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Abstract

We present a framework for the analysis and synthesis of acoustical in�

struments based on data�driven probabilistic inference modeling� Audio time

series and boundary conditions of a played instrument are recorded and the

non�linear mapping from the control data into the audio space is inferred

using the general inference framework of Cluster�Weighted Modeling� The

resulting model is used for real�time synthesis of audio sequences from new

input data�

I� INTRODUCTION

Sampling of acoustical instruments �Massie� ����� and synthesis based on detailed �rst�

principles physical modeling �Smith� ����� have been two particularly successful musical

synthesis techniques	 The sampling approach typically results in high sound quality� but

has no notion of the instrument as a dynamic system with variable control	 The physical

modeling approach retains this dynamic control but results in intractably large models when

all the physical degrees of freedom are considered	 The search for the right combination of

model parameters is di
cult and there is no systematic way to ascertain and incorporate

subtle di�erences between instruments of the same class� such as two master violins	 We



present a new synthesis method that is conceptually intermediate between these two tradi�

tional techniques� in that it infers the physical behavior of the instrument from observation

of its global performance	

Dynamical systems theory shows that we can reconstruct a state space of a physical sys�

tem that is homeomorphic to the actual state space using the input and output observables

of the system along with their time lags �Takens� �����Casdagli� �����	 The reconstructed

space captures the dynamics of the entire system	 At the same time� its dimensionality may

be chosen to correspond to the number of e�ective rather than actual degrees of freedom of

the system	 In the case of dissipative systems� such as musical instruments� this e�ective

dimensionality can be considerably lower than the physical one	 We combine this result

with adequate signal processing and sensing technology to build a modeling and synthesis

framework that introduces new capabilities and control �exibility into accepted and mature

synthesis techniques	

Using the violin as our test instrument� we developed unobtrusive sensors that track the

position of the bow relative to the violin� the pressure of the fore�nger on the bow� and the

position of the �nger on the �ngerboard	 In a training session� we record control input data

from these sensors along with the violins audio output	 These signals serve as training data

for the inference engine� Cluster�Weighted Modeling� which learns the non�linear mapping

between the control inputs and the target audio output	 The resulting model can predict

audio data based on new control data	 A violinist plays the interface device �which could

be a silent violin�� and the sensors now drive the computer model to produce the sound of

the original violin	

We have developed Cluster�Weighted Modeling �CWM� as a general prediction and char�

acterization inference engine that naturally extends beyond linear inference and signal pro�

cessing practice into a powerful non�linear framework that handles non�Gaussianity� non�

stationarity� and discontinuity in the data	 CWM retains the functionality of conventional

neural networks� while addressing many of their limitations	



II� DATA COLLECTION

Several sensors capture the gestural input of the violin player	 We measure the violin bow

position with a capacitive coupling technique that detects displacement current in a resistive

antenna �Paradiso and Gershenfeld� ����� and infer a bow velocity estimate by di�erentiation

and Kalman �ltering	 The distance between bow and violin bridge is determined by the same

technique	 Bow pressure is inferred from the force exerted by the players index �nger on a

force�sensitive resistor mounted on the bow	

The �nger�position sensor consists of a thin strip of stainless�steel ribbon attached to the

�nger board	 A low frequency alternating current passes through the violin string and is

divided according to the distance between the contact point and the two ends of the ribbon	

We infer the position of the players �nger from the di�erence between the two currents and

use the sum of the currents to determine whether the string is in contact with the �nger

board	 A microphone placed close to the violin detects the acoustic sound pressure and a

dynamic pickup measures the string vibration signal	 The pickup consists of a permanent

magnet mounted underneath the strings and an ampli�er that detects the voltage induced

in the string	

During data recording sessions� we simultaneously record sensor and audio data �see

