
Programming by Manipulation for Layout
Thibaud Hottelier

UC Berkeley
tbh@cs.berkeley.edu

Ras Bodik
UC Berkeley

bodik@cs.berkeley.edu

Kimiko Ryokai
UC Berkeley

kimiko@ischool.berkeley.edu

ABSTRACT
We present Programming by Manipulation, a new program-
ming methodology for specifying the layout of data visual-
izations, targeted at non-programmers. We address the two
central sources of bugs that arise when programming with con-
straints: ambiguities and conflicts (inconsistencies). We rule
out conflicts by design and exploit ambiguity to explore possi-
ble layout designs. Our users design layouts by highlighting
undesirable aspects of a current design, effectively breaking
spurious constraints and introducing ambiguity by giving some
elements freedom to move or resize. Subsequently, the tool
indicates how the ambiguity can be removed, by computing
how the free elements can be fixed with available constraints.
To support this workflow, our tool computes the ambiguity
and summarizes it visually. We evaluate our work with two
user-studies demonstrating that both non-programmers and
programmers can effectively use our prototype. Our results
suggest that our tool is 5-times more productive than direct
programming with constraints.
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ACM Classification Keywords
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INTRODUCTION
Visual layout is the art of arranging visual elements in a pleas-
ing manner. Layout spans multiple application domains, in-
cluding the layout of documents; the layout of GUIs; the layout
of websites, which is a hybrid of document and GUI layouts;
and the layout of data visualizations. Both non-technical users
and expert programmers design layouts, by using WYSIWYG
editors or by writing code that customizes an existing layout
library. Either way, creating a layout entails fixing the sizes
and positions of some visual elements and specifying, in some
manner, the rules for computing sizes and positions of the
remaining elements.

Over the years, many alternative ways of specifying layout
have been proposed. (See Hurst et al. [9] for a recent overview
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of the field.) Constraints are arguably the most widespread and
successful programming technique. For example, the founda-
tions of TEX are laid upon constraints. CSS, the ubiquitous
web template language, also relies on constraints, although in
a more restricted and indirect manner [9].

Data visualizations are among the hardest layout problems,
in part because the data may have a recursive (tree) structure
and/or the visual layout is not “boxy.” Today, the task of build-
ing data visualizations consists of crafting a tailored layout
engine for a dataset. The current state-of-the-art, general pur-
pose frameworks [6, 4, 7]—e.g., Protovis and its successor
D3—require the advanced technical expertise of seasoned pro-
grammers. As such, they are inaccessible to many potential
users, such as non-programmer scientists.

Our solution, Programming by Manipulation (PBM), stream-
lines layout specification by allying user demonstrations with
guided exploration of the layout design space. Targeted toward
non-programmers, PBM is designed to prevent users from
getting stuck in either ambiguities or conflicts (contradictions),
the two symptoms of bugs when programming layouts with
constraints. Before we detail our solution, we summarize the
programmability challenges posed by constraints.

Programming with Constraints
Constraint-based layouts are powerful and versatile (see Re-
lated Work). By stating properties of the layout directly, con-
straints promise to yield a precise and predictable layout spec-
ification. However, manipulating constraints directly can be
tedious and error-prone. Specifically, programmers must care-
fully navigate between two hazards: ambiguities and conflicts.
Ambiguities arise when we do not state enough constraints
of the goal layout (under-specification) allowing multiple dis-
tinct layouts to satisfy the constraint system. The first solution
found by the solver is unlikely to be the intended one. Worse,
the selected solution might be different each run, causing
non-determinism. As such, ambiguities make the resulting
layout unpredictable for users. However, by stating too much
(over-specification) we risk introducing conflicts, i.e., inconsis-
tencies among constraints. When a conflict occurs, there exists
no layout satisfying all constraints. Our user-study shows that
resolving such conflicts can be challenging, even for experi-
enced programmers. In practice, the solver is often allowed to
drop some constraints, sometimes based on a priority hierar-
chy, until the system admits one or more solutions [2, 26].

Ambiguities are commonly alleviated by casting layout as an
optimization problem. If at most one layout maximizes the
utility metric, the ambiguity is removed. Leaving aside the
difficulty of capturing layout esthetics with a mathematical
metric, optimization does not fully address the problem. For
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instance, it is well known that optimization-induced “spring-
effects” result in unexpected layouts [26], forcing designers to
twiddle with constant parameters by trial and error. Further-
more, ambiguities are reintroduced when conflicts are handled
by dropping constraints, because there may be alternative
ways to drop constraints, each leading to a distinct layout.
This choice falls back upon the solver, which does not have
adequate information to make an educated guess, even with
priorities attached to constraints1.

