
Volume 52, Number 4 July–August 2012



EDUCATIONAL TECHNOLOGY/July–August 201242

that type of fluency. Even though young people are some-
times called “digital natives,” most use computational devices
simply to browse, chat, run apps, and play games. It is as if
they can “read” but not “write.”
What happened to Papert’s dream? When personal

computers became available in the late 1970s and early
1980s, there was initial enthusiasm for teaching children how
to program.Thousands of schools taught millions of students
to write programs in Papert’s Logo programming language.
But the initial enthusiasm didn’t last. Many teachers and
students had difficulty learning to program in Logo, since the
language was full of non-intuitive syntax and punctuation. To
make matters worse, Logo was often introduced through
activities that did not sustain the interest of either teachers or
students. Many classrooms taught Logo as an end unto
itself, rather than as a new means for students to express
themselves and explore what Papert called “powerful ideas.”
Before long, most schools shifted to other uses of com-

puters. They began to see computers as tools for delivering
and accessing information, not for designing and creating as
Papert had imagined. Today, most educators view computer
programming as a narrow, technical activity, appropriate for
only a small segment of the population.
It doesn’t need to be that way. In my research group at

the MIT Media Lab, we still believe in Papert’s dream of com-
putational fluency for everyone. But we also understand that
turning Papert’s dream into a reality isn’t easy. It will require
a new generation of technologies, activities, and educational
strategies.
That’s what we’ve tried to do with Scratch (http://scratch.

mit.edu), a programming language and online community
that we developed to provide new pathways into program-
ming. Scratch aims to engage everyone, of all backgrounds
and interests, in creating their own interactive stories,
games, animations, and simulations. Our goal is not to
prepare people for careers as professional programmers but
rather to enable everyone to express themselves creatively
through programming.
Learning lessons from Papert’s experiences of Logo,

we’ve designed Scratch to move beyond Logo along three
dimensions, making programming more tinkerable, more
meaningful, and more social.

More Tinkerable
For many years, my research group has worked closely

with the LEGO Company, helping develop LEGO Mind-
storms and other robotics kits. We have always been
intrigued and inspired by the way children play and build
with Lego bricks. Given a box full of them, children will imme-
diately start tinkering. They’ll snap together a few bricks, and
the emerging structure will give them new ideas. As they
play and build with LEGO bricks, plans and goals evolve
organically, along with the structures and stories.
We wanted the process of programming in Scratch to

have a similar feel. The Scratch grammar is based on a
collection of graphical “programming blocks” that children
snap together to create programs (Figure 1). As with LEGO
bricks, connectors on the blocks suggest how they should
be put together. Children can start by tinkering with the
bricks, snapping them together in different sequences and
combinations to see what happens. Scratch blocks are
shaped to fit together only in ways that make syntactic

Point of View
Reviving Papert’s Dream

Mitchel Resnick

It has been more than 40 years since Seymour Papert
published, in this magazine, his first public article about
the Logo programming language. The article, co-authored
with Cynthia Solomon, was titled “Twenty Things to Do with
a Computer.” It described how children might program
computers to control robots, compose music, create
games, draw recursive pictures, and do many other cre-
ative activities.
It was a radical vision. At the time, in 1971, computers still

cost tens of thousands of dollars, if not more. The first
personal computers would not become commercially
available for another five years. Yet Papert foresaw that
computers would eventually become accessible for every-
one, even children, and he wanted to lay the intellectual
foundation for how computing could transform the ways
children learn and play.
Some aspects of Papert’s dream have become a reality.

