
Programmatic Semantics for Natural Language Interfaces
Hugo Liu

MIT Media Laboratory
20 Ames Street 320D, Cambridge, MA USA

hugo@media.mit.edu

Henry Lieberman
MIT Media Laboratory

20 Ames Street 384A, Cambridge, MA USA
lieber@media.mit.edu

ABSTRACT
An important way of making interfaces usable by non-
expert users is to enable the use of natural language input,
as in natural language query interfaces to databases, or
MUDs and MOOs. When the subject matter is about
procedures, however, we have discovered that interfaces
can take advantage of what we call Programmatic
Semantics, procedural relations that can be inferred from
the linguistic structure. Roughly, nouns can be interpreted
as data structures; verbs are functions; adjectives are
properties. Some linguistic forms imply conditionals, loops,
and recursive structures.

We illustrate the principles of Programmatic Semantics
with a description of Metafor, a "brainstorming" editor for
programs, analogous to an outlining tool for prose writing.
Metafor interactively converts English sentences to partially
specified program code, to be used as "scaffolding" for a
more detailed program. A user study showed that Metafor is
capable of capturing enough Programmatic Semantics to
facilitate non-programming users and beginners'
conceptualization of programming problems.

Author Keywords
Programmatic semantics, natural language interfaces,
storytelling, brainstorming, case tools.

ACM Classification Keywords
H5.2. User Interfaces: interaction styles, natural language;
I.2.7. Natural Language Processing: text analysis.

INTRODUCTION
Amongst the interface options to richly complex systems,
natural language input is often considered for its
accessibility to non-expert users. However, while it is
acknowledged that natural languages are themselves highly
expressive, there remains the question of operationalizing
that expressivity in light of the limitations of machine
interpretation of text.

Still, interface designers have been able to find workable
approaches which allow them to reap some of the benefits
of natural language input. These approaches are of two
general philosophies – 1) the invention of a formal

programming language for the interface, whose look-and-
feel may be inspired by natural language; and 2) the
employment of information retrieval techniques to
opportunistically recognize some subset of the semantics
contained in a natural language query. The formal language
approach assures richer expressivity; however,
opportunistic recognition over full-blown natural language
is still the most accessible approach for non-expert users.

Currently, opportunistic recognition involves a mish-mash
of techniques. Some treat textual interpretation as a
problem of statistically classifying a query into a priori
categories; others apply brittle grammars and templates.
Shockingly, a lot of them simply break the user’s
thoughtfully constructed input back down into keywords.
Grammars and templates face problems of robustness and
coverage, while statistical classification and decomposition
into keywords misses much of the expressivity of natural
language, especially its rich procedural relations.

In this paper, we hope to deepen opportunistic recognition
of full natural language input by describing a Programmatic
Semantics for natural language. Programmatic Semantics is
a mapping between natural linguistic structures and basic
programming language structures, by taking the position
that programming is storytelling. To grossly oversimplify,
noun phrases can be interpreted as data structures, verbs as
functions, adjectives as properties. Some linguistic forms
imply procedural relations, and others imply looping and
recursive structures. Programmatic Semantics has a great
potential to help natural language interfaces recover more
of language’s inherent expressivity, without compromising
the interpreter’s broad coverage.

PRINCIPLES OF PROGRAMMATIC SEMANTICS
Discussion of the main principles of Programmatic
Semantics is divided into 1) syntactic features, 2)
procedural features, 3) relational and set-theoretic features,
and 4) representational equivalence. These represent a
refinement and elaboration over earlier notions presented in
(Liu & Lieberman, 2004b; Lieberman & Liu, 2004a). The
theoretical conclusions enounced here are grounded in part
in our analysis of the user study data of Pane,
Ratanamahatana & Myers (2001) on non-programmers’
solutions to programming problems like Pacman, which
they were kind enough to share with us, and also in part in
our practical experience with three generations of iterative

Copyright is held by the author/owner(s).
CHI 2005, April 2–7, 2005, Portland, Oregon, USA.
ACM 1-59593-002-7/05/0004.

design and reimplementation of the Metafor story-to-code
interpreter.

Syntactic Features
Basic syntactic features of natural language such as parts of
speech, subject-verb-object distinctions, and verb-argument
structure can be seen as a regularized vehicle for conveying
semantics. The way in which natural language tends to
reify concepts as objects with properties, or personify
concepts as having capability begins to resemble a style of
agent-programming.

