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ABSTRACT 
An important way of making interfaces usable by non-
expert users is to enable the use of natural language input, 
as in natural language query interfaces to databases, or 
MUDs and MOOs. When the subject matter is about 
procedures, however, we have discovered that interfaces 
can take advantage of what we call Programmatic 
Semantics, procedural relations that can be inferred from 
the linguistic structure. Roughly, nouns can be interpreted 
as data structures; verbs are functions; adjectives are 
properties. Some linguistic forms imply conditionals, loops, 
and recursive structures.  

We illustrate the principles of Programmatic Semantics 
with a description of Metafor, a "brainstorming" editor for 
programs, analogous to an outlining tool for prose writing. 
Metafor interactively converts English sentences to partially 
specified program code, to be used as "scaffolding" for a 
more detailed program. A user study showed that Metafor is 
capable of capturing enough Programmatic Semantics to 
facilitate non-programming users and beginners' 
conceptualization of programming problems. 
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Programmatic semantics, natural language interfaces, 
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ACM Classification Keywords 
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INTRODUCTION 
Amongst the interface options to richly complex systems, 
natural language input is often considered for its 
accessibility to non-expert users. However, while it is 
acknowledged that natural languages are themselves highly 
expressive, there remains the question of operationalizing 
that expressivity in light of the limitations of machine 
interpretation of text.   

Still, interface designers have been able to find workable 
approaches which allow them to reap some of the benefits 
of natural language input. These approaches are of two 
general philosophies – 1) the invention of a formal 

programming language for the interface, whose look-and-
feel may be inspired by natural language; and 2) the 
employment of information retrieval techniques to 
opportunistically recognize some subset of the semantics 
contained in a natural language query.  The formal language 
approach assures richer expressivity; however, 
opportunistic recognition over full-blown natural language 
is still the most accessible approach for non-expert users.   

Currently, opportunistic recognition involves a mish-mash 
of techniques. Some treat textual interpretation as a 
problem of statistically classifying a query into a priori 
categories; others apply brittle grammars and templates. 
Shockingly, a lot of them simply break the user’s 
thoughtfully constructed input back down into keywords.  
Grammars and templates face problems of robustness and 
coverage, while statistical classification and decomposition 
into keywords misses much of the expressivity of natural 
language, especially its rich procedural relations. 

In this paper, we hope to deepen opportunistic recognition 
of full natural language input by describing a Programmatic 
Semantics for natural language. Programmatic Semantics is 
a mapping between natural linguistic structures and basic 
programming language structures, by taking the position 
that programming is storytelling. To grossly oversimplify, 
noun phrases can be interpreted as data structures, verbs as 
functions, adjectives as properties.  Some linguistic forms 
imply procedural relations, and others imply looping and 
recursive structures. Programmatic Semantics has a great 
potential to help natural language interfaces recover more 
of language’s inherent expressivity, without compromising 
the interpreter’s broad coverage.  

PRINCIPLES OF PROGRAMMATIC SEMANTICS 
Discussion of the main principles of Programmatic 
Semantics is divided into 1) syntactic features, 2) 
procedural features, 3) relational and set-theoretic features, 
and 4) representational equivalence.  These represent a 
refinement and elaboration over earlier notions presented in 
(Liu & Lieberman, 2004b; Lieberman & Liu, 2004a). The 
theoretical conclusions enounced here are grounded in part 
in our analysis of the user study data of Pane, 
Ratanamahatana & Myers (2001) on non-programmers’ 
solutions to programming problems like Pacman, which 
they were kind enough to share with us, and also in part in 
our practical experience with three generations of iterative 
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design and reimplementation of the Metafor story-to-code 
interpreter. 

Syntactic Features 
Basic syntactic features of natural language such as parts of 
speech, subject-verb-object distinctions, and verb-argument 
structure can be seen as a regularized vehicle for conveying 
semantics.  The way in which natural language tends to 
reify concepts as objects with properties, or personify 
concepts as having capability begins to resemble a style of 
agent-programming.  