Fig	 ��	 For performance� the violinist plays the instrument with the strings covered by

a shield that prevents bow�string contact	 The sensor signals are again fed into the com�

puter� and now a real�time program predicts sound parameters and synthesizes audio output

corresponding to the players performance data	

�INSERT FIGURE � ABOUT HERE�

III� MODELING SEQUENCE

The model building and prediction sequence is broken into the following steps� ���

transform the output data representation from time series audio samples to spectral data�



��� prepare the state space representation from input and output data series� ��� build an

input�output prediction model using the cluster�weighted algorithm� ��� use this model to

predict output spectral data based on new input data� and ��� synthesize the audio stream

from the predicted spectral sequence	

A� Data Analysis and Representation

Our �rst attempts at using embedding synthesis to model driven input�output systems

were entirely time domain�based	 While this approach is close to the techniques suggested

by dynamical systems theory �Casdagli� ������ it su�ered from instability due to the di�er�

ence in characteristic time scales between control inputs and signal outputs	 In addition�

the time domain approach retains some perceptually irrelevant features and unpredictable

information	 For example� although signal phase is perceivable under special circumstances�

the violin player is not actively controlling the phase of the signal components	 The player

is� however� actively shaping the spectral energy characteristics of the audio signal	 We

therefore choose to predict in the spectral domain �McAulay and Quatieri� �����Serra and

Smith� ����� and hence model the process rather than a particular realization of the process	

We decompose the measured audio signal into spectral frames in such a way that each

audio frame corresponds to a measured set of input variables x�	 Each frame is obtained from

a Short Term Fourier Transform �STFT� applied to audio samples weighted by a Hamming

window	 Only the information corresponding to harmonic components of the signal �peaks

in the spectrum� is retained	 The amplitude of each partial is taken to be proportional to the

magnitude of the STFT� and we compute a precise estimate of the partial frequency from the

phase di�erence of STFTs applied to two windows shifted by a single sample �McAulay and

Quatieri� �����Brown and Puckette� �����	 After analysis� the training data is reduced to

the set of input�output points fyn�x�ngNn��� where the index n refers to consecutive frames�

x� refers to the vector of inputs consisting of bow velocity� pressure� �nger position� and bow



bridge position� and y refers to the vector of partials with each partial represented by a pair

describing frequency and amplitude	

We begin the modeling task by evaluating the length of the instruments �memory�

and �nding the input signals that best represent the in�uence of the past on the current

output	 To this end we add selected time�lagged components of x� to the input vector and

obtain the augmented input vector x	 In particular� we attempt to augment the input data

set so that the input�output mapping becomes a single�valued function	 The performance

of a particular feature vector is evaluated by cross�validation� that is� by prediction and

resynthesis from input data that was not used during model building	

The input�output pairs fxn�yng are used to train the inference algorithm as described in

the next section	 The resulting model generates the estimated output �y given a new input

vector x	 From the spectral vector �y we reconstruct a time domain waveform by linearly

interpolating frequencies and amplitudes of the partials between frames	 The sinusoidal

components corresponding to the partials are summed into a single audio signal �Serra and

Smith� �����	

B� Cluster�Weighted Modeling

Cluster�Weighted Modeling �CWM� is an input�output inference framework based on

probability density estimation of a joint set of input features and output target data	 It is

similar to hierarchical mixture�of�experts type architectures �Jordan and Jacobs� ����� and

can be interpreted as a �exible and transparent technique for approximating an arbitrary

function	 During training� clusters automatically �go to where the data is� and approximate

subsets of the data space according to a smooth domain of in�uence �Fig	��	 Globally� the

in�uence of the di�erent clusters is weighted by Gaussian basis terms� while locally� each

cluster represents a simple model such as a linear regression function	 Thus� previous results

from linear systems theory� linear time series analysis and traditional musical synthesis are



applied within the broader context of a globally non�linear model	

�INSERT FIGURE � ABOUT HERE�

After preprocessing the experimental measurements we obtain the set of training data

fyn�xngNn��� where x refers to the feature input vector and y refers to the corresponding