The natural role of nouns and noun phrases as objects (e.g.
“the martini”), adjectives as properties (e.g. “sweet
drinks”), non-copular verbs corresponding to functions (e.g.
“make a drink”), and verb arguments as function arguments
(e.g. “give the drink to the customer”) is analogous to the
organization of object-oriented programming. Natural
language also has a system of inheritance (e.g. “a martini is
a drink …”), as well as conventions for reference which
bring to mind dot notation (e.g. “The customer’s age” 
customer.age).

Procedural Features
Procedural features of natural language include the
expression of conditional rules (e.g. if/then), scripts, and
iteration or recursion (e.g. for loops), though Pane et al.
(2001) report that non-programmers tend not to speak of
iteration or looping in explicit terms; instead, they rely on
implicit set selection procedures.

We have found that three classes of linguistic constructions
account for most conditionals in English: 1) subjunctives,
2) “possibles,” and 3) “when.” Subjunctive constructions
are typically a two-clause construction such as, e.g. “If the
drink is on the menu, (then) make it.” Variations include the
addition of a third “otherwise” clause, functioning as an
“else” statement programmatically. Of course, not all
languages have subjunctives, such as Chinese. “Possibles”
are the simple modification of a declarative sentence with
an auxiliary “may” verb or an adverbial “sometimes,”
“perhaps,” “often,” etc. -- “the customer may order a sweet
drink,” “sometimes he orders a sweet drink.” The difficulty
of the “possibles” construction is that the pre-conditional
“if” clause is not well specified. This type of ambiguity is
common in natural language, but programmatic interpreters
might make an educated guess, based on available context,
just as people do. The third class of conditional
constructions in English is “when,” but this is a general
scoping construction which can be used dually for declaring
if/then clauses, and for specifying the body of a function.
In the example, “when the drink is sweet, order it,” the
static situation, “drink is sweet” is topicalized, so the
utterance is best realized as an if/then. However, in the
example “when the customer orders it, the bartender makes
it,” the function “customer.order(drink)” is topicalized, so
the sentence can be best realized as a specification of the
body of that function.

To step through a procedural list such as a recipe, an
ordering can be constructed using ordinals, e.g. “first …,
second…, third…, finally…” Alternatively, pairwise
orderings can be given, e.g., “Do W, then do X. After X, do
Y, followed by Z,” and the interpreter must infer the total
ordering from these partial ordering (if possible).

Relational and Set-theoretic Features
Perhaps one reason for the absence of explicit looping in
natural language is that there already exists basic linguistic
constructions that imply a class of procedure which reasons
about sets using relational descriptions (e.g. “sweet drinks”
as a subset of “drinks”); these set-theoretic constructions
seem to supplant the need to narrate looping constructions
explicitly. For example, consider the following utterance
and the procedure it implies (expressed in Python).
The bartender makes a random sweet drink from the menu.

bartender.make(random.choice(filter(lambda drink:
‘sweet’ in drink.properties, menu.drinks)))

Here, “a random sweet drink from the menu” assumes the
same linguistic form as a static object, but it is not a static
object at all; rather, it is a dynamic reference, an implied
procedure which promises to output a pointer to a static
object – the procedure employs a series of selectional
constraints (e.g. “random,” “sweet,” “from the menu”) to
sieve through a “database” of objects. This procedure can
either be formed by affixing adjectives to the front of the
base object “drink” (as is done in the above example), or,
the procedure can be attached, as a complementizer phrase
(e.g. “the drink which is sweet and on the menu”), or some
mix of the two styles is also possible.

Further extending English’s set-theoretic discriminatory
faculties, a base property such as “sweet” can be coerced
into its more discriminating comparative (i.e. “sweeter”)
and superlative (i.e. “sweetest”) forms. Finally, set-
facilitation determiners are also a tool of discrimination
(e.g. “all drinks have”, “some drinks … while other
drinks”), but, as with “possible” constructions, these are
rather prone to ambiguity in interpretation.

