
Agents to Assist in Finding Help

Adriana Vivacqua and Henry Lieberman
Media Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139 USA

+1 617 253 0315
lieber@media.mit.edu

ABSTRACT
When a novice needs help, often the best solution is to find
a human expert who is capable of answering the novice’s
questions. But often, novices have difficulty characterizing
their own questions and expertise and finding appropriate
experts. Previous attempts to assist expertise location have
provided matchmaking services, but leave the task of
classifying knowledge and queries to be performed
manually by the participants. We introduce Expert Finder,
an agent that automatically classifies both novice and expert
knowledge by autonomously analyzing documents created
in the course of routine work. Expert Finder works in the
domain of Java programming, where it relates a user’s Java
class usage to an independent domain model. User models
are automatically generated that allow accurate matching of
query to expert without either the novice or expert filling
out skill questionnaires. Testing showed that automatically
generated profiles matched well with experts’ own
evaluation of their skills, and we achieved a high rate of
matching novice questions with appropriate experts.

Keywords
Expertise location, agents, matchmaking, Java, help
systems.

INTRODUCTION
Meet Jen: Jen has been in the computer business for a
while, doing systems analysis and consulting. She has
wide experience in Cobol, mainframes and database
programming, but little experience in Java, which her
company has now decided to use.

Meet David: David is a hacker. He started programming at
the age of 15, and has been playing with Java for a while
now. He has worked with user interfaces, computer
graphics and client-server systems at one time or another.
He now works as a systems programmer for a large software
company, which does most of their work in Java.

Jen’s new project is a client-server system for a bank:
clients of the bank will download software and perform
transactions through their computers. The system uses
database manipulation and a graphical user interface.

Given that Jen is a novice Java programmer, she has a hard
time learning all the existing packages and classes. She
breezes through the database part, though, building all the

server-side SQL routines without much trouble. Her
problems start with the database connection to the
program…

The hard way
Jen doesn’t know what objects are available to connect her
server side routines and database with the front end. She
asks around the office, but nobody is familiar enough with
the Java language to navigate JDBC objects and
connections. She manages to access the database, defines
the functionality that should be included in the front end,
and now needs to know how it should be done.

She turns to the JDK documentation but is unable to find
much information on this new library. She tries to build
some of the structures, but finds that testing the objects is a
tedious and slow process. She pokes around on the
Internet and, lurking in some of the user groups, finds out
that there are some books on JDBC which might help her.
The book gives her some very basic notions, but not nearly
enough to help her build her application. She needs more
details on how to call the server-side stored procedures she
has created.

She wades around the newsgroups, reads their FAQs, and
posts a question. Disappointingly, she gets no answers.
She finds that most of the newsgroups are tight
communities where people tend to get off topic or carried
away. She subscribes to a few mailing lists, but traffic is
too high. People seem to be more interested in discussing
their own problems than addressing the problems of a new
user like her.

She finally decides to get in touch with a friend’s daughter,
Sarah, who studies Computer Science at the local
university. Sarah has never programmed in Java, but
knows several more advanced students who have. Sarah’s
boyfriend, David, is experienced in Java. Jen reluctantly
sends him an email, to which David replies with a brief
explanation and pointers to some websites about JDBC.

Enter the Expert Finder
Let’s see how the same scenario goes with our Expert
Finder system. Instead of asking around the office, Jen goes
to her Expert Finder agent and enters a few keywords.

Expert Finder periodically reads through her Java source
files, so it knows how much she knows about certain Java
concepts and classes. In fact, it reads through all of the
programs she wrote while studying with the “Learn Java in
21 Days” [5] book. Expert Finder verifies what constructs
she has used, how often and how extensively, and compares
those values to the usage levels for the rest of the
participating community to establish her levels of expertise.
Jen can see and edit her profile on the profile-editing
window, and decides to publish all of it. Table 1 shows
Jen’s usage for each construct and calculated profile.

Jen types in the keywords “sql”, “stored” and “procedure”.
From the domain model, the agent knows that sql is
related to database manipulation – java.sql is a library of
objects for database manipulation. From the model, the
agent knows which classes are included in this library.

java.io 10 Novice

java.util 15 Novice

System 20 Novice

elementAt 5 Novice

println 20 Novice

Table 1: Jen’s areas and levels of expertise

The agent communicates with other agents calculating their
“suitability” by verifying which libraries and classes they
know how to use. It picks out David (Table 2), because he
has used the “java.sql” library and its objects.

