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Abstract

We treat Magnetoencephalographic �MEG� data in a signal detection framework to
discriminate between di�erent phonemes heard by a test subject� Our data set consists
of responses evoked by the voiced syllables �b�� and �d�� and the corresponding
voiceless syllables �p�� and �t��� The data yield well to principal component analysis
�PCA�� with a reasonable subspace in the order of three components out of �� channels�
To discriminate between responses to the voiced and voiceless versions of a consonant
we form a feature vector by either matched 	ltering or wavelet packet decomposition
and use a mixture
of
experts model to classify the stimuli� Both choices of a feature
vector lead to a signi	cant detection accuracy� Furthermore� we show how to estimate
the onset time of a stimulus from a continuous data stream�

� Introduction

Magnetoencephalography 	MEG
 uses SQUID technology to measure the small magnetic �elds induced
by electrical activity in the brain� Sensitive to roughly the same neural activity as EEG�ERP� MEG
oers some advantages in data analysis and source localization� Although multi�sensor MEG systems
recording magnetic �ux at kilohertz sampling rates provide an incredibly rich source of data about
brain activity� most current analysis techniques make use of only a fraction of the data collected 	see
e�g� ��� ��
� The most common approach to the analysis of stimulus evoked responses with MEG
is to record ��� or more time�locked responses to the same stimulus� average these responses� and
then perform single dipole source analysis on the averaged waves� This kind of analysis is interesting
from a clinical point of view� when locating a particular function in the brain is important� However�
while averaging serves to reduce noise and to remove �background� activity unrelated to the stimulus�
dipole modeling loses the statistics of the averaging and proves a data�wasteful method of reducing the
dimensionality of MEG data�

In this paper� we introduce a new way of looking at MEG data from a signal processing and discrim�
ination perspective� We show that it is possible to build a classi�er system to discriminate between
dierent stimuli from the un�averaged data� Principal component analysis is used to reduce the dimen�
sionality of the data without loss of signi�cant information and some dierent detection algorithms are
used to discriminate between responses in the subject caused by dierent phonemes�
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Figure �� MEG data� a
 All channels of one raw epoch� b
 average�response�de�ned PCA and c

single�epoch�de�ned PCA of the same data 	�� principle components
�

� Data

The data were collected as part of the experiment reported in ����� where detailed description of the
stimuli and data collection techniques may be found� Brie�y� the stimuli were � synthesized ���ms
syllables� �b��� �p��� �d��� and �t��� The voiced�voiceless pairs �b����p�� and �d����t�� dier
acoustically only in �voicing onset time�� with the �rst member of each pair containing ��ms of �aspira�
tion� prior to the onset of the 	voiced
 vocalic portion of the syllable and the second member containing
��ms of aspiration�

MEG recordings were taken in a magnetically shielded room using a ���channel system with SQUID�
based �rst�order gradiometer sensors� The sensor array was centered over the left auditory cortex and
the � stimuli were presented to the right ear ��� times each� in pseudo�random order at a variable ISI
of � to ��� seconds� ��� epochs of ���ms were recorded� time�locked to stimulus onset� with a ���ms
pre�stimulus interval� The sampling rate was ������ Hz with a bandwidth of ��� Hz� The example of
the data in Fig� � is representative � obviously quite noisy� with several channels peaking slightly after
the stimulus onset�

� Algorithms

Our analysis of the MEG data proceeds in three steps� In the �rst we reduce the dimensionality of the
data from �� to the order of three by principal component analysis 	PCA
 	see ����
� The second step
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Figure �� Recorded MEG epochs stimulated by �d����p����t����b�� and �p��� a
�e
 PCA trans�
formed 	single epoch de�ned
responses� f
�j
 Same epochs ICA transformed as suggested in Makeig et
al� ���� and ����� Some events come out clearly� such as the heart beat in channel � and the stimulus
response in channel �� however� the whitening required by the algorithm has increased the noise levels�

is concerned with analyzing the reduced data in a time�dependent way with either matched �ltering
or wavelet packet analysis� From this step we obtain a low�dimensional feature vector which we use in
step three to do the actual discrimination with a local experts type model�

��� PCA

From Fig� � a
 it is clear that the incoming signals are not independent� the same shape of peak is seen
in many channels� The PCA transformation reduces this redundancy by �nding the best orthogonal
linear subspace� This is useful for compact visualization 	Fig� � b
 and c

 as well as for reduction
of computational eort in the subsequent manipulation of the data by leaving out the redundant low�
energy channels�

The transformation is de�ned by the eigenvectors of the covariance matrix of the data 	����
� With the
MEG data� we can de�ne the covariance matrix either over single epochs

vsing� c�c� �
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or over averaged responses to the stimuli
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Figure �� Average responses to the four dierent stimuli after a
 single�epoch�de�ned PCA� b
 average�
response�de�ned PCA and c
 ICA transform 	low�pass �ltered at �� Hz
� A single epoch and the
average superimposed� in d
 single�epoch�de�ned PCA� e
 average�response�de�ned PCA and f
 ICA
transformed data�

where xect is the zero�average data� e is the epoch� c is the channel� t is the time step� s is a type of
stimulus� Es is the set of epochs with stimulus s and Ns is the cardinality of Es 	we leave out a constant
factor from both formulas as it has no eect on the PCA transform
�

The dierence between the two de�nitions is illustrated in Fig� � and Fig� �� in the data transformed
by the PCA de�ned by the single epochs� the response is split between channels � and � whereas the
average�de�ned PCA reduces the amount of noise by concentrating the response in the �rst channels�
and therefore seems preferable� However� if the response varies from epoch to epoch 	e�g� if the response
to �d�� were to depend on some other variable such as the phase of the background brain waves
� the
covariance matrix of the single epochs should be used as otherwise information might be lost when the
number of channels is cut after the PCA�

Independent component analysis 	ICA
 ��� ��� �� has recently gained popularity in the signal processing
community� It works basically by taking out the orthogonality restriction of PCA and using higher�
order statistics to obtain potentially more meaningful components� Figure � f
�j
 show the results of
an ICA transformation on an selection of epochs� Some events come out clearer than after the PCA
transform� for example the heart beat in one of the channels� However� for noisy data such as ours�
ICA can also increase the eect of noise and make classi�cation of signals more di�cult� In a limited
number of preliminary trials with ICA we did not observe any improvement over other methods�

��� Matched �ltering

It is well known that time�correlating noisy signals with the original signal leads to e�cient estimators
and detectors of linear time series 	matched �ltering� see e�g� ���
� In a similar approach we estimate a
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Figure �� Filtering steps in the discrete wavelet packet transform� h�	n
 and h�	n
 are the half band
low�pass and high�pass �lters� � � stands for down�sampling by a factor ��

noise free response by averaging over the training epochs and correlate incoming signals

with these �true responses��

Cs	t
 �
TX

���

s� � st�� 	�


where T is the detectable length of the response and s is the averaged response� The signal Cs	t

peaks when a stimulus is applied and hence the onset time can be detected� Moreover� the convolution
with average responses of dierent stimuli at known onset times can be used to discriminate between
dierent stimuli�

If the noisy signals are not constructed from the exact same �true response� every time but there is a
distribution of true responses� it can be that simply choosing the stimulus type whose average response
correlates best with the sample may not yield the best detection results� In this kind of situation�
applying a non�linear detector can improve the results� A non�linear detector may also use non�linear
eects between channels�

Because matched �ltering is linear� it should perform equally well with both the raw and the PCA
transformed data� In practice the data set is large and performing the computation only on the largest
principal components improves the e�ciency markedly � discarding the low�energy channels has only
a minimal eect on the results�

��� Wavelet packets

The windowed training signals are expanded in an orthonormal wavelet packet basis that assigns coef�
�cients in a time�frequency grid 	see e�g� ���
� The transform is based on the repeated application of
a quadrature mirror �lter 	Daubechies � was used in this work
 followed by a down�sampling step as
illustrated in Fig� ��

After each �ltering step the block of coe�cients describes the time behavior of more and more re�ned
frequency bands� Fig� � shows the �rst ��� bins of a Wavelet packet in time and frequency where the
bins denote the average energy dierence between the two stimulus classes� It can be seen how the
discriminating power� originally distributed over the entire time interval� is concentrated in very few
frequency bins after the transform is applied�
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Figure �� Wavelet packet transform 	averaged discriminating energy
� The y�axis refers to the depth
of the transform while the x�axis represents the sub�bands� ordered from left to right� Hence the
�th�order data shows a pure time�domain picture and the �th�order transform gives a pure frequency
representation�

A key problem is the selection of a reasonable number of coe�cients to form the feature vector� In a �rst
approach an orthonormal subset of coe�cients is chosen to maximize the square distance discrimination
measure DSD�

DSD � 	  wi� �  wi�

��	�wi�

�wi�

� 	�


where  wic denotes the averaged coe�cient i of stimulus class c� and �wic
is the standard deviation of

coe�cients wic�

In a second approach we select a optimal complete orthonormal basis from the time frequency grid�
The discriminant power of the squared and normalized coe�cients is evaluated in terms of the sym�
metrized relative entropy 	Kullback�Leibler distance
 between either two stimuli 	for discrimination
 or
a �stimulus� and a �non�stimulus� window 	for onset detection
�

DKL �
X

i

 wi� log
 wi�

 wi�

!  wi� log
 wi�

 wi�

	�


From the orthogonal coe�cients  wi� those are picked that maximize DKL� See ��� for a detailed
description of the algorithm� Expansion and basis selection are done for all PCA channels that show a
signi�cant signal to noise level�

��� Cluster�weighted detection

We use Gaussian�weighted local experts in a Cluster�Weighted Modeling framework ��� to discriminate
between stimulus classes� In this framework each local kernel cj represents a distribution over classes
yi� such that the likelihood of a particular output yi given a feature vector x is

p	yijx
 �
X

j

p	yijcj
p	xjcj
p	cj
 	�
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Figure �� Two dimensions of the feature vector for the b��d� discrimination� a
 A�MF b
 A�WP� The
small letters refer to the actual sample points� the large letters are the centers of the local experts� The
letter T refers to the voiceless and D to the voiced version of the consonant�

where p	cj
 is the unconditioned probability of kernel cj � p	xjcj
 is taken to be a multivariate Gaus�
sian N 	�j�Pj
 that describes the domain of in�uence of a cluster and p	yijcj
 is a probability table
characterizing the output distribution of kernel cj� The classi�cation is done by choosing the yi that
maximizes the probability p	yijx
�

The model is trained by the Expectation Maximization algorithm which maximizes the likelihood of the
data by iterating between an E�step and an M�step ��� ��� In the E�step the current model is assumed
correct and the data distribution is computed according to

p	cjjx� yi
 �
p	yijcj
p	xjcj
p	cj
P
k p	yijck
p	xjck
p	ck


� 	�


In the M�step the data distribution is assumed correct and the data likelihood is maximized� The new
model parameters become

p	cj
 �
�

N

X

n

p	cj jyn�xn
 	�


�j �

P
n xn p	cj jyn�xn
P
n p	cjjyn�xn


�Pj�kl �

P
n	xk�n � �k�j
	xl�n � �l�j
 p	cjjyn�xn
P

n p	cjjyn�xn


p	yijcj
 �

P
njyn�yi

p	cj jyn�xn
P
n
p	cj jyn�xn


�

See Fig� � for an illustration of the input�space showing labeled data points and clusters�



��� Kullback�Leibler distance detection

For comparison with the cluster�weighted detector a statistical discriminator based on the Kullback�
Leibler distance is tested� The complete set of normalized coe�cients of new data is compared in
probability to the averaged energy distribution of the dierent reference stimuli 	see Equation �
� The
data is classi�ed according to the best match�

� Results

��� Voiced�voiceless discrimination

Table �� Results for discriminating voiced�voiceless syllables� The last four columns are the detection
results� the numbers before�after the slash are the number of correct�incorrect classi�cations�

Window Classi�cation
Oset Training Testing

Syllables Method Ne
a 	samples
 C� C� C� C�

b��p� Ab�WPc �� ��� ����� ���� ���� ����
b��p� Sd�WP � ��� ����� ����� ���� ����
b��p� A�KLe N�A ��� ����� ���� ���� �����
b��p� A�MFf �� ��� ����� ����� ����� ����
d��t� A�WP � ��� ����� ����� ����� �����
d��t� A�WP � ��� ����� ����� ���� ����
d��t� A�MF �� ��� ����� ���� ���� ����

aNumber of clusters �local experts�
bAverage�de�ned PCA
cWavelet packet coe�cient and cluster�weighted detection
dSingle�epoch�de�ned PCA
eKullback�Leibler distance discrimination
fMatched �ltering discrimination and cluster�weighted detection