Ultimately, ambiguities and conflicts have the same conse-
quences for users: the resulting layout may be unpredictable
and may appear to be chosen arbitrarily. The only certain
method for determining the effects of constraints is to run the
solver and examine its output. This limitation motivated the
programming of constraints by demonstration.

Programming by Demonstration
The advent of Programming by Demonstration (PBD) gave
rise to GUI builders. They enable users to express layout by
example, from which the necessary layout constraints are in-
ferred automatically. By lowering the level of discourse to con-
crete visual entities (widgets), away from abstract positioning
rules, demonstrations make layout programming accessible to
a wider audience. For visual domains such as layout, a natural
form of demonstration is a paper and pencil sketch. However,
users’ drawings contain small errors and imprecisions: they
cannot be interpreted literally by PBD systems. For this rea-
son, GUI builders adopted a constructive approach: instead of
drawing the entire layout at once, users demonstrate step by
step, by progressively adding widgets onto a canvas. However,
even with demonstrations, the central issue remains: ambigui-
ties and conflicts creep in during demonstrations, for example
when a new widget cannot be inserted without breaking a
constraint on existing widgets2. When a conflict or ambiguity
occurs, users have no other recourse than diving into the con-
straints to resolve them manually, it may be a challenging task
for someone who does not program.

We conjecture that the root causes behind the difficulty of pro-
gramming with constraints—ambiguities and conflicts—have
not been fully addressed. There has been exciting recent work
in this area [25]. Most notably, ALE has introduced a language
fragment (ALE excluding manual constraints) that is free of
1With CSS, text overflowing the borders of a container is a classic il-
lustration of conflict resolution not matching the designer’s intent [15].
This phenomenon occurs with only two boxes: Box A containing
the text with a preferred width of 300px, and its decoration, box B,
set to half as wide as the window. The designer would like A to be
contained inside B. In CSS, this is expressed indirectly by making
A a child of B. When the user resizes the window to 500px, CSS
will overflow the text of A out of B. If B has a visible border, the
resulting layout is unlikely to please.
2We illustrate this problem with an example inspired by ALE [12,
25]. Using a GUI builder, we add two text boxes next to each other
and horizontally justified on a window 240px wide. We set the width
of each text-box to 100px. By adding a third widget to the same
row whose width must be at least 50px to be displayed properly, a
combo-box for instance, we create a conflict. The sum of width of our
three widgets is over 240px. When faced with this situation, XCode
silently drops the width constraint of the text-boxes. ALE extracts
the relevant conflicting constraints to help the designer understand
and eventually repair the constraints manually.

both ambiguities and conflicts. In terms of programmability,
this is an ideal language. However, some layouts can be diffi-
cult to express. For instance, to center a widget globally, users
need to manually add constraints from outside this fragment,
which may reintroduce conflicts.

Layout for Visualizations
With the understanding that ambiguities and conflicts are the
central programmability issues, let us now look at the spe-
cific needs of data visualization layout. Consider a biologist (a
non-programmer) trying to define a phylogenetic tree. Precise
control over positions and alignment is crucial, because the
layer in which each node is drawn has biological meaning: it
determines when two species branch off. The number of pos-
sible tree layouts is very large: by considering only positional
aspects of tree layouts such as the overall architecture (flat,
radial, flower-like); the layering strategies; the space allocation
strategies between both parent/children and siblings, we count
over a hundred possible designs. It is unlikely that our biolo-
gist will find the required layout in a library of prepackaged
visualizations, such as ManyEyes [22]. Therefore, we propose
to steer the exploration of designs by manipulating the layout
of the sample document.

Finally, data visualization has requirements distinct from GUI:
layouts are non-boxy and recursive, and datasets inevitably
change and grow. Therefore, layout engines must be generic
enough to be reusable for new, updated data. Moreover, scien-
tific datasets can be massive; users must be able to demonstrate
the layout semantics on a small subset of the data and then run
the resulting layout engine on the full dataset.

We summarize our design principles in the following four
points:

1. The language of constraints must be rich enough to capture
a wide class of data visualizations, including recursive and
non-boxy ones.