Representational Equivalence
The sort of representational dynamism found in natural
language is quite unparalleled by any formal programming
language. In Metafor, we always begin by assuming the
simplest code representation which can accommodate the
facts in the story, dynamically refactoring to more complex
representations as necessary. For example, the
representation of “bar” (given in parentheses) is
automatically refactored as each additional fact about bar
becomes known:
a) There is a bar. (atom)
b) The bar contains two customers. (unimorphic list)
c) It also contains a waiter. (unimorphic wrt. persons)
d) It also contains some stools. (polymorphic list)
e) The bar opens and closes. (class / agent)
f) The bar is a kind of store. (inheritance class)
g) Some bars close at 6pm. (subclass or instantiatable)

In formal programming languages, representational
revisions b) through g) are potentially quite costly.

Other representational equivalences include morphological
equivalences such as nominalization – turning any adjective
into a noun, e.g. “the drink is sweet” vs. “the drink has
sweetness;” and narrative stance equivalences which allow
the same story facts to be inferable through different
narrative viewpoints. Consider the following diverse ways
to specify that a “bar” object contains “customer” objects:
h) I want to make a bar with a customer. (1st p.
programmer)

i) There is a customer in the bar. (3rd p. narrator)
j) I am a customer sitting on a stool. (1st p. customer)
k) The bartender said, “Here is a customer” (mixed person
playwright)

The strategy to interpret narrative stance and morphological
equivalences is to leverage the already assembled “world
model” described by program code to disambiguate
utterances, e.g. knowing that there are bar, customer, and
stool objects helps us interpret utterances h) through k).

METAFOR: INFERRING CODE FROM STORIES
To illustrate the principles of Programmatic Semantics, we
implemented Metafor, a "brainstorming" editor for
programs, analogous to an outlining tool for prose writing.
As a person types a story into Metafor, the system
continuously updates a side-by-side “visualization” of the
person’s narrative as scaffolding code (see Figure 1). This
code may not be directly executable, but it illustrates the

inherent programmatic structure in English, and is meant to
help a person reify her thoughts.

AN EXAMPLE INTERACTION
Our domain is the world of MOOs (cf. Bruckman (1998)),
which are popular text-based virtual reality games. MOOs
are themselves interactive stories, where the characters and
even inanimate objects, are programmable. A typical MOO
consists of text descriptions of "rooms". Characters in
MOOs can be programmed with simple scripts, expressed
in an "English-like", though formal, programming
language.

Below we present an example of actual Python code
outputted by interacting with the Metafor program. This is
part of a larger scenario more fully presented in Lieberman
& Liu (2005) and by Video Figure 11.
When the customer asks the bartender to choose, the
bartender makes a random sweet drink from the menu if the
customer's age is under 30; or else the bartender makes a
sidecar.

 class customer:
 age = None
 def ask_bartender_to_choose():
 if customer.age < 30:
 bartender.make(random.choice(
 filter(lambda drink:
 ‘sweet’ in drink.properties,
 menu.drinks)))
 else:
 bartender.make(sidecar)

This example illustrates many of the capabilities we
referenced above – creating data structures from noun
phrases; functions from verb phrases; recognition of
conditionals and implicit iteration over sequences.

USER STUDY
We conducted a very preliminary 13-person user study to
test Metafor’s impact on brainstorming for a programming
task for beginning and intermediate programmers. As
would be the case if you were testing an outliner for prose
writing, the tool only assists part of the task, so it would be
difficult to directly measure performance on the entire task.
We opted to let users self-assess the difficulty of the task
before and after use of Metafor, on the theory that if it just
accomplished increasing users’ confidence and perception
of efficiency, it would be worthwhile.

Volunteers were MIT undergraduates, 7 intermediate
programmers, and 6 beginning programmers. They were
asked to implement the basic character behaviors
(excluding GUI) of the Pacman game. Initially, we asked
them to estimate time for the task (baseline #1). Then they
were asked to describe the Pacman program logic on paper
in story form, after which they re-estimated the time for the
task (baseline #2). Finally, the examiner helped each
volunteer to type their hand-written stories into Metafor,
sometimes gently rephrased sentences when the story
strayed too far from Metafor’s linguistic capability (this
was not a test of the coverage of Metafor’s grammar); after

1http://web.media.mit.edu/~hugo/demos/metafor-bartender-simple.mov

Figure 1. A screenshot of Metafor. Clockwise from the
lower left corner, the four windows display 1) the
narrative being entered; 2) an interaction log; 3)
Metafor’s internal representation (not shown to

beginning users); and 4) the visualization code, rendered
here in the Python programming language.

doing so, they were once again asked for a time-to-
complete-task estimate. The results are shown in Figure 2.