The natural role of nouns and noun phrases as objects (e.g. 
“the martini”), adjectives as properties (e.g. “sweet 
drinks”), non-copular verbs corresponding to functions (e.g. 
“make a drink”), and verb arguments as function arguments 
(e.g. “give the drink to the customer”) is analogous to the 
organization of object-oriented programming. Natural 
language also has a system of inheritance (e.g. “a martini is 
a drink …”), as well as conventions for reference which 
bring to mind dot notation (e.g. “The customer’s age”  
customer.age). 

Procedural Features 
Procedural features of natural language include the 
expression of conditional rules (e.g. if/then), scripts, and 
iteration or recursion (e.g. for loops), though Pane et al. 
(2001) report that non-programmers tend not to speak of 
iteration or looping in explicit terms; instead, they rely on 
implicit set selection procedures.  

We have found that three classes of linguistic constructions 
account for most conditionals in English: 1) subjunctives, 
2) “possibles,” and 3) “when.”  Subjunctive constructions 
are typically a two-clause construction such as, e.g. “If the 
drink is on the menu, (then) make it.” Variations include the 
addition of a third “otherwise” clause, functioning as an 
“else” statement programmatically. Of course, not all 
languages have subjunctives, such as Chinese. “Possibles” 
are the simple modification of a declarative sentence with 
an auxiliary “may” verb or an adverbial “sometimes,” 
“perhaps,” “often,” etc. -- “the customer may order a sweet 
drink,” “sometimes he orders a sweet drink.”  The difficulty 
of the “possibles” construction is that the pre-conditional 
“if” clause is not well specified. This type of ambiguity is 
common in natural language, but programmatic interpreters 
might make an educated guess, based on available context, 
just as people do. The third class of conditional 
constructions in English is “when,” but this is a general 
scoping construction which can be used dually for declaring 
if/then clauses, and for specifying the body of a function.  
In the example, “when the drink is sweet, order it,” the 
static situation, “drink is sweet” is topicalized, so the 
utterance is best realized as an if/then.  However, in the 
example “when the customer orders it, the bartender makes 
it,” the function “customer.order(drink)” is topicalized, so 
the sentence can be best realized as a specification of the 
body of that function. 

To step through a procedural list such as a recipe, an 
ordering can be constructed using ordinals, e.g. “first …, 
second…, third…, finally…” Alternatively, pairwise 
orderings can be given, e.g., “Do W, then do X. After X, do 
Y, followed by Z,” and the interpreter must infer the total 
ordering from these partial ordering (if possible). 

Relational and Set-theoretic Features 
Perhaps one reason for the absence of explicit looping in 
natural language is that there already exists basic linguistic 
constructions that imply a class of procedure which reasons 
about sets using relational descriptions (e.g. “sweet drinks” 
as a subset of “drinks”); these set-theoretic constructions 
seem to supplant the need to narrate looping constructions 
explicitly. For example, consider the following utterance 
and the procedure it implies (expressed in Python).  
The bartender makes a random sweet drink from the menu. 

bartender.make(random.choice(filter(lambda drink:  
‘sweet’ in drink.properties, menu.drinks))) 

Here, “a random sweet drink from the menu” assumes the 
same linguistic form as a static object, but it is not a static 
object at all; rather, it is a dynamic reference, an implied 
procedure which promises to output a pointer to a static 
object – the procedure employs a series of selectional 
constraints (e.g. “random,” “sweet,” “from the menu”) to 
sieve through a “database” of objects.  This procedure can 
either be formed by affixing adjectives to the front of the 
base object “drink” (as is done in the above example), or, 
the procedure can be attached, as a complementizer phrase 
(e.g. “the drink which is sweet and on the menu”), or some 
mix of the two styles is also possible.   

Further extending English’s set-theoretic discriminatory 
faculties, a base property such as “sweet” can be coerced 
into its more discriminating comparative (i.e. “sweeter”) 
and superlative (i.e. “sweetest”) forms. Finally, set-
facilitation determiners are also a tool of discrimination 
(e.g. “all drinks have”, “some drinks … while other 
drinks”), but, as with “possible” constructions, these are 
rather prone to ambiguity in interpretation. 