2. The system must be resistant to the small imprecisions
present in drawing-based demonstrations.

3. Ambiguities and conflicts must either be ruled out or be
explained at a level of discourse understandable by non-
programmers.

4. Users must be able to demonstrate the desired layout on a
small subset of their data. The demonstration must general-
ize to other datasets.

Programming by Manipulation (PBM)
We propose Programming by Manipulation (PBM), a new
example-driven programming paradigm, based on guided ex-
ploration of the space of layout configurations. We cast layout
as a satisfaction problem, avoiding the reliance on an optimiza-
tion utility function. To help our designer select constraints
just sufficient to yield a single solution, we develop a manip-
ulation methodology that guarantees the absence of conflicts
and actively steers the user away from ambiguities by explain-
ing them visually and proposing potential resolutions. Our
manipulation explores a design point opposite to ALE, which
rules out ambiguities and explains conflicts.
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of constraints and settle for a close enough approximation if
necessary [11].

This paper makes the following contributions:

1. The Programming by Manipulation3 paradigm targeted to-
ward non-programmers for visual domains such as data-
visualization.

2. A new type of demonstration—What is wrong (WiW)
manipulations—which is resistant to users’ imprecisions,
inherent in drawing. Instead of sketching the desired layout,
users steer the exploration by pointing out what they would
like to change on a given layout. Only the direction of the
manipulation is interpreted by PBMM.

3. Two user-studies, the first one showing that non-program-
mers can design interesting visualizations using our PBM
tool. 10 out of 11 participants completed all five visualiza-
tion tasks. The second study demonstrates that proficient
programmers are more productive with PBM than with
conventional constraint programming. With PBM, program-
mers needed on average one fifth of the time and three times
fewer attempts to complete the same tasks.

RELATED WORK
Programming by Manipulation builds on the foundations laid
by constraint-based layout systems, GUI builders, and the
recent work on fully automatic layout inference.

Constraint-based Layout
Constraints have been used in many languages to specify lay-
out [5, 19, 13, 18, 1, 12, 10, 9]. Much work has focused
on expressibility and solving efficiency. (In contrast, we are
concerned primarily with programmability, by preventing con-
flicts and explaining ambiguities.) Typically, layout has been
phrased as an optimization problem by either maximizing a
utility metric or satisfying as many constraints as possible. We
chose to cast layout as a satisfaction problem, with the follow-
ing trade-offs: satisfiability is a simpler problem in term of
computability; rich constraints such as polynomials, which are
common in visualizations, become tractable. Satisfaction also
enables a deeper level of analysis: we leverage the power of
SMT-solvers to prevent conflicts, summarize ambiguities, and
efficiently compute both generalizations and specializations.

GUI Builders
With GUI builders, users can construct user interfaces graphi-
cally by progressively adding widgets to a canvas [17, 18, 20,
23]. Each time a widget is added, new layout constraints fixing
its position are inferred, sometimes with the help of semantic
snapping [8]. More advanced systems produce flexible GUIs
which adaptively resize to occupy the space available [25].
Naturally, GUI builders are tailored toward UI boxy or tab-
stop layout [12]; it is unclear whether these techniques can be
adapted to recursive layouts common in data visualizations,
such as a radial tree.

Most GUI builders delegate the resolution of conflicts and
ambiguities to users. Our user-study suggests that this is a
3Try our online demo at http://pbm.cs.berkeley.edu.

challenging task. Recent work has focused on this programma-
bility challenge: ALE [25] is a layout editor which guarantees
that the layout is well-defined (non-ambiguous) and explains
conflicts by computing the maximum satisfiable set of con-
straints. ALE also defines a safe, conflict-free fragment of
the layout language (one without manual constraints). This
comes at the cost of some expressiveness; for instance, center-
ing globally is not possible. We took the opposite approach
and chose to rule out conflicts but tolerate ambiguities. We
believe that ambiguities (and their resolution) are easier to
convey to users than conflicts. We condense all ambiguities
into a summary: a set of “axes of freedom” understandable at a
glance by non-programmers. ALE and PBM have orthogonal
approaches to how a layout is constructed. We start from a full,
complete but incorrect specification, and progressively adjust
it by enabling and disabling constraints. In contrast, ALE starts
with an empty specification and progressively fleshes it out by
inferring more constraints as widgets are added to the layout.