Both non-programmers and intermediate programmers
reported that brainstorming with Metafor had a greater
positive impact than brainstorming on paper, which in turn
had a greater impact than not brainstorming at all. In
general, non-programmers felt that brainstorming-by-hand
didn’t bring them much closer to completing the task (One
volunteer said, “I still wouldn’t know how to program it.”),
but they felt that brainstorming with Metafor gave them
clearer and more concrete ideas about the programming
task. Metafor’s advantage over brainstorming-by-hand was
less pronounced for intermediate programmers.

On a Likert5 scale (5=very likely, 1=very unlikely),
volunteers were also asked how likely they would be to
adopt brainstorming-on-paper and brainstorming-with-
Metafor in their programming habits. Non-programmers
responded that they would adopt Metafor over paper by
scores of 4.2 over 3, while intermediate programmers were
less enthused with scores of 3.5 over 2.4. The trend though,
is that both groups were more enthusiastic about Metafor’s
interactivity. Three respondents were surprised that their
stories translated so directly to programs in Metafor, and
one said he would write the story differently knowing now
how the computer processes the text. Some respondents
remarked that Metafor’s interpretation caused them to
reflect and think differently about their narrative skills.

RELATED WORK
A companion paper (Liu & Lieberman, 2005) focuses more
on the Metafor environment itself, its capability,
implementation, and use in programming and education,
whereas the emphasis in this paper is on Programmatic
Semantics, which we believe has wide applicability in
natural language interfaces beyond this particular
application.

Related work comes from the fields of automatic
programming in AI, and Software Engineering. The best

example is Rich and Waters' KBEmacs (1990), which lets
programmers express high-level statements of
modifications to programming language code, and the
editor performs concrete editing of the code automatically.
Software engineering methodologies such as the
OOD/OOA method of Grady Booch and others have long
exhorted programmers to use noun/verb relations in English
descriptions as a guide to modeling data/function relations
in code, but they have not proposed any way for the
machine to help automate such activity.

Two systems from the literature stand out to us as having
most directly addressed the problem of translating natural
language to code. Tam, Maulsby, and Puerta developed a
system called U-Tel (1998) which elicits a story about a
task from a person, and allows the person to manually
highlight and annotate words in the text with their possible
roles. U-Tel also does not produce code directly, but input
to a model-based UIMS where the interface can be further
specified. Hars & Marchewka’s natural language case tool
(1996) maps expert-system rules, stated in English, into a
yes/no decision flowchart whose nodes are large unparsed
natural language utterances.

REFERENCES
1. A. Bruckman: 1998, Community Support for

Constructionist Learning. Computer Supported
Cooperative Work, 7:47-86.

2. A. Hars, J.T. Marchewka: 1996, Eliciting and mapping
business rules to IS design: Introducing a natural
language CASE tool. In: Ebert, R.J; Franz, L.:
Proceedings, Decision Sciences Institute, 2, pp. 533-
535.

3. H. Lieberman, H. & H. Liu: 2004a, Feasibility Studies
for Programming in Natural Language. Lieberman,
Paterno & Wulf (Eds.) End-User Development. Kluwer.

4. H. Liu & H. Lieberman: 2004b, Toward a Programmatic
Semantics of Natural Language. Proceedings of
VL/HCC’04, pp. 281-282. IEEE Computer Press.

5. H. Liu & H. Lieberman: 2005, Metafor: Visualizing
Stories as Code. Proceedings of IUI’05, pp. 305-307,
ACM Press.

6. J.F. Pane, C.A. Ratanamahatana, B.A. Myers: 2001,
Studying the Language and Structure in Non-
Programmers' Solutions to Programming Problems.
International Journal of Human-Computer Studies,
54(2), 237-264.

7. C. Rich, R.C. Waters: 1990, The programmer's
apprentice. ACM Press Frontier Series.

8. R.C. Tam, D. Maulsby, and A.R. Puerta: 1998, U-TEL:
A Tool for Eliciting User Task Models from Domain
Experts. Proceedings of IUI’98, pp. 77-80. ACM Press.

Figure 2: Effect of brainstorming on each volunteer’s
self-assessment of time-to-complete Pacman task. Times

were normalized to 100 to facilitate comparison.

