

OWT: Real-time software for

exploring optimal tuning systems

USER’S MANUAL

Larry Polansky
Dept. of Music, Dartmouth College

Dan Rockmore
Dept. of Math, Dept. of Computer Science, Dartmouth College

Micah K. Johnson
Dept. of Brain and Cognitive Sciences, Massachusetts Institute of

Technology

Douglas Repetto
Computer Music Center, Dept. of Music, Columbia University

Wei Pan
Dept. of Computer Science, Dartmouth College

Feburary 20, 2008

(Rev. 8/22/08)

http://eamusic.dartmouth.edu/~larry/owt/index.html

User’s Manual Page ii

USER'S MA)UAL

TABLE OF CO)TE)TS

Page #

1.0 GETTING STARTED .. 1

1.1 Start it! ... 1

1.2 Tuning Settings.. 3

1.3 Understanding the Result ... 4
1.3.1 The Result View………………………………………………………………………….…… 5

1.3.2 The Real-time Player ... 6

1.4 Using the Built-in Tunings .. 7

1.5 Save and Load Your Own Tunings ... 7

1.6 Tunings with fewer than 12 pitches ... 8

2.0 System Design

User’s Manual Page 1

1.0 GETTING STARTED

1.1 Overview
The OWT MIDI Player is a real-time exploration and demonstration tool for the Optimal Tuning System

project described in our paper “A Mathematical Model for Optimal Tuning Systems,” (forthcoming in

Perspectives of �ew Music, available at http://eamusic.dartmouth.edu/~larry/owt/). This software

demonstrates our constraint-based algorithm for tuning system optimization. The fundamental idea is that

a tuning system can be derived via the optimization of an error function defined on several (user-

specified) constraints or parameter values (number of pitches, repeat factor, ideal intervals, key and

interval weights). A good historically significant example of the relevance of this approach is the

construction of well temperaments from the Baroque period. However, the idea is more general, and is

applicable to a great many tuning systems throughout history and from around the world (such as Central

Javanese slendro).

The program is written in JAVA and runs on both Microsoft Windows and MacOSX. However, we

recommend Microsoft Windows for better performance.

Windows:

Double click the owt.jar file (assuming the latest release of JAVA (http://java.com) is installed). The

program will first ask you to choose a MIDI device.

Choose a MIDI device to play MIDI files (recommended: Microsoft GS SoftSynther if no other

software/hardware synthesizers are available). Choose OK to confirm the MIDI device, or Cancel to let

the software choose a device.

Mac OSX:

The current version doesn’t allow the user to choose a MIDI device for Mac OSX.

2.0 System Design

User’s Manual Page 2

Once you start the application, you will see the tuning page or main view:

The main view consists of two sub-windows: Result View and Main View. (If you don’t see the result

view, click the “Show Optimized Result” button to open it).

To see the playing page, or playing view, click the Playing tab.

2.0 System Design

User’s Manual Page 3

1.2 Tuning Settings
As described in our paper (“A Mathematical Model for Optimal Tuning Systems,” forthcoming in

Perspectives of �ew Music) an optimized tuning is computed from the following user input parameters,

representing a number of widely used constraints:
1

• Repeat Factor

• �umber of Pitches

• Ideal Intervals

• Interval Weights

• Key Weights

These are the parameters that can be modified in the main view. The software computes, in real-time, the

best possible solution to using an error minimization algorithm.

Repeat Factor and Number of Pitches

The user-specified number of pitches should be between 5-12 and the repeat factor must be that of an

octave (1200¢ +/- 50). (Note: this restriction is due to the way in which this software handles arbitrary

MIDI files. Our general algorithm has no such constraint — systems may contain any number of pitches

and the repeat factor can be anything – e.g., several octaves, an octave and a 5
th
, etc.).

When you change the number of pitches, the number of input sliders will change as well. When the

number of pitches is changed, the software treats MIDI note numbers differently. See Section 2.1. for

details.

Ideal Intervals

The ideal intervals for the system are cents values, which represent an ideal difference between scale

degrees. For example, in a 12-note system, the 7
th
 ideal interval is the desired value between all P5

th
s.

Ideal intervals (and weights – see below) are adjusted via sliders or numerical entry. Remember that these

values are not the values that will actually be in the derived tuning system, but is a set of values that can

be thought of as a target set for all the various intervals (e.g., all P5
th
s), which is used to construct a matrix

and corresponding error function which is minimized for the construction of the actual tuning system.

Values are in cents.

1
 We recognize the historical or cultural basis for these constraints and it would be of interest to consider other or

additional parameters that might be used to determine a tuning system.

2.0 System Design

User’s Manual Page 4

By default, the software displays 11 intervals, representing 12ET. For n pitches there will be n-1 interval

adjustment boxes.

The first box represents the ideal interval between system degrees separated by 1, the second box by 2,

and so on.

Weights (key and interval)

Interval weights determine the importance of the corresponding ideal intervals. For example, for a typical

12-note European well temperament, one might set the interval weights for the P5
th
 and M3

rd
 high.