Automatic Layout Inference
Fully automatic methods for layout generation have been stud-
ied as well. Layout can be inferred from topological descrip-
tions [24], or directly from user-drawn mock-ups [21]. In the
latter work, a subdivision of the space expressed as a tree
of vertical and horizontal dividers is extracted from a single
demonstration, a mock-up. This hierarchy is then encoded
with CSS rules which can be laid out by a web browser. Since
a single mock-up may not be a sufficient specification of the
layout, user guidance is invoked to deal with the ambiguity.
This user guidance takes the form of configuration options
which include manually fixing some of the subdivision steps.

PROGRAMMING BY MANIPULATION
This section provides a detailed overview of layout by ma-
nipulation, using a phylogenetic tree as a running example
(Figure 3). The goal for our user is to establish the core as-
pects of layout, such as position, size, alignment, and margins.
In the next paragraph, we take a step back to explain why we
think our exploration-centric workflow is a crucial feature for
PBD systems such as this one.

Our early prototypes performed rather poorly. With neither
exploration nor manipulation, users were asked to sketch the
desired layout by repositioning all layout elements in one
comprehensive demonstration. The combination of constraints
inferred rarely produced the desired layout. In our informal
observations, we saw that users were left perplexed, know-
ing neither what they did wrong nor how to improve their
demonstration. This direct approach failed because users are
unaware of which layouts are expressible with the constraints
embedded in the sample document. This is a common flaw
of PBD systems [11]. The target program, as represented in a
user’s mind, is often not expressible. Interestingly, there often
exists an equivalent program or a close approximation which is
expressible and for which users would settle if they could dis-
cover it [11]. This observation led us to our exploration-centric
approach.

To create any visualization, we first need to construct a sample
document. In a second step, we will configure this document
by directly manipulating its layout. Concretely, since we cast
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User identifies undesirably positioned elements (here, inner nodes and leaves are
vertically aligned with the root). Next, he drags the incorrectly positioned element(s),
as if breaking the layout constraints that hold the element(s) in the wrong position.
This is a What-is-Wrong (WiW) manipulation.

PBMM uses the manipulation to relax (generalize) the layout constraints so that
elements dragged in the manipulation become unconstrained and are thus free to
move. PBMM also computes the alternative sets of constraints that can be enabled to
make the layout constraints unambiguous (specializations).

User examines alternative layouts by dragging the element along the ambiguity
basis. He selects the desired layout by dropping the element into that position.

Starting 
Configuration

WiW Manipulation

PBMM

Disables constraints that set the vertical
positions of inner nodes and leaves.

Enables constraints that compute vertical
position of inner nodes and leaves.
Here, leaves are layered based on their
distance to the root, and inner nodes are
layered based on their distance to the
furthest leaf.User repeats the process, identifying and fixing the remaining incorrectly placed

elements. Here, some leaves remain placed incorrectly.

Specialization

Ambiguity Basis

Free/Ambiguous Nodes

Alternative positions 
(specializations)

Generalization

PBMM enables the corresponding constraints in response to the specialization. The
result is a non-ambiguous layout.

A

B

C

D

E

Figure 3. The five configurations explored to establish the node layering of a tree. The hand icon illustrates the manipulation performed by the user.
Configurations B&D are ambiguous; their axes of freedom are shown only for the selected node.
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layout specification as a satisfaction problem, we must find
a combination of constraints leading to a single, unique lay-
out. This combination of constraints constitutes our “layout
configuration”. Once established, we can reuse the same con-
figuration to create other documents which will share the same
layout properties. In CSS terminology, a layout configuration
would be called a template.

Creating a sample (unconfigured) document
To create a sample document, the (layout) designer selects
blocks from a library and nests them: a document is a tree
of instances of blocks. By choosing which blocks to use, the
designer is already painting the broad strokes of the layout:
a barchart and a tree are built from radically different blocks.
For our phylogenetic tree, we nest instances of three blocks:
TreeRoot is the root of our sample document, inner nodes are
instances of TreeNode, and the leaves are TreeLeaf. The sample
document must be representative of the type of documents
to be supported by the layout configuration. In practice, we
found that documents with about 10 to 20 nodes are most
useful. A tree with a single node does not provide enough
information. However, our biologist’s full dataset of over one
hundred nodes for a phylogenetic tree has too many entities,
making manipulation difficult.