Children today have access to computation to a degree that
few people could have imagined in 1971. Millions of children
around the world interact with computation in a wide variety
of forms: electronic toys, mobile phones, game machines,
laptops, tablets. And they use computational devices to
engage in a diverse range of activities: playing games, chat-
ting with friends, exploring virtual worlds, searching for
information online.
At the same time, important elements of Papert’s dream

remain unfulfilled. Papert envisioned a world in which chil-
dren not only learn to use new technologies, but become
truly fluent with new technologies. In Papert’s view, children
should be able to design, create, and express themselves
with new technologies. Rather than just interacting with ani-
mations, games, and simulations, children should learn to
program their own animations, games, and simulations—
and, in the process, learn important problem-solving skills
and project-design strategies.
Unfortunately, most young people today haven’t achieved

Mitchel Resnick, LEGO Papert Professor of Learning
Research at the MIT Media Lab, develops new technologies
and activities to engage people (especially children) in
creative learning experiences. His Lifelong Kindergarten
research group developed ideas and technologies underly-
ing the LEGO Mindstorms robotics kits and Scratch pro-
gramming software, used by millions of young people
around the world. He also co-founded the Computer
Clubhouse project, an international network of 100 after-
school learning centers where youth from low-income
communities learn to express themselves creatively with
new technologies. In 2011, he was awarded the McGraw
Prize in Education and the World Technology Award in
Education (e-mail: mres@media.mit.edu).



EDUCATIONAL TECHNOLOGY/July–August 2012 43

sense. There is none of the obscure syntax of traditional
programming languages.
The name “Scratch” itself highlights the idea of tinkering,

as it comes from the scratching technique used by hip-hop
disc jockeys, who tinker with music by spinning vinyl records
back and forth with their hands, mixing music clips together
in creative ways. In Scratch programming, the activity is
similar, mixing graphics, animations, photos, music, and
sound.
The scripting area in the Scratch interface is intended to

be used like a physical desktop (Figure 2). You can even

leave extra blocks or stacks lying around in case you need
them later. The implied message is that it’s OK to be a little
messy and experimental. Most programming languages (and
computer science courses) privilege top-down planning over
bottom-up tinkering. With Scratch, we want tinkerers to feel
just as comfortable as planners.

More Meaningful
We know that people learn best, and enjoy most, when

they are working on personally meaningful projects. So, in
developing Scratch, we put a high priority on supporting
a diversity of project genres (stories, games, animations,
simulations), so that people with widely varying interests
can all work on projects they care about. We also put a
high priority on personalization—making it easy for people to
personalize their Scratch projects by importing photos and
music clips, recording voices, and creating graphics.
These priorities influenced many of our design decisions.

For example, we decided to focus on 2D images, rather than
3D, since it is much easier for people to create, import, and
personalize 2D artwork. While some people might see the
2D style of Scratch projects as somewhat outdated, Scratch
projects collectively exhibit a visual diversity and personal-
ization missing from 3D authoring environments.
We continue to be amazed by the diversity of projects

Figure 2. Scratch application interface.

Figure 1. Scratch programming blocks.



variables, then reached out and shook the researcher’s
hand, saying “Thank you, thank you, thank you.” The
researcher wondered: How many eighth-grade algebra
teachers get thanked by their students for teaching them
about variables?

More Social
Our development of the Scratch programming language

has been tightly coupled with development of the Scratch
Website and online community (Figure 4). For Scratch to
succeed, we feel the language needs to be linked to a
community where people can support, collaborate, and
critique one another and build on one another’s work.
The concept of sharing is built directly into the Scratch

user interface, making it easy for people to upload their
projects to the Scratch Website, just as people share their
videos on YouTube. Once a project is on the Website, any-
one can run it in a browser, comment on it, add it to their list
of “favorites,” view the underlying program, and even revise
and remix the project. (All projects shared on the site are
covered by Creative Commons license.)
Since the launch of Scratch in 2007, more than 2.4 million

projects have been shared on the ScratchWebsite. For many

EDUCATIONAL TECHNOLOGY/July–August 201244

that appear on the Scratch Website (Figure 3 ). As ex-
pected, there are lots of games on the site, ranging from
painstakingly recreated versions of favorite video games
(such as Donkey Kong) to totally original games. But there
are many other genres, too. Some Scratch projects docu-
ment life experiences (such as a family vacation in Florida),
while others document imaginary wished-for experiences
(such as a trip to meet other Scratchers). Some Scratch
projects (such as birthday cards and messages of apprecia-
tion) are intended to cultivate relationships. Others are
designed to raise awareness on social issues (such as
global warming and animal abuse).
As Scratchers work on personally meaningful projects,

we find they are ready and eager to learn important mathe-
matical and computational concepts related to their projects.
Consider Raul, a 13-year-old boy who used Scratch to
program an interactive game in his after-school center. He
created the graphics and basic actions for the game but
didn’t know how to keep score. So when a researcher on our
team visited the center, Raul asked him for help. The
researcher showed Raul how to create a variable in Scratch,
and Raul immediately saw how he could use it for keeping
score. He began playing with the blocks for incrementing

Figure 3. Examples of Scratch projects.



