclusions

It has been shown how the cluster�weighted archi�
tecture automatically allocates model parameters
in the data space� It extends existing modeling

techniques to complex systems that capture a de�
vice across any input range without losing perfor�
mance in particular sub�domains� The experimen�
tal approximation of two particular ampliers was
shown to be arbitrarily accurate� given su	cient
complexity of the model architecture�

We introduced two local architectures that ex�
tend the typical representation of current circuit
simulation and test equipment� It was shown
how our method predicts the output currents in
the time domain� given di�erent operating points
of the device� This approach is appropriate for



systems that are insu	ciently described by their
steady state behavior� Furthermore it was demon�
strated how the S�parameter characterization of
linear devices can be extended to higher order
polynomial approximations �Volterra series� and
how this representation can be elegantly embed�
ded in the cluster�weighted framework so that a
wide range of driving signals is modeled in a single
estimation step�

Our approach is yet to be tested on measure�
ments of real world devices� Because our frame�
work easily adapts to local and global data com�
plexity� we expect it to outperform conventional
non�linear techniques when applied to measured
non�idealized and noisy data� Apart from the
examples shown in this paper Cluster�Weighted
Modeling can handle non�trivial systems that
have discontinuous input�output characteristics or
stochastic behavior�
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