Representational Equivalence 
The sort of representational dynamism found in natural 
language is quite unparalleled by any formal programming 
language. In Metafor, we always begin by assuming the 
simplest code representation which can accommodate the 
facts in the story, dynamically refactoring to more complex 
representations as necessary. For example, the 
representation of “bar” (given in parentheses) is 
automatically refactored as each additional fact about bar 
becomes known: 
a) There is a bar. (atom) 
b) The bar contains two customers. (unimorphic list) 
c) It also contains a waiter. (unimorphic wrt. persons) 
d) It also contains some stools. (polymorphic list) 
e) The bar opens and closes. (class / agent) 
f) The bar is a kind of store. (inheritance class) 
g) Some bars close at 6pm. (subclass or instantiatable) 



In formal programming languages, representational 
revisions b) through g) are potentially quite costly.   

Other representational equivalences include morphological 
equivalences such as nominalization – turning any adjective 
into a noun, e.g. “the drink is sweet” vs. “the drink has 
sweetness;” and narrative stance equivalences which allow 
the same story facts to be inferable through different 
narrative viewpoints. Consider the following diverse ways 
to specify that a “bar” object contains “customer” objects: 
h) I want to make a bar with a customer. (1st p. 
programmer) 

i) There is a customer in the bar. (3rd p. narrator) 
j) I am a customer sitting on a stool. (1st p. customer) 
k) The bartender said, “Here is a customer” (mixed person 
playwright) 

The strategy to interpret narrative stance and morphological 
equivalences is to leverage the already assembled “world 
model” described by program code to disambiguate 
utterances, e.g. knowing that there are bar, customer, and 
stool objects helps us interpret utterances h) through k). 

METAFOR: INFERRING CODE FROM STORIES 
To illustrate the principles of Programmatic Semantics, we 
implemented Metafor, a "brainstorming" editor for 
programs, analogous to an outlining tool for prose writing. 
As a person types a story into Metafor, the system 
continuously updates a side-by-side “visualization” of the 
person’s narrative as scaffolding code (see Figure 1). This 
code may not be directly executable, but it illustrates the 

inherent programmatic structure in English, and is meant to 
help a person reify her thoughts. 

AN EXAMPLE INTERACTION 
Our domain is the world of MOOs (cf. Bruckman (1998)), 
which are popular text-based virtual reality games. MOOs 
are themselves interactive stories, where the characters and 
even inanimate objects, are programmable. A typical MOO 
consists of text descriptions of "rooms". Characters in 
MOOs can be programmed with simple scripts, expressed 
in an "English-like", though formal, programming 
language.  

Below we present an example of actual Python code 
outputted by interacting with the Metafor program. This is 
part of a larger scenario more fully presented in Lieberman 
& Liu (2005) and by Video Figure 11. 
When the customer asks the bartender to choose, the 
bartender makes a random sweet drink from the menu if the 
customer's age is under 30; or else the bartender makes a 
sidecar. 
    
    class customer: 
        age = None 
           def ask_bartender_to_choose(): 
            if customer.age < 30: 
                bartender.make(random.choice( 
                    filter(lambda drink:  
                      ‘sweet’ in drink.properties, 
                      menu.drinks))) 
            else: 
                bartender.make(sidecar) 

This example illustrates many of the capabilities we 
referenced above – creating data structures from noun 
phrases; functions from verb phrases; recognition of 
conditionals and implicit iteration over sequences.  

USER STUDY 
We conducted a very preliminary 13-person user study to 
test Metafor’s impact on brainstorming for a programming 
task for beginning and intermediate programmers. As 
would be the case if you were testing an outliner for prose 
writing, the tool only assists part of the task, so it would be 
difficult to directly measure performance on the entire task. 
We opted to let users self-assess the difficulty of the task 
before and after use of Metafor, on the theory that if it just 
accomplished increasing users’ confidence and perception 
of efficiency, it would be worthwhile. 