Blocks
Blocks are crafted from constraints by an expert programmer.
They have flexible layout behavior controlled by configuration
switches that enable or disable individual constraints. It is
the role of manipulation to configure these switches. Each
block contains both attributes (e.g., sizes and positions) and
constraints. Some attributes are known constants, for instance
the size of an image, while others need to be computed at
runtime. The constraints defining a block range not only over
its own attributes but also over those of its neighbors in the
document hierarchy.

Since blocks are reusable across many visualizations, we col-
lect them in a library. Each block also bundles an English
description of its function for designers. Other frequently used
blocks include horizontal/vertical dividers for guillotine lay-
outs (H/VDiv), grouping boxes (HBox, VBox, HVBox) for
box-based layouts, floating elements for flow-layouts (Float-
Box), as well as various containers. We describe the language
constraints behind blocks in the next section.

Layout
Under the hood, a document is a constraint system composed
as a conjunction of all enabled constraints. As such, each
configuration (of switches) yields a different constraint system.
The set of all possible configurations forms the configuration
space. Given a configuration, the layout of a document is a
solution to its constraint system. In other words, a layout is an
assignment of values for each document’s attributes, such that
all enabled constraints are satisfied. Depending on how many
layouts exist for a document, we distinguish three kinds of
documents: (i) a document is deterministic if it admits exactly
one layout; (ii) a document for which there exists no layout is
inconsistent: some of its constraints are conflicting; and (iii) a
document which admits more than one layout is ambiguous.
We compute the layout of a configured document by solving

the corresponding constraint system. Modern solvers [16]
can handle documents with hundreds of blocks in less than a
second. Finally, once the document is laid out, it can be passed
to a renderer for display.

Demonstrating the layout configuration
To establish the finer aspects of the visualization, the designer
explores the configuration space in search of the configuration
which yields the best layout of the sample document. We built
a tool supporting this exploration-centric workflow: the PBM
manipulator (PBMM), devised to help designers finding an
interesting layout quickly, even in huge configuration spaces.
PBM turns conventional demonstrations upside down: Instead
of directly demonstrating the goal, designers highlight one
layout aspect (e.g., horizontal alignment) they would like to
change by dragging one block away from its constrained po-
sition. We call such manipulations “what is wrong” (WiW)
manipulations.

PBMM presents the layout of the sample document according
to the currently active configuration. Figure 4a shows the
user interface. The exploration always starts from an arbitrary
configuration that yields a deterministic document. Then, by
manipulating the layout itself, the designer can make a step
in the direction of his choosing, which enables him to hop
from configuration to configuration. To steer the exploration,
the designer either (i) points out an incorrect layout feature;
or (ii) chooses an alternative layout from among a range of
options. Figure 3 illustrates the exploration process on our
phylogenetic tree. In four manipulations, we establish the
desired tree layering.

The designer’s manipulations are translated into two types of
“moves” through the configuration space. One move introduces
ambiguities and the other one resolves them:

• Generalizations introduce ambiguities by switching off one4

constraint currently enabled, effectively weakening the con-
straint system of the sample document. By toggling off one
constraint, we move to a new configuration which admits
a superset of the layouts of the current configuration. Gen-
eralizations are expressed with WiW manipulations: the
designer highlights incorrect aspects of the layout by drag-
ging blocks to displace them from the position constrained
by the current configuration. Generalizations are triggered
by the “Break Rules” button (Figure 4a).

• Specializations resolve ambiguities by strengthening the
constraint system of the current configuration. To do so, we
switch on one disabled constraint, which brings us to a new
configuration admitting a subset of the current configuration
layouts. To specialize a layout, designers choose one layout
from a list of alternatives.

To browse configurations effectively, designers need to under-
stand the nature of the configuration space: they need to know
both “where they are” and “where they can go”. While remov-
ing constraints (generalization) is always possible, adding con-
straints (specialization) can create conflicts. As such, PBMM
4Constraints are actually switched on or off in groups to handle
interdependencies and subsumption. To simplify the presentation, we
assume that only one constraint is toggled after each step.

Developer Tools I UIST’14, October 5–8, 2014, Honolulu, HI, USA

236



Developer Tools I UIST’14, October 5–8, 2014, Honolulu, HI, USA

237



Developer Tools I UIST’14, October 5–8, 2014, Honolulu, HI, USA

238



Task Completion Time [s] Steps

Barchart A 11 (100%) 17 ± 19 3.6
Barchart B 11 (100%) 64 ± 30 8.4
Icicles 10 (91%) 60 ± 88 8.5
Treemap 11 (100%) 137 ± 55 14.8
Tree 11 (100%) 64 ± 28 5.4

Table 1. Non-programmer results. The columns indicate the number of
participants who successfully completed the task; the median time taken
in seconds with the standard deviation; and the average number of steps
to the goal.