Area Usage Expertise Level

java.io 46 Intermediate

java.util 45 Intermediate

Connection 11 Advanced

InputStream 5 Intermediate

CallableState
ment

10 Intermediate

Table 2: David’s areas and levels of expertise. Note that the levels of
expertise are obtained through a comparison with others in the
community.

His expertise is higher, but not too distant from Jen’s. Jen
takes a look at David’s published profile, checks his “halo
factor” (an indicator of how helpful he is to the
community), and sends him a message:

Dear David,

I’m a novice Java programmer and have some problems
regarding database connections and manipulation. I have
created a series of stored procedures and now need to
access them from my program. Is there a way to do that?

Thanks,

Jen

David verifies, based on Jen’s “halo factor”, that Jen is a
new user and decides to answer her question:

Hi Jen,

To call stored procedures you should use a Callable
Statement, which can be created with the prepareCall
method of the Connection class.

Here’s a little snippet which might help you:

CallableStatement cstmt =

 con.prepareCall("{call MyProc(?, ?)}");

cstmt.registerOutParameter(1,
java.sql.Types.TINYINT);

cstmt.registerOutParameter(2,
java.sql.Types.DECIMAL, 3);

cstmt.executeQuery();

byte x = cstmt.getByte(1);

java.math.BigDecimal n =

 cstmt.getBigDecimal(2, 3);

Also, take a look at:
http://java.sun.com/products/jdk/1.2/docs/guide/jdbc/getstart/callable
statement.doc.html

David

With Expert Finder, Jen obtained David’s help much faster
than she would have otherwise.

Approach

Expert Finder Agent

matchmaking
engine

user profiling
module

Java Source Files

User
Profile

Domain Model

Other User's
 Profiles

Figure 1: An agent’s Internals: Each agent has (1) a profiling module,
which builds the user’s profile from his/her Java files; (2) a
matchmaking engine, which consults and compares other user’s
profiles and (3) a domain similarity model, used for matchmaking
purposes

Figure 1 shows one agent’s internal structure. It is
important to note that there are no specialized agents for

experts and novices. It often happens that a person might
be an expert in one area and a novice in another.

Domain Similarity Model
Our system uses a similarity model for the Java domain,
because an expert whose knowledge lies in a more general
or more specific category or related topic to the novice’s
requirements might still be a good candidate to provide
help. In a sophisticated domain like Java programming,
there are many overlapping relationships between the
knowledge elements. Rather than burden users with the
task of manually browsing subject category hierarchies, and
judging relevance, we move that task onto the agent.

Even if the agent is not perfectly accurate in its similarity
assessment, the agent’s model constrains the search space
enormously and results in more relevant recommendations.
We also provide browsers and editors for the domain
model, and for user profiles, allowing any deficiencies in
our prior knowledge to be corrected manually.

The Java Programming Domain
Constructs in Java are hierarchically structured into classes
and subclasses and organized in packages according to
purpose or usage. Many classes also provide an extra hint:
the “See also:” entry, which lists related classes, methods
or packages. We assigned arbitrary values to each of the
relationships between classes. The first step in the process
was establishing which items would be taken into account
for purposes of determining similarity.

• Sub/Superclass relationships: a subclass is fairly
similar to its superclass (inheriting methods and
properties), but a superclass is less similar to its
subclass, since the latter may contain resources not
available in the former. For example, the class Container
is a subclass of class Component: it inherits 131 methods
and 5 fields. However, Container also defines 52 of its
own methods. Code: SUB or SUP.

• Package coincidence: Packages group classes by what
they are used for. Package java.awt contains classes used
for graphic interface construction, such as buttons, list
boxes, drop-down menus, etc. A person who knows how
to use these classes is someone who knows how to build
graphical interfaces. Code PAK.

• “See also” entry: this is a hint which links to other
classes that might work similarly or share a purpose.
Class MenuBar, for instance, is a subclass of class
MenuComponent, and is related to classes Frame, Menu
and MenuItem through the “See Also” relationship.
Code: SEE.

Thus, the documentation pages were parsed into a domain
model where one class’ similarity to another is determined
by

{SUB, SUP} + PAK + SEE,

where the values for each of the variables may vary
according to the type of query (free-form keyword based or
selected from list.) These values are parameterized: the
model holds the different relations, not the numbers.

Package: java.awt
Super Class:
Component
Sub Classes: {...}
Method Lis t: {...}
Description: ...

