Derivation of the Fourier Transform of the Mask for Optical Heterodyning Supplement to SIGGRAPH 2007 paper [1]

1 Derivation

This analysis is done for a 1D mask placed in front of a 1D sensor to capture a 2D light field.

Let v be the total distance between the aperture and the sensor and d be the distance between the mask and the sensor. Define $\beta=\frac{d}{v}$. From Figure 1, if we place the 1D code $c(y)$ at a distance d from the sensor, the resulting 2D light field gets attenuated by the 2 D mask $m(x, \theta)$ given by

$$
\begin{equation*}
m(x, \theta)=c(\beta \theta+(1-\beta) x) \tag{1}
\end{equation*}
$$

As we will derive below, the Fourier transform of the mask lies on a line in the 2D Fourier light field space.

Let $C\left(f_{y}\right)$ be the 1D Fourier transform of $c(y)$

$$
\begin{equation*}
C\left(f_{y}\right)=\int_{-\infty}^{\infty} c(y) \exp \left(-j 2 \pi f_{y} y\right) d y \tag{2}
\end{equation*}
$$

and let $M\left(f_{x}, f_{\theta}\right)$ be the 2D Fourier transform of $m(x, \theta)$:

$$
\begin{equation*}
M\left(f_{x}, f_{\theta}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} m(x, \theta) \exp \left(-j 2 \pi f_{x} x\right) \exp \left(-j 2 \pi f_{\theta} \theta\right) d x d \theta \tag{3}
\end{equation*}
$$

We wish to find the expression of $M\left(f_{x}, f_{\theta}\right)$ in terms of $C(y)$.
Let

$$
\begin{equation*}
y=\beta \theta+(1-\beta) x \tag{4}
\end{equation*}
$$

Use auxiliary variable

$$
\begin{equation*}
z=(1-\beta) \theta-\beta x \tag{5}
\end{equation*}
$$

Define

$$
\begin{equation*}
\mu=\frac{1}{\sqrt{\beta^{2}+(1-\beta)^{2}}} \tag{6}
\end{equation*}
$$

Then

$$
\begin{equation*}
\theta=\mu^{2}(\beta y+(1-\beta) z) \tag{7}
\end{equation*}
$$

Schematic Layout of Lens, Mask and Sensor

Figure 1: Schematic showing a 1D code place in front of a 1D sensor to capture a 2D light field. The light field is parameterized as twin-plane, with the x plane aligned with the sensor and the θ plane aligned with the aperture.

$$
\begin{equation*}
x=\mu^{2}((1-\beta) y-\beta z) \tag{8}
\end{equation*}
$$

Jacobian

$$
\begin{gather*}
J=\operatorname{det}\left[\begin{array}{ll}
\frac{\partial \theta}{\partial y} & \frac{\partial \theta}{\partial z} \\
\frac{\partial x}{\partial y} & \frac{\partial x}{\partial z}
\end{array}\right] \tag{9}\\
J=\mu^{2} \tag{10}
\end{gather*}
$$

By change of variables, we have

$$
\begin{equation*}
M\left(f_{x}, f_{\theta}\right)=J \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} c(y) \exp \left(-j 2 \pi f_{y} y\right) \exp \left(-j 2 \pi f_{z} z\right) d y d z \tag{11}
\end{equation*}
$$

Substituting x and θ from (7) and (8) in (3), and comparing common terms, we get

$$
\begin{gather*}
f_{y}=\mu^{2}\left(f_{x}(1-\beta)+f_{\theta} \beta\right) \tag{12}\\
f_{z}=\mu^{2}\left(-f_{x} \beta+f_{\theta}(1-\beta)\right) \tag{13}
\end{gather*}
$$

Integrating out z term will give a δ term. Thus

$$
\begin{equation*}
M\left(f_{x}, f_{\theta}\right)=J C\left(f_{y}\right) \delta\left(f_{z}\right) \tag{14}
\end{equation*}
$$

Now substitute $\tan \alpha=\frac{\beta}{1-\beta}$
Then $\sin \alpha=\mu \beta$ and $\cos \alpha=\mu(1-\beta)$
Substituting in equation for f_{y}, we get

$$
\begin{equation*}
f_{y}=\mu\left(f_{x} \cos \alpha+f_{\theta} \sin \alpha\right) \tag{15}
\end{equation*}
$$

Simplifying $\boldsymbol{\delta}\left(f_{z}\right)$, we get

$$
\begin{equation*}
\delta\left(f_{z}\right)=\delta\left(f_{\theta} \cos \alpha-f_{x} \sin \alpha\right) \tag{16}
\end{equation*}
$$

Finally

$$
\begin{equation*}
M\left(f_{x}, f_{\theta}\right)=\mu^{2} C\left(\mu\left(f_{x} \cos \alpha+f_{\theta} \sin \alpha\right)\right) \delta\left(f_{\theta} \cos \alpha-f_{x} \sin \alpha\right) \tag{17}
\end{equation*}
$$

The δ function constraints the 2D Fourier transform of mask to lie along a line given by $f_{\theta} \cos \alpha-f_{x} \sin \alpha=0$

Using this constraint the above equation can be simplified to

$$
\begin{equation*}
M\left(f_{x}, f_{\theta}\right)=\mu^{2} C\left(\mu \sqrt{f_{x}^{2}+f_{\theta}^{2}}\right) \delta\left(f_{\theta} \cos \alpha-f_{x} \sin \alpha\right) \tag{18}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\tan \alpha=\frac{\beta}{1-\beta}=\frac{d}{v-d} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu=\frac{1}{\sqrt{\beta^{2}+(1-\beta)^{2}}}=\frac{1}{\sqrt{(d / v)^{2}+(1-(d / v))^{2}}} \tag{20}
\end{equation*}
$$

1.1 Practical Design

In a practical design, first α is calculated using the frequency resolution in $\theta, f_{\theta R}$ and the bandlimit $f_{x 0}$ of the light field in the spatial dimension. $f_{\theta R}$ is relate to the size of the aperture A. $f_{\theta R}=1 / A$.

$$
\begin{equation*}
\tan \alpha=\frac{f_{\theta R}}{2 f_{x 0}} \tag{21}
\end{equation*}
$$

Once we know α and the total distance between the sensor and the aperture v, we can find d using (19). The fundamental frequency can be obtained using (18) by substituting $f_{x}=2 f_{x 0}$ and $f_{\theta}=f_{\theta R}$

$$
\begin{equation*}
f_{0}=\mu \sqrt{4 f_{x 0}^{2}+f_{\theta R}^{2}} \tag{22}
\end{equation*}
$$

In practice, μ is close to 1 and α is $\approx 4-5$ degrees.

References

[1] A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin. Dappled photography: Mask enhanced cameras for heterodyned light fields and coded aperture refocusing. ACM Trans. Graph., 26(3), July 2007.