To investigate these two questions, we conducted two user-
studies. In the first, we asked non-programmers to configure
five data visualizations using PBMM. To answer the second
question, we performed a within-subject study on seasoned
programmers. We asked them to complete the same five visual-
ization tasks both with PBMM and with an interface mimicking
standard constraint programming.

Non-Programmers
We recruited 11 participants (3 males, 8 females, ages 22 to
39) either students or staff from outside the engineering disci-
plines, largely from the Biology and Linguistics departments.
Participants were selected for their lack of formal training in
programming. When shown a picture of an icicle graph and
asked whether they could program a layout template producing
this type of visualization, all participants answered no.

Each session proceeded as follows: Participants were first
introduced to PBMM by a 10 minute long, written tutorial,
culminating in a simple exercise. Each participant was tasked
with creating five visualizations: two barcharts, one icicle
layout (Figure 4a), one treemap (Figure 1), and a custom
tree layout (Figure 3). These tasks were chosen to showcase
the applicability of our method to a variety of layouts, while
offering a gradual increase in complexity. Each task consisted
of a short introduction motivating the visualization, followed
by an illustration of the goal layout. To complete each task,
candidates had to produce the goal layout in 10 minutes or
less using PBMM.

All participants but one solved each of the five tasks within
the time limit. One participant was not able to complete the
icicle graph. Results are summarized in Table 1. The treemap
is a particularly interesting case: Participants found creative,
unexpected ways to complete the task with 8 unique paths
through the design space to the goal layout. The shortest path
goes through 7 configurations, whereas the longest explores
19, indicating that PBM supports a range of ways to config-
ure a template and accommodates many different thinking
processes.

Programmers
To make a fair comparison with manual constraints program-
ming, we focus on the significant aspects of programming,
such as resolving ambiguities and conflicts, while abstracting
away irrelevant factors like language syntax. To do so, we built
a second programming tool which mimics the relevant part of
programming with constraints. Instead of typing code, partici-
pants toggled GUI switches to enable/disable constraints. In

essence, we have reduced the task of constraint programming
to finding a set of constraints leading to the desirable layout.
We refer to the mock-up tool as the “button” tool.

The interface of the button tool is divided in two: The top
half displays the current layout. Users can scroll and zoom
in/out, but no other interaction such as dragging an element is
possible. The second half is a table of toggle switches control-
ling constraints. The table has one row per block. Each row
contains all the constraints pertaining to one layout element.
Columns organize constraints by category, such as “horizontal
alignment” or “height computation.” Within each cell, each
switch is labeled with simplified pseudo-code of the constraint
it toggles. If a conflicting set of constraints is enabled, the
button tool reports that the selected constraints cannot be satis-
fied, and no layout is displayed in the top half. The button tool
does not provide a debugging aid for identifying conflicting
constraints such as the maximum satisfiable subset or the unsat
core. However, to explain ambiguous layouts, the button tool
does provide the same visual aids as PBMM: the tool shows one
possible layout augmented with axes of freedom representing
the base of ambiguity for each partially constrained block.

We recruited 16 participants (13 male, 3 female, of ages be-
tween 22 and 30), students and staff from engineering depart-
ments, mainly Computer Science. All participants had taken
at least one CS class and had been programming for at least 3
years. When shown an illustration of an icicle graph, all par-
ticipants but one claimed they could write a layout template
producing this type of visualization.

The programmer study is a within-subject experiment: every
participants used both the button tool and PBMM to solve the
set of five layout tasks twice. We reused the same five tasks
from the non-programmer study. To compensate for learning
effects, half of the participants started with the button tool,
and half with PBMM. The setup for this study was similar to
the non-programmer setup. Participants first read a written, 10
minute long tutorial introducing the first tool, then did a warm-
up exercise, and then solved the five layout tasks using the first
tool. They then repeated this process (both tutorial and tasks)
with the second tool. Finally, we interviewed participants for
10 minutes about which tool they found to be more effective
and improvements they would make to either of the tools.

To compare the productivity of participants with each tool, we
measured the following indirect indicators: time taken and the
length of the path in the design space from the start layout to
the goal. Each step in the path corresponds to a configuration
which was reached, either by demonstrations or by toggling
constraints with switches.