Canvas

Package: java.awt
Super Class:
Component
Sub Classes: {...}
Method List: {...}
Descrip tion: ...

Button

Package: java.awt
Super Class:
C omponent
Sub Classes: {...}
Method List: {...}
D escription: ...

Container

Package: java.awt
Super Class: Object
Sub Classes: {...}
Method List: {...}
Description: ...

Component

Package: java.awt
Super Class: Object
Sub Classes: {...}
Method List: {...}
Descrip tion: ...

Graphics

Package: java.awt
Super Class: Container
Sub Classes: {...}
Method List: {...}
Description: ...

Panel

SUB/SU P + PAK

PAKSUB/SUP + PAK

PAK

SU B/SUP + PAK

SUB/ SUP + PAK

PAK

PAK

PAK

PAK
PAK

PAK

 Figure 2: Similarity model for the Java domain (partially shown.)

Building Profiles
Automatic profiling is important, given that, in general,
people dislike filling long forms about their skills. An
automated method also reduces the possibility of inaccuracy
due to people’s opinions of themselves. Another advantage
is that automated profiles are dynamic, whereas people
rarely update interest or skill questionnaires. However, we
acknowledge the fact that the agent might be wrong in its
assessment and allow the user the option of altering his or
her profile.

A profile contains a list of the user’s areas of expertise, the
levels of expertise for each area (novice - beginner -
intermediate - advanced - expert) and a flag noting whether
or not this information is to be disclosed. Hidden
information will still be used in calculations of expertise for
a given query. A user might change his or her profile at any
time.

Figure 3: Profile editing window: a user can inspect and edit his or her
profile as fit, to compensate for errors in the agent’s assessment or hide
areas of expertise.

Assessing a user’s areas and levels of expertise is done
through analysis of his or her Java source files and parsing
them, analyzing:

import java.util.*;

public class Acronyms extends Hashtable {
 public Acronyms() {
 super();
 }

 public void addAcronym(String expansion) {
 Vector wordvector = new Vector();
 StringTokenizer st = new StringTokenizer(expansion);
 StringBuffer compression = new StringBuffer();
 String word;

 for(; st.hasMoreElements();) {
 word = (String)st.nextElement();
 compression.append(word.substring(0,1)); // first letter of each word
 wordvector.addElement((Object)word); // make a vector of words
 }
 this.put((Object)compression.toString(), (Object)wordvector);
 }
}

Package
occurence Class

extesion

Class
occurence

Method
usage

 Figure 4: Example code and items analyzed in it.

• Libraries : which libraries are being used? How often?
Libraries are declared once, usually at the beginning of a
file.

• Classes: which classes are used? How often? Classes
are declared, instantiated and used throughout the file.
Classes can also be subclassed, which indicates a deeper
knowledge of the class. Implicit in the act of subclassing
is the recognition that there is a need for a specialized
version of the class and knowledge of how the class
works and how it should be changed in each specific case.

• Methods: knowing which methods are being used
helps us further determine how much he or she knows
about a class: Are only a few methods used over and over
again? How extensively is the class used?

We verify how often each of these is used and compare
these numbers to overall usage. This is similar to Salton’s
TFiDF algorithm (term frequency inverse document
frequency) [9], in that the more a person uses a class that’s
not generally used, the more relevant it is to his profile.
The profile is a list of classes and expertise level for each.
Expertise level is initially determined by taking the number
of times the user uses each class and dividing by the overall
class usage.

Figure 5: Viewing other users’ profiles: the items in bold represent
classes that have been subclassed. “Hidden” classes are not shown.

Matching Needs and Profiles
Given a query, related topics are taken from the model and
added to the query, thus expanding it. It is then compared
to other users’ profiles. A query can be formulated as:

• Keyword entry: the user enters a set of keywords
associated with his or her needs in a text box. The class
descriptions are then used to locate appropriate classes
from the keywords.

• Selection of classes from a list of those existing in the
model: the user chooses from a list of classes. These are
then used to find the experts by doing a vector match on
the class list and profiles.

• A combination of both: the user chooses some items
from the list and enters some keywords.

A screenshot of the query screen can be seen in Figure 6. If
a user selects items from the list, it is reasonable to assume
that he or she needs help with using these classes
specifically. Therefore, sub/superclass relations, denoting
structural similarity, are more valuable in finding an expert
with the desired knowledge. Entering a few keywords

means that the user knows what he or she wants to do, but
is uncertain of how to do it. In these cases, functional
similarity (packages) is more important. If the user uses a
combination of both, both relations can be used, although
functional similarity takes precedence over structural: the
user almost certainly knows what he or she wants to do,
even though he or she may not be doing it correctly (this
reflects on picking the wrong items in the list.)