EDUCATIONAL TECHNOLOGY/July–August 2012 45

and building on one another’s ideas, images, and programs.
More than 30% of the projects on the site are remixes of
other projects on the site. For example, there are dozens of
versions of the game Tetris, as Scratchers continue to add
new features and try to improve gameplay. There are also
dozens of dress-up doll projects, petitions, and contests, all
adapted from previous Scratch projects.
To encourage international sharing and collaboration,

we’ve placed a high priority on translating Scratch into multi-
ple languages. We created an infrastructure that allows the
Scratch programming blocks to be translated into any lan-
guage with any character set. A global network of volunteers
has provided translations for more than 40 languages.

Scratchers, the opportunity to put their projects in front of
a large audience—and receive feedback and advice from
other Scratchers—is strong motivation. The large library of
projects on theWebsite also serves as inspiration. By explor-
ing projects there, Scratchers get ideas for new projects and
learn new programming techniques. Marvin Minsky once
noted that Logo had a great grammar but not much literature.
Whereas young writers are often inspired by reading great
works of literature, there was no analogous library of great
Logo projects to inspire young programmers. The Scratch
Website is the beginning of a “literature” for Scratch.
The Scratch Website is fertile ground for collaboration.

Community members are constantly borrowing, adapting,

Figure 4. Scratch Website and online community.



Children around the world now share Scratch projects with
one another, each viewing the Scratch programming blocks
in their own language.
We have also created a separate online community, called

ScratchEd (http://scratched.media.mit.edu), specifically for
educators who are helping others learn Scratch. On the
ScratchEd Website, educators share their ideas, stories, and
lesson plans, learning from one another’s experiences.

Future Directions
In the five years since its launch, Scratch has emerged

as the most popular way for children and teens to learn to
program. More than a million people have registered for
accounts on the ScratchWebsite. But we still have a long way
to go to realize Papert’s dream of a fully fluent population.We
are continuing to refine and extend our Scratch technology to
engage a broader and more diverse audience. This summer,
we will release a new generation of Scratch, called Scratch
2.0, which will enable people to program Scratch projects
directly in the Web browser, providing a more seamless
experience for sharing and remixing projects—and new
opportunities for creativity and collaboration.
Probably the biggest challenges for Scratch—and for

realizing for Papert’s dream—are not technological but
cultural and educational. There needs to be a shift in how
people think about programming, and how they think about
computers in general. We need to expand the conception of
digital fluency to include designing and creating, not just
browsing and interacting.
A few years ago, I gave a keynote presentation at a

major educational technology conference. After my presen-
tation, in the Q&A session, someone asked: “Wasn’t
Seymour Papert trying to do the same things 20 years
ago?” The comment was meant as a critique; I took it as a
compliment. I answered simply: “Yes.” For me, Seymour’s
ideas remain as important today as when he published his
first article about Logo in this magazine in 1971. His ideas
continue to provide a vision and a direction for my research.
I will be happy and proud to spend the rest of my life trying
to turn Seymour’s dreams into a reality. �

Acknowledgments. Many members of the Lifelong Kinder-
garten research group at the MIT Media Lab contributed to
the ideas and technologies discussed in this essay.

EDUCATIONAL TECHNOLOGY/July–August 201246

Send UsYour Comments
All readers of Educational Technology are welcome to
send in comments for possible publication in these pages.
Your views may deal with your reactions to articles or
columns published in the magazine, or with any topic of
general interest within the larger educational technology
community.

Send your Reader Comments to us at edtecpubs@
aol.com . In general, your message should be up to 750
words in length, though longer contributions will be consid-
ered, depending on the specific topic being addressed. Join
in the ongoing conversation in the pages of this magazine.


	cover 1
	42-46