We applied the above methods to the data described in section �� Two dierent windows with dierent
osets were tested� both ��� samples long� The oset for the second window is beyond the acoustic
dierence between the stimuli� which ensures that we are detecting based on brain activity and not
simply a MEG recording of the actual stimulus�

As seen in Table �� it is possible to get a statistically signi�cant detection accuracy for voiced�voiceless
discrimination� The number of local experts Ne in the detector was found by cross�validation� Figure
� shows slices of example input spaces to the mixture of experts classi�er� We show the results for one
speci�c subject� The data taken from a second subject led to nearly identical results� There were no
signi�cant dierences between matched �ltering and the wavelet packet decomposition methods� nor
was there signi�cant dierence between dierent quadrature mirror �lters 	Haar� Coi�et and Daubechies
�lter were tested
� Two coe�cients were used to form the wavelet coe�cient feature vector� as using
more coe�cients didn�t improve performance and led to over��tting�

Discrimination between the two voiced consonants 	�b����d��
 or the two voiceless consonants 	�p���
�t��
 was impossible with the available data� The results indicate that more MEG channels are needed
for discrimination in this case 	see Fig� �
 or that the subject�s internal discrimination between these
consonants is not re�ected in the MEG data��
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Figure �� Two example signals from the onset detection� a
 matched �ltering b
 Kullback�Leibler
distance

We also made some tests of using ICA�transformed data to discriminate between the dierent cases but
we were not able to get better detection results than with PCA components�

��� Onset detection

The average response of the processing techniques described above can be used in a slightly modi�ed
way to detect the presence and the onset of a stimulus in a continuous data stream� The convolution
of signal and reference epoch peaks whenever a stimulus occurs� Similarly the onset can be estimated
based on the wavelet expansion� in which case the best basis is de�ned with respect to the discriminating
power between �stimulus event� and �zero event��

Fig� � shows the results of using a matched �lter as well as Kullback�Leibler distance estimator on some
out�of�sample data� Due to the lack of an actual continuous data stream� chained single epochs were
used for this experiment� From these signals� the onset times of stimuli can be estimated by some peak
detection algorithm� It is clear that the Kullback�Leibler distance is much more sensitive to noise� The
periodic structure of the signal between the onsets is mostly due to the periodicity of the background
brain waves�

As a proof�of�principle experiment the local performance of the matched �lter onset estimator was
estimated on �� out�of�sample epochs 	mixed �p����b�� stimuli
 by taking the onset time to be the
local maximumwithin ��� samples of the true onset in either direction� The estimator worked with an
average bias of ���� and a standard deviation of ���� time samples�

Another way of estimating stimulus onsets is to pick out the ICA channel that corresponds to the
response� It is clear from Fig� � that this approach could work straightforwardly�



� Conclusions and future work

The fact that the nonlinear wavelet packet approaches and a simple matched �lter work equally well
indicates that for the current case where the stimulus is always the same the response is essentially
linear� However� it is not clear whether this would be the case if� for example� there were several
dierent speakers for each stimulus� Given the relatively small number of recording channels and
the apparent subtlety of the contrastive response to the test stimuli� more training samples would be
required to fully test the non�linear methods�

Since MEG provides an extremely rich source of data on brain function� it is important for cognitive
neuroscience to develop analysis techniques for extracting signal from noise and for identifying crucial
features of evoked responses� For computational neuroscience� the data provide a very good test case
for a variety of neural algorithms� as they are time�dependent� multidimensional� noisy� but regular� In
this paper� we have only just begun the task of mining MEG data�

One future possibility would be to develop an event�based maximum likelihood model for interpreting
the data� Such a model would be able to attribute parts of the signal to �uninteresting events� based
on information in the other channels� It should then be possible to obtain a much purer signal 	e�g�
canceling out the background brain waves and heartbeats
 and thereby further improve the accuracy
of the onset estimation and stimulus discrimination�
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