Figure 6: Query screen – a user may choose an item from the list or
enter keywords.

A match is made by first finding similar topics in the
domain model. The agent then goes on to contact other
agents, computing a vector match between its user’s needs
and other users’ expertise. The agent returns a list of
potential helpers. We compute “fitness values” for all of the
users, including the questioner. We then take the n with
closest (but higher) fitness values. The user can inspect
each of the experts’ profiles before selecting whom he or she
would like to contact from that list and send them
messages.

We believe that the best person to help is not always the
topmost expert, but someone who knows a bit more than
the questioner does. First, because the topmost expert is
most likely to be unavailable or uninterested in novice
questions. But, more importantly, experts and novices
have different mental models, as noted by [3] so we are
more likely to bring together two people who have similar
mental models.

Figure 7 shows the screen where users can view a response
to their query, listing the experts available.

Figure 7: Expert list screen – experts are ranked by appropriateness
to a given query.

Incent ives
We have built into the system an incentive mechanism to
assess the social capital in the community. We keep track
of how helpful each person generally is (the halo factor).
The halo factor of a person is the percentage of questions
answered from those received ([Qa/Qr]*100). It is
displayed every time a person sends or answers a question,
motivating both the questioner and responder. When a
person is new to the system or has never received any
questions (Qr = 0), the person is billed as being new to the
system. We don’t want to inhibit a user from asking
questions (and asking how many questions one has asked
could be interpreted as how much work one is giving
others.) As the system keeps track of questions sent and
received, we can more evenly distribute questions when
there are multiple experts available.

Interface Overview
A button bar (Figure 8) on the top of each page gives each
user the options: making a new query, viewing responses,
viewing questions, editing the profile and logging out.

Figure 8: Expert Finder button bar. Left to right: Query, View
Responses, View Questions, Edit Profile, Logout.

A user can edit his or her profile on the profile-editing
screen, shown previously in Figure 3. The queries are
submitted to the system via the query interface, Figure 6.

The results of the query are then shown in the result screen,
Figure 7. Clicking on one of the expert’s names, the user
may inspect this person’s profile in detail, verifying which
classes he or she knows how to use. Still on the result
screen, the user can select experts and click “Send
Message” to go to the message composition screen .

An expert can view questions sent to him or her, and
compose a reply, Figure 9. He or she can view responses
as on Figure 10.

Figure 9: View of the questions received: the expert can click on the
blue arrow on the right to start composing a reply.

Figure 10: Viewing answers received to one’s questions.

Evaluation
As an evaluation for this work, we built a prototype
system, generated profiles for 10 users, and ran 20 queries
through the system. We independently determined whether
the experts suggested by the system would be able to
answer those questions through a questionnaire. Questions
were taken from the Experts-Exchange forum, thus
constituting real problems people have. They ranged from
very specific (“How do I add an item to a JList”) to the

more generic (“What are static entries and what are they
good for?”).

Possible answers from the experts were “I can answer”, “ I
couldn’t answer this” and “Not flat out, but I would know
where to look”. We also showed the users their profiles, so
they could verify how well it represented their expertise.
We allowed them to edit their profiles and then compared
what the agent had said to what the users claimed.

Profiling
To test how well the profiling module worked, we
generated profiles for 10 users and had them edit them. We
then took the original and edited profiles and checked to see
how many items were altered and by how much. Users’
profiles are kept in files divided into:

• Totals: total number of times the user has used a
certain class, library or method, and the classes the user
extends in his or her code.

• Agent’s calculations: this is the expertise level the
agent calculated for the user.

• User values: User’s corrections to the agent’s
calculations, and values to be hidden from other users.

On average, it seems users edited about 50% of their
profiles. The number of changes ranged from 9% for the
least altered profile to 63% for the most altered. About one
third of all changes were decreases.

On commonly used classes such as Hashtable, users felt
they were very knowledgeable even though their profile
indicated otherwise. Many experts were using this class and
what we calculate for the profiles is what percentage of the
total usage belongs to each of those experts. If someone is
responsible for 55% of the total usage for the Hashtable
class, he or she will be placed in the intermediate level.
This may indicate a lack of variety in the sampling, for all
users were reasonably proficient with the Java language.