Volunteers were MIT undergraduates, 7 intermediate 
programmers, and 6 beginning programmers. They were 
asked to implement the basic character behaviors 
(excluding GUI) of the Pacman game. Initially, we asked 
them to estimate time for the task (baseline #1).  Then they 
were asked to describe the Pacman program logic on paper 
in story form, after which they re-estimated the time for the 
task (baseline #2). Finally, the examiner helped each 
volunteer to type their hand-written stories into Metafor, 
sometimes gently rephrased sentences when the story 
strayed too far from Metafor’s linguistic capability (this 
was not a test of the coverage of Metafor’s grammar); after 

                                                             
1http://web.media.mit.edu/~hugo/demos/metafor-bartender-simple.mov 

Figure 1. A screenshot of Metafor. Clockwise from the 
lower left corner, the four windows display 1) the 
narrative being entered; 2) an interaction log; 3) 
Metafor’s internal representation (not shown to 

beginning users); and 4) the visualization code, rendered 
here in the Python programming language. 



doing so, they were once again asked for a time-to-
complete-task estimate.  The results are shown in Figure 2. 

Both non-programmers and intermediate programmers 
reported that brainstorming with Metafor had a greater 
positive impact than brainstorming on paper, which in turn 
had a greater impact than not brainstorming at all. In 
general, non-programmers felt that brainstorming-by-hand 
didn’t bring them much closer to completing the task (One 
volunteer said, “I still wouldn’t know how to program it.”), 
but they felt that brainstorming with Metafor gave them 
clearer and more concrete ideas about the programming 
task. Metafor’s advantage over brainstorming-by-hand was 
less pronounced for intermediate programmers. 

On a Likert5 scale (5=very likely, 1=very unlikely), 
volunteers were also asked how likely they would be to 
adopt brainstorming-on-paper and brainstorming-with-
Metafor in their programming habits. Non-programmers 
responded that they would adopt Metafor over paper by 
scores of 4.2 over 3, while intermediate programmers were 
less enthused with scores of 3.5 over 2.4. The trend though, 
is that both groups were more enthusiastic about Metafor’s 
interactivity. Three respondents were surprised that their 
stories translated so directly to programs in Metafor, and 
one said he would write the story differently knowing now 
how the computer processes the text. Some respondents 
remarked that Metafor’s interpretation caused them to 
reflect and think differently about their narrative skills. 

RELATED WORK 
A companion paper (Liu & Lieberman, 2005) focuses more 
on the Metafor environment itself, its capability, 
implementation, and use in programming and education, 
whereas the emphasis in this paper is on Programmatic 
Semantics, which we believe has wide applicability in 
natural language interfaces beyond this particular 
application.  

Related work comes from the fields of automatic 
programming in AI, and Software Engineering. The best 

example is Rich and Waters' KBEmacs (1990), which lets 
programmers express high-level statements of 
modifications to programming language code, and the 
editor performs concrete editing of the code automatically. 
Software engineering methodologies such as the 
OOD/OOA method of Grady Booch and others have long 
exhorted programmers to use noun/verb relations in English 
descriptions as a guide to modeling data/function relations 
in code, but they have not proposed any way for the 
machine to help automate such activity.  

Two systems from the literature stand out to us as having 
most directly addressed the problem of translating natural 
language to code. Tam, Maulsby, and Puerta developed a 
system called U-Tel (1998) which elicits a story about a 
task from a person, and allows the person to manually 
highlight and annotate words in the text with their possible 
roles. U-Tel also does not produce code directly, but input 
to a model-based UIMS where the interface can be further 
specified. Hars & Marchewka’s natural language case tool 
(1996) maps expert-system rules, stated in English, into a 
yes/no decision flowchart whose nodes are large unparsed 
natural language utterances.  
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Figure 2: Effect of brainstorming on each volunteer’s 
self-assessment of time-to-complete Pacman task. Times 

were normalized to 100 to facilitate comparison. 


