
Foreword for

Your Wish is My Command, Edited by Henry Lieberman

 Ben Shneiderman, Draft May 14, 2000

Ben Shneiderman http://www.cs.umd.edu/~ben
Dept of Computer Science 301-405-2680
University of Maryland 301-405-6707 fax
College Park, MD 20742 http:// www.cs.umd.edu/hcil

Setting an alarm clock is probably the most common form of programming. Users set a
time and then put the clock in alarm mode. Older 12-hour mechanical clocks usually had
a special alarm hand that could be moved to the time for the alarm to ring, and then the
users turned the alarm switch on. A nice form of direct manipulation programming –
easy to learn and use.

Direct manipulation is a term I coined in 1981 to describe the visual world of action in
many successful graphical user interfaces such as video games, air traffic control and
What-you-see-is-what-you-get word processors. The principles were to:

- represent the objects and actions visually,
- replace typing with pointing and dragging,
- provide rapid, incremental and reversible actions, and
- offer immediate and continuous feedback to users.

These principles can lead to interfaces that help novices and experts, prevent or at least
reduce errors, and encourage exploration because reversibility is supported. Designers
continue to refine and extend direct manipulation, but critics complain that direct
manipulation only works for limited tasks. They often ignore the possibility of direct
manipulation programming, which was part of the original conception [1, 2].

To explore the possibilities, we built a direct manipulation programming tool in 1984-85
that enables users to create macros for MS DOS. This tool, Direct Manipulation DOS
(DMDOS) [3], enabled users to record and view their actions, and then store and replay
macros. We were motivated by successful macro facilities for unix, word processors and
spreadsheets. These early keyboard-oriented systems led us to joke that "those who
ignore history are destined to retype it." We were also inspired by innovative
programming-by-demonstration in David Canfield Smith’s Pygmalion [4], graphical
macro facilities in Dan Halbert’s SmallStar [5] and Alan MacDonald’s early call for
Visual Programming [6]. These pioneers and other innovators believed in the goal of
empowering users to create useful programs, extend existing interfaces, and build small
just-in-time programs that automated daily tasks.

This important volume of papers carries forward the agenda of making direct
manipulation programming (or programming-by-example, programming-by-
demonstration, end-user-programming, programming-in-the-user-interface, etc.) a reality.

http://www.cs.umd.edu/~ben

While there have been successes in the intervening years, such as programmable machine
tools, visual programming languages, and a variety of macro building programs,
widespread adoption is still elusive. Henry Lieberman deserves credit for his long
devotion to this topic and for collecting the diverse strategies and application domains in
this volume. He and the contributors to this volume remind us all of the breadth of
opportunities and depth of ambition.

The allure of direct manipulation programming is its capacity to empower users, while
minimizing learning of programming concepts. Researchers continue to seek simple
cognitive models for programming that are in harmony with the cognitive model of the
existing user interface. Just as the programmable mechanical alarm clock is tied to the
familiar model of clock hands, researchers have wanted to build on the visual nature of
graphical user interfaces.

This fundamental human-computer interaction challenge has inspired a generation of
designers, who have come up with innovative strategies for supporting iteration,
conditionals, parameter passing, modular design, pattern matching, and data
representation. This treasure chest of strategies is likely to pay off in multiple solutions
for direct manipulation programming and related problems. A successful strategy would
not only be easy to learn, but also support rapid composition of common programs. Then
it would also be easy to invoke, with comprehensible feedback about successful and
unsuccessful executions.

One strategy represented in this book is to develop software that recognizes familiar
patterns of action and infers a useful program. There may be some opportunities along
this path but I prefer the second path of special tools for users to create a program, just as
they move the special hand of an alarm clock to set the wake-up time.

A third path, also well represented in this book, is visual programming languages in
which the users set out to write a program, but visually instead of textually. Visual
programming languages may have a simple basis such as dragging items from a relational
table to a screen-based form to create a report program. More elaborate visual
programming languages have graphic symbols to represent objects, actions, conditionals,
loops, and pattern matching.

A fourth path might be to add history capture environments for every interface. Unix
command line interfaces had a history log that allowed users to conveniently review and
reuse commands. World-Wide Web browsers support history keeping of page visits with
relatively easy review and reuse. Microsoft Word captures a history of actions to support
undo operations, but users cannot review the history or save it. Adobe Photoshop 5.0
added a nice history feature for graphic designers, demonstrating that even in complex
environments rich history support is possible.

Our current efforts with Simulation Processes in a Learning Environment have
emphasized history keeping, enabling users to review their work, replay it, annotate it,
and send it to peers or mentors for advice [7]. An immediate payoff was that faculty

could run the simulation in exemplary or inappropriate ways and store the histories for
students to use as a training aid.

The story of this field and this book is that there is magic and power in creating programs
by direct manipulation activities, as opposed to writing code. The potential for users to
take control of technology, customize their experiences, and creatively extend their
software tools is compelling.

Eighteenth century scientists, like Ben Franklin, experimented with electricity and found
its properties quite amazing. Franklin, Faraday, Maxwell, and others, laid the foundation
for Thomas Edison’s diverse applications, such as refinements of telegraphy, generators,
and electric lighting. This book brings reports from many Franklins, Faradays, and
Maxwells who are laying the foundation for the Thomas Edisons, still to come. It is
difficult to tell which idea will trigger broad dissemination or whose insight will spark a
new industry. However, the excitement is electric.

(Acknowledgement: Thanks to Richard Potter for his comments on my drafts)

1. Shneiderman, B., The future of interactive systems and the emergence of direct
manipulation, Behaviour and Information Technology 1, 3, 1982, 237-256

2. Shneiderman, B., Direct manipulation: A step beyond programming languages, IEEE
Computer 16, 8, August 1983, 57-69).

3. Iseki, O. and Shneiderman, B., Applying direct manipulation concepts: Direct
Manipulation Disk Operating System (DMDOS), ACM SIGSOFT Software Engineering
Notes 11, 2, (April 1986), 22-26.

4. Smith, D. C., Pygmalion: A Computer Program to Model and Stimulate Creative
Thought. Basel, Stuttgart, Birkhauser Verlag. 1977.

5. Halbert, Daniel, Programming by Example, Ph. D. dissertation, Department of
Electrical Engineering and Computer Systems, University of California, Berkeley, CA,
Available as Xerox Report OSD-T8402, Palo Alto, CA, (1984).

6. MacDonald, Alan, Visual programming, Datamation 28, 11 (October 1982), 132-140.

7. Plaisant, C., Rose, A., Rubloff, G., Salter, R., Shneiderman, B., The design of history
mechanisms and their use in collaborative educational simulations, Proc. Computer
Supported Collaborative Learning Conference (December 1999), 348-359.