The decreases for the most part happened when there was
only one user who used a given construct, and was therefore
deemed the expert. If nobody else is using this class, the
user is responsible for 100% of its usage in the community.

31% of changes were 1 step changes (for instance, novice to
beginner), 33% 2 step changes, 26% 3 step changes and
10% 4 step changes. These numbers seem to indicate that
the agent’s calculations weren’t so far off the mark.

Matchmaking
Overall, the system performed well, always placing at least
one expert who had had said he or she could have answered
the questions (either right away or looking it up) in the first
three recommendations. We now go into more detail about
what happened.

Number of success cases (recommending experts who
would be able to provide an answer) was around 85%.
Breaking these down, 35% were “immediate success” cases
(the first expert recommended said he’d be able to answer it
right away) and 50% were “delayed success” (the expert
answered that he’d be able to answer by looking it up.)

Figure 11: Distribution of Success/Failure cases.

The system performed better for people with at least a little
knowledge. Since the system recommends people at a level
of expertise close to that of the questioner, if the questioner
had little or no expertise, the system did not always
recommend people well suited to answer.

For queries that were more specific, the system performed
well. Taking the top 3 experts found (not recommended) for
specific queries, we have 52% said they could answer the
question, 19% said they could look it up and 29% said
they could not. Analyzing the failure cases, we found that
these were either cases in which the related knowledge
model was used to get to an answer or cases where there
was no indication that a user had this knowledge in his
profile.

In the first situation, no expert said he’d be able to answer
the question, although some said they’d know where to
look. A quick check of the profiles revealed that none of
the experts had these classes in their profiles, either.
Therefore, the system had to use the related knowledge
model to search for experts. The same happened in the
second situation, although this time, despite the fact that a
user said he knew how to use a given class, there was no
indication in his code to support that statement, and
therefore the system couldn’t place him very high.

In general, in the cases where related knowledge was
needed, Expert Finder produced acceptable results, although
not necessarily the optimal choices (once again, ranking
experts incorrectly.) This probably means that the model
needs to be adjusted to produce better output for the
similarity relations, which would result in better matches.

More abstract queries yielded worse results. Once again,
taking the top 3 experts found, we have that 45% had
claimed they’d be able to answer the questions right away,
25% said they’d be unable to answer the questions and
30% said they’d have to look them up. Despite the
apparently good results, we consider these not to be as
good as the previous ones. In most cases, Expert Finder
placed experts incorrectly, ranking users who had said they
couldn’t answer higher than others who said they would be
able to answer them. This probably happened due to the
method used to retrieve keywords (searching through the
specification descriptions), since most of these queries were
made using keyword entry.

Future Work
Profile Building
More accurate profile building is a major area for future
work. Accuracy can be improved by enlisting more sources
of information and taking into account other factors such as
history. We could perform more complex code analysis,
which might reveal more about one’s programming style,
abilities and efficiency. We could also use such techniques
as collaborative filtering to rate expertise.

One other consideration on this topic is the issue of time,
or what we call “decaying expertise”: after a while, people
forget how to do things, if they don’t keep working on it.
As Seifert [10] notes, expertise comes with experience, and
memory plays an important part.

Making Expert Finder more proactive
The most immediate next step for Expert Finder would be
making it more proactive. A context-aware agent built
directly into the development environment could try to
figure out the user needs help by watching error messages
as he or she writes the program. It could also be done by
detecting when the user goes to the help system.

The agent could also help compose the messages by
inserting pieces of the questioner’s code or the error
messages he or she has been getting. It could also help the
expert deal with the problem by providing manual pages
and other documentation about the classes in question and
samples of the expert’s own code where the same classes
were used to help the expert remember how he or she dealt
with this problem before.

Related Work
Information Marketplaces
Experts-Exchange
Experts-Exchange [4] uses a predetermined expertise
directory, under which questions and answers are posted. It
uses a credit system to provide incentive. Experts-Exchange
doesn’t automatically generate a user profile and there
aren’t any recommendations made to the questioner: he or
she simply posts a question in a bulletin board-like system
and waits for an answer.

Referral Systems
ReferralWeb
In ReferralWeb [7] a person may look for a chain between
him/herself and another individual; specify a topic and
radius to be searched (“What colleagues of colleagues of
mine know Japanese?”); or take advantage of a known
expert in the field to center the search (“List dessert recipes
by people close to Martha Stewart”). The system uses the
co-occurrence of names in close proximity in public
documents as evidence of a relationship. Documents used
to obtain this information were links on home pages; co-
authorship on papers; etc.