All tasks but two were completed within the 10 minute time
limit. One participant could not complete the treemap, and
another did not finish the tree, both while using the button tool.
We performed an ANOVA of completion times with task and
tool as independent factors. The times were log-transformed
to make the distribution closer to a Gaussian. We observed
a strong main effect of the tool (F = 345, p � 0.001), and
significant effect of the task (F = 72, p � 0.001). Since the
tasks were specifically chosen to be gradually increasing in
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Figure 6. Paths through the configuration space on the icicles task from the same participant using both tools. Each configuration is uniquely identified
by a capital letter. A thin dashed-line highlights configurations explored twice due to backtracking. Configurations along the x axis (0 ambiguous
dimension) are deterministic. Conflicting configurations are represented with a negative number of ambiguous dimensions.

difficulty, this was expected. PBMM increased the speed of
programmers by a factor ranging from 2.5 (Barchart A) to
10.6 (Barchart B). Across all tasks, the median speed-up was
5.3. To analyse the effect of the tool on path lengths, we used
a Wilcoxon signed-rank test. We found that the manipulation
tool required fewer steps through the design space than the
button tool, with strong confidence (V = 3236, p � 0.001).
Here again, we observed that paths are approximately 3.6
times shorter on average across all tasks with PBMM.

Discussion
Our first user-study demonstrates that non-programmers can
successfully design data visualizations using PBMM, while the
second study shows that programmers would also be more
productive with PBMM when programming constraints. It is
important to note that, in our experiments, the button tool pro-
vided instantaneous feedback. The consequences of toggling
constraints were immediately visible. In practice, the situation
is often worse; programmers must wait for the compilation-
execution cycle to finish before seeing the results of their mod-
ifications, thereby increasing the time cost of making changes.
Consequently, in practice, longer paths to the goal layout are
more detrimental to productivity, and the ability of PBM to
quickly converge on the goal becomes more relevant.

We have combined the results from both studies to compare
the difference in productivity between programmers and non-
programmers using PBMM. Non-programmers took on average
53% longer than the subset of programmers who started with
PBMM. This is to be expected, since programmers are more
familiar with concepts such as constraints: they are able to
build a mental model of the inner workings of our tool faster
than non-programmers. We argue that a 53% increase in time
spent is a small price to pay to enable non-programmers to
accomplish tasks which were previously out of reach.

To further understand how participants used each tool; which
actions led to dead ends, where users spent time thinking; and
where they got stuck; we have examined in detail the traces
from programmers with each tool. Figure 6 shows two such
traces, one per tool, taken by one participant on the moder-
ately difficult icicle chart. The two traces we have chosen are
typical of what we have observed on this task. Note that this
particular participant started with PBMM. Let us start with the

trace from the button tool. At the beginning, this participant
got lost in highly ambiguous layouts and backtracked twice
(steps 6 and 7), in effect revisiting the same configurations
again. To recover, he eventually backtracked all the way back
to the starting point. Then, he started exploring layouts in an-
other direction but got stuck on a conflict (steps 9–16) shortly
afterward. It took him eight attempts and a large amount of
time—more than two thirds of the total time—to resolve the
conflict. Toward the end of the trace (step 23), this participant
was deceived one more time by ambiguities, causing him to
backtrack again before finally reaching the goal.

Let us now look at the second trace, from PBMM. Interestingly,
our participant took a completely distinct path through the
design space: Only the start and goal layout engines are com-
mon to both traces. Not only did PBMM prevent our participant
from creating conflicting configurations, but it also kept our
participant in a portion of the configuration space with lower
degrees of ambiguity. Recall that the same visual cues (axes
of freedom) are used by both tools to explain ambiguities. But
even with those aids, understanding what is and is not con-
strained in layouts with high degrees of ambiguities remains
difficult. Highly ambiguous layouts tend to overwhelm users
with too much information. Consequently, users are more
likely to add an undesirable constraint by mistake in resolving
ambiguities. When such mistakes are corrected, the same con-
figuration is explored twice, thereby creating a backtracking
step. This “lost in ambiguities” phenomenon highlights the
importance of steering users towards layouts with few ambi-
guities. By proposing possible resolutions for each dimension
of ambiguities, PBMM encourages users to settle ambiguities
immediately after their introduction. Our participant dealt with
at most three degrees of ambiguity, versus six with the button
tool. As a result, he never had to backtrack from an erroneous
specialization.