target output vector	 We infer the joint probability density of feature and target vector

p�y�x�� which lets us derive conditional quantities such as the expected value of y given x�

hyjxi� and the expected covariance matrix of y given x� hCyy jxi	 The value hyjxi serves

as prediction of the target value y and hCyy jxi estimates the prediction error �Gershenfeld

et al	� �����	

The joint density p�x�y� is expanded in clusters cm� each of which contains an input

domain of in�uence� a local model� and an output distribution�

p�y�x� �
MX
m��

p�y�x� cm� ���

�
MX
m��

p�yjx� cm� p�xjcm� p�cm� �

The probability functions p�yjx� cm� and p�xjcm� are taken to be of Gaussian form so that

p�xjcm� � N��m�Cm� and p�yjx� cm� � N�f�x� �m��Cy�m�� where N���C� stands for the

multi�dimensional Gaussian distribution with mean vector � and covariance matrix C	 The

function f�x� �m� with unknown parameters �m should be taken to be a generalized linear

model �Gershenfeld� ������ for example a polynomial model	

The complexity of the local model is traded o� against the complexity of the global

architecture	 In the case of polynomial expansion� there are two extreme cases that illustrate

this trade�o�	 We may use locally constant models in connection with a large number of

clusters� in which case the predictive power comes only from the number of Gaussian kernels	

Alternatively we may decide to use a high�order polynomial model and a single kernel� in

which case the model reduces to a global polynomial model	 In this particular application

we work with local linear models



f�x� �m� � ���m �
DX
d��

�d�mxd � ���

where d refers to an input dimension and D to the total number of input dimensions	

Given the density estimate� we can analytically infer a conditional forecast

hyjxi �
Z
yp�yjx�dy ���

�
Z
y
p�y�x�

p�x�
dy

�

PM
m��

R
y p�yjx� cm� dy p�xjcm� p�cm�PM

m��
p�xjcm� p�cm�

�

PM
m��

f�x� �m� p�xjcm� p�cm�PM
m��

p�xjcm� p�cm�
�

as well as a conditional error forecast�

hCyy jxi �

PM
m��

�Cy�m � f�x� �m� � f�x� �m�T � p�xjcm� p�cm�PM
m��

p�xjcm� p�cm�
� hyjxi� � ���

The choice of the number of clusters M controls under� versus over��tting	 The model

should be given enough clusters to model the predictable data� but should not become so

complex that it predicts the noise and other non�generalizable features	 The optimal M can

be determined by cross�validation with respect to a mathematical error measure such as the

square error or with respect to perceptual performance	

We �nd the model parameters using a variant of the Expectation�Maximization �EM�

algorithm �Dempster et al	� �����Jordan and Jacobs� ������ the unconditioned cluster prob�

abilities p�cm�� cluster locations �m� and covariances Cm are estimated in conventional EM

updates	 We then use pseudo�inverses of the cluster weighted covariance matrices to update

the local model parameters �m	 The EM algorithm �nds the most likely cluster parameters

by iterating between an expectation step and a maximization step	

E�step� Given a starting set of parameters� we compute the probability of a cluster given a

data�



p�cmjy�x� �
p�y�xjcm� p�cm�

p�y�x�
���

�
p�y�xjcm� p�cm�PM
l�� p�y�xjcl� p�cl�

�

where the sum over clusters in the denominator lets clusters interact and specialize in

data they best explain	

M�step� Now we assume the current data distribution is correct and maximize the likelihood

function by re�computing the cluster parameters	 The new estimate for the uncondi�

tioned cluster probabilities becomes�

p�cm� �
Z
p�cmjy�x� p�y�x� dy dx ���

�
�

N

NX
n��

p�cmjyn�xn� �

The cluster�weighted expectation of any function ��x� is de�ned as

h��x�im �
Z
��x� p�xjcm� dx ���

�
Z
��x� p�y�xjcm� dy dx

�
Z
��x�

p�cmjy�x�

p�cm�
p�y�x� dy dx

�
�

N
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n��

��xn�
p�cmjyn�xn�

p�cm�

�

PN
n�� ��xn� p�cmjyn�xn�PN
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This lets us update the cluster means and the cluster weighted covariance matrices �

�m � hxim ���

�Cm�ij � h�xi � �i��xj � �j�im �

The derivation of the maximum likelihood solution for the model parameters yields

�m � B��

m � Am � ���



with �Bm�ij� hfi�x� �m� � fj�x� �m�im and �Am�ij� hyi � fj�x� �m�im	

Finally the output covariance matrices associated with each model are estimated�

Cy�m � h�y� f�x� �m�� � �y� f�x� �m��
T im � ����

We iterate between the E� and the M�step until the overall likelihood of the data� as

de�ned by the product of all data likelihoods �Equ	�� does not increase further	

IV� EXPERIMENTAL RESULTS

We collected approximately �� minutes of input�output violin data� both single notes

and scales with various bow strokes �Fig	��	 We then built models based on subsets of this

data� and used them for o��line and on�line synthesis	

The model performs very well on limited subsets of the overall training data	 It is par�

ticularly robust at representing pitch and amplitude �uctuations caused by vibrato	 Figure

� illustrates that CWM can reproduce the spectral characteristics of a segment of vio�

lin sound	 Three sound examples �http���www�media�mit�edu�physics�publications

�papers�cwm�� demonstrate the results of audio resynthesis both in� and out�of�sample	

Only the �rst half of each original sound �le was used for training	 We were able to build

a real�time system running on Windows NT using a Pentium II ��� MHz	 The system re�

sponds well to dynamic control changes� but considerable latency is caused by the operating

system� data acquisition board and sound card	

�INSERT FIGURE � ABOUT HERE�

Models generalize better with respect to the input signals when they are trained to

predict the string vibration signal rather than the sound pressure signal recorded by the

microphone	 The string vibration signal is considerably less complex� as it is not �ltered by

the violin body response	 The �nal audio signal can be obtained by convolving the predicted



string vibration signal with a measured impulse response of the acoustic violin �Cook and

Truman� �����	

V� CONCLUSIONS AND FUTURE WORK

We have shown how the general inference framework CWM can be used in a sensing and

signal�processing system for musical synthesis	 The approach is particularly appropriate for

musical instruments that rely on continuous human control� such as the violin� since CWM

naturally relates continuous input and output time series	

CWM overcomes many of the limitations of conventional inference techniques� yet it

can only be as good as the audio representation	 The current spectral representation does

not provide model �exibility� makes strong assumptions about the nature of the physical

device� and misses certain elements of the natural sound	 Future work will therefore focus

on improving the mutual interplay of representation and inference by embedding local �lter

and sample architectures and explicit constraints into the general CWM framework	

In this work we have shown how an approach intermediate between physical modeling

and sampling combines features of traditional synthesis techniques to generate a model

that provides both control �exibility and high �delity to the original	 More e�ort needs to

be devoted to system integration and representation in order to progress from the current

playable model to truly high quality instruments� but these preliminary results indicate the

promise of �physics sampling�	
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FIG� �� Audio and input sensor data for various bowings and notes� Left column� E�natural�

sustained bowing with strong vibrato� Middle column� E�natural� d�etach�e bowing� Right column�

A�major scale�
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FIG� 	� Data and clusters in the joint input�output space� a�
 Vertical view of the input space�

Clusters are represented by their centers and their domains of in
uence �variances�� b�
 Clusters in

� dimensional input�output space with the rectangles representing the plane of the linear functions�
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FIG� �� Comparison of original and predicted violin time series data� Bottom� Input sensor

measurements� showing the bow velocity �Vel�� and the player�s nger position �Fing��� Left�

The harmonic structure of the training data and the corresponding audio time series� Right� The

predicted harmonic structure and the re�synthesized audio time series�
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