ReferralWeb lacks a domain model or automatic profile
construction, but Expert Finder might also benefit from
ReferralWeb’s social network techniques, since people
prefer to ask questions of others who have pre-existing
social relationships with them.

Immediate Success

Delayed Success

Failure

Yenta
Yenta [5] is a matchmaking agent that derives users’
interest profiles from their email and newsgroup messages.
Yenta aims to introduce people who share general interests
rather than matching for a specific question or topic, and
again has no domain model. Yenta is notable for its fully
decentralized structure, which also could benefit Expert
Finder.

Information Repositories
Answer Garden
Answer Garden, [1] is a system designed to help in
situations such as a help desk. It provides A branching
network of diagnostic questions through which experts can
navigate to match the novice’s question. A similar
question already in the network may yield the answer, or a
new Q&A pair can be saved for future reference. The
network can also be edited.

Answer Garden and similar systems look for the contents of
the answer rather than the expert, which is harder in some
cases, and forgoes the ancillary advantages of locating an
expert who might serve as a resource in the future.

Another “Expert Finder”
A MITRE project also called Expert Finder [8] derives
expertise estimation from number of mentions in Web-
available newsletters, resumés, employee databases and
other information. It is a centralized system, which doesn’t
allow for inclusion of new experts easily and doesn’t
provide incentive mechanisms as we do. Recent versions
are incorporating more proactive elements, bringing it
closer in spirit to Expert Finder.

Task-Based Recommendations
PHelpS
The Peer Help System, or PHelpS [2] tracks users who are
doing step-by-step tasks, and if a novice runs into
difficulty, it matches them with another user who has
successfully completed the same or similar sequence of
steps. Unlike our system, it’s highly task-oriented, which
allows it to follow a user’s work patterns and check to see
when he or she gets stuck. The inspectable user profiles is
something we’ve adopted, but the initial requirement that
users fill out (and later maintain) their profiles might prove
to be a problem.

Conclusion
We have presented Expert Finder, a user-interface agent that
assists a novice user in finding experts to answer a question
by matchmaking between profiles automatically constructed
by scanning Java programs written by both the novice and
the expert. Tests show that the agent does reasonably well
compared to human judgment, and Expert Finder obviates

the need for skill questionnaires that are daunting to user
and hard to maintain over time.

REFERENCES
1. [Ackerman & Malone, 90] – Ackerman, M & Malone,

T – Answer Garden: A Tool for Growing
Organizational Memory – proceedings of the ACM
Conference on Office Information Systems, Cambridge,
MA, April 1990

2. [Collins, 97] – Collins, J.A, et al. - Inspectable User
Models for Just in Time Workplace Training – User
Modelling: Proceedings of the 6th Int. Conference,
Springer, NY, 1997

3. [Ericsson & Charness, 97] – Ericsson, K & Charness,
N. – Cognitive and Developmental Factors in Expert
Performance, in Expertise in Context, Feltovich, Ford
& Hoffman (eds.), MIT Press, 1997

4. [Experts, 97a] – Experts Exchange – Experts Exchange
FAQ - http://www.experts-exchange.com/ info/faq.htm

5. [Foner, 97] – Foner, L. – Yenta: A Multi-Agent,
referral-based Matchmaking System – The First
International Conference on Autonomous Agents,
Marina Del Rey, CA, 1997

6. [Lemay & Perkins, 97] – Lemay, L. & Perkins, C. –
Teach Yourself Java in 21 Days, second edition –
Sams, 1997

7. [Kautz, Selman & Shah, 97a] – Kautz, H., Selman, B.
& Shah, M. – ReferralWeb: Combining Social
Networks and Collaborative Filtering –
Communications of the ACM vol 40, no. 3, March
1997

8. [Mattox, 98] – Mattox, D., Maybury, M. & Morey, D.
- Enterprise Expert and Knowledge Discovery – MITRE
Corporation - 1998

9. [Salton, 88] - Salton, G. - Automatic Text Processing:
The Transformation, Analysis and Retrieval of
Information by Computer. - Addison-Wesley, Reading,
MA, 1988.

10. [Seifert, et. al] – Seifert, C.; Patalano, A; Hammond, K.
& Converse, T. – Experience and Expertise: The role of
Memory in Planning for Opportunities in Expertise in
Context, Feltovich, Ford & Hoffman (eds.), MIT Press,
1997