Key weights correspond to the n pitches in the system, and determine the importance of each “key” in the

determination of the error. For example, one might specify, in a well temperament, that the key of F# is

less important than the key of F. One way to think of key and interval weights is as rows and columns of

a matrix. The two weights are multiplied together in the optimization algorithm.

1.3 Result View
As values are entered, the software computes an optimal system. Repeat factor and number of pitches

cannot be changed in real-time. Ideal intervals, key and interval weights may be changed as a MIDI file is

being played, and the tuning that is generated will reflect the optimization of those new parametric values.

2.0 System Design

User’s Manual Page 5

1.3.1 The Result View

The Result View displays the ideal intervals next to the optimally computed intervals. The intervals can be

viewed by “key” — as a sequence of intervals, or pitches, starting on a given degree of the tuning system.

The key can be selected in the top right. The picture above shows an optimized result in a very highly

weighted key of “C” alongside the ideal intervals (one way to achieve a specific “scale” is to set the

weight of one key to 1 with all other keys set to 0). As expected, in the above example, the ideal and

optimized intervals are the same. (In this case, the ideal intervals are a Pythagorean tuning, whose cents

values are rounded off in the display).

However, if we choose the key on the 10
th
 pitch (A#), we see a little bit of deviation between the

optimized tuning and the ideal intervals (which are constant):

2.0 System Design

User’s Manual Page 6

Even for this distant key, the errors are quite small, the m6
th
 and the m3

rd
 showing the greatest deviation.

The intervals of the M3
rd
 and P5

th
, for example, are quite accurate.

Three other (non-editable) displays show the total error for the tuning system (against the ideal interval

matrix), the error for that key, and the “triad error”, which uses a measure proposed by Rudolf Rasch (see

our paper) which is the mean of the deviation error of triads in the system from simple just triads (the

last of these gives some notion of how “good” a well-temperament is, in conventional harmonic terms,

according to a very specific metric.).

1.3.2 The Real-time Player

To play a MIDI file, go to the Playing View page, and click Load MIDI. Next, click the Play button.

There are also Stop and Pause buttons

There is a selection box available on this page for built-in tunings (some of them are explained in our

paper, and on the website). The user may load in any of those tunings as a place to begin.

2.0 System Design

User’s Manual Page 7

The tuning called **current** has a special significance: it specifies that the values (ideal intervals,

interval and key weights) displayed in the Main View will be used as input to the optimization.

Remember that the user can change the preset tuning by freely altering individual ideal intervals, key and

interval weights while the MIDI file is played. The software recomputes the tuning on-the-fly.

1.4 Using Built-in Tunings
Each built-in tuning is simply a set of constraints for optimization: a set of ideal intervals, interval

weights, key weights and values for the number of pitches and repeat factor. The built-in tunings are not

changeable.

In some cases, like the tuning called W3 (Werckmeister 3), the optimized result of these values will

produce a pre-existing tuning.

The user can edit the built-in tunings in the Main View by choosing one and loading it. This sets all values

to those of the built-in tuning. Editing those values will not change the built-in tuning. The user’s own

tunings may be saved as presets.

Note that if, in Playing View, the user selects a tuning other than **current**, the built-in tuning will be

generated. Changing values (interval weights, ideal intervals, etc.) will not affect the tuning unless

current is set.

1.5 Saving and Loading Tunings
You can store and read easily the your own tunings. The two buttons below in the Main View will save

the following data: Repeat Factor; �umber of Pitches; Ideal Intervals; Interval and Key Weights.

The data format for saved tunings is pure .txt. The following gives an example:

The file is automatically generated, modification may cause program to halt

Please read documents before modifying, wei.pan@dartmouth.edu

2.0 System Design

User’s Manual Page 8

The name of this new tuning

User

The Repeat Factor (in cent)

1200

How many intervals

12

The following three lines are interval, interval weights, and key weights

100 200 300 400 500 600 700 800 900 1000 1100

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.6 Tunings with fewer than 12 pitches

As mentioned above, although the algorithm allows for any number of pitches, the software only allows

12 or fewer, for practical reasons having to do with MIDI. With fewer than 12 pitches, the software treats

MIDI note numbers differently. Tuning systems must have at least three pitches (C, G, E). When the

number of pitches is fewer than 12, “note names” are discarded in the following order:

F# C# G# D# A# B F A D

For example, with an 11-note system, all F#s in the MIDI file will be discarded. For a 10- note system, F#

and C# will be discarded. In other words, MIDI note numbers mod 6 and mod 1 should not be used. As a

simple example, if a 5-note system is specified, it will be the pentatonic scale. Note that this only pertains

to the note-numbers in the MIDI file, it has nothing to do with tuning. With fewer than 12 notes, each

note number loses its conventional meaning: the software remaps that note to the new tuning specified by

the user.

Revision Sheet

Release)o. Date Revision Description

Rev. 0 1/20/2008 Initial Version

Rev. 1 2/20/2008 Bug fix and enhanced feature (octave change)

Rev. 2 8/22/2008 Larry’s Fix