In the interviews concluding each session of the programmer
study, all but one participant stated they would use PBMM
rather than the button tool if given the choice. The one par-
ticipant who preferred the button tool stated that “the button
tool was more challenging thus more fun”. Participants ex-
pressed frustration with debugging conflicts with the button
tool. A common request was to disable (grey out) buttons
which would trigger a conflict if toggled. These comments
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reinforce our belief that addressing ambiguities and conflicts is
essential to making constraint programming more accessible.

On the negative side, participants from the programmers study
reported feeling a “lack of control”: they would have liked to
see how layout engines are modified by their manipulations
and which constraints are added or removed. We designed the
user interface of PBMM with non-programmers in mind: con-
straints are completely hidden beneath the UI. For technically-
literate audiences, we are considering optionally displaying
the layout engine code and using animations to highlight the
changes created by each manipulation.

CONCLUSION
We presented Programming by Manipulation, a new method-
ology for specifying layout with constraints targeted at non-
programmers. With PBM, users steer the exploration of layout
designs by directly displacing blocks of a sample document.
With such manipulations, users can break constraints and sub-
sequently introduce new ones. PBM focuses on programma-
bility and addresses the two principal sources of bugs with
constraints: conflicts can no longer arise and ambiguities are
explained with a visual summary.

Participants from our user-study seem interested in combining
PBM with document authoring so that the sample document
can be edited while specifying layout. Our participants were
also very enthusiastic about using PBMM to customize CSS
templates. This boils down to expressing CSS with constraints,
which has been partially done [1]. If one could capture all of
CSS, a manipulation-based layout system for the web becomes
possible, opening PBM to a very large audience.

ACKNOWLEDGMENTS
This work was supported in part by awards from the Na-
tional Science Foundation (CCF–0916351, CCF–1139138,
and CCF–1337415), as well as gifts from Google, Intel,
Mozilla, Nokia, and Samsung.

REFERENCES
1. Badros, G. J., Borning, A., Marriott, K., and Stuckey, P.

Constraint cascading style sheets for the web. UIST
(1999), 73–82.

2. Badros, G. J., Borning, A., and Stuckey, P. J. The
cassowary linear arithmetic constraint solving algorithm.
CHI (2001), 267–306.

3. Barrett, C., Stump, A., and Tinelli, C. The Satisfiability
Modulo Theories Library. www.SMT-LIB.org, 2010.

4. Bostock, M., Ogievetsky, V., and Heer, J. D3 data-driven
documents. IEEE Trans. on Visualization and Computer
Graphics (2011), 2301–2309.

5. Freeman-Benson, B. N. Converting an existing user
interface to use constraints. In UIST (1993), 207–215.

6. Heer, J., and Bostock, M. Declarative language design for
interactive visualization. InfoVis (2010), 1149–1156.

7. Heydon, A., and Nelson, G. The juno-2 constraint-based
drawing editor. In Digital Systems TR131a (1994).

8. Hudson, S. E., and Yeatts, A. K. Smoothly integrating
rule-based techniques into a direct manipulation interface
builder. UIST (1991), 145–153.

9. Hurst, N., Li, W., and Marriott, K. Review of automatic
document formatting. DocEng (2009), 99–108.

10. Jacobs, C., Li, W., Schrier, E., Bargeron, D., and Salesin,
D. Adaptive grid-based document layout. ACM Trans.
Graph. 22, 3 (2003), 838–847.

11. Lau, T. Why pbd systems fail: Lessons learned for usable
ai. AI Magazine (2009), 65–67.

12. Lutteroth, C., Strandh, R., and Weber, G. Domain specific
high-level constraints for user interface layout.
Constraints 13, 3 (2008), 307–342.

13. Maloney, J. H. Using constraints for user interface
construction. PhD thesis, Univ. of Washington, 1992.

14. McDaniel, R. G., and Myers, B. A. Getting more out of
programming-by-demonstration. CHI (1999), 442–449.

15. Meyerovich, L. personal communication, 2012.

16. Moura, L. D., and Bjørner, N. Z3: An efficient smt solver.
TACAS’08/ETAPS’08 (2008), 337–340.

17. Myers, B. A., and Buxton, W. Creating highly-interactive
and graphical user interfaces by demonstration.
SIGGRAPH (1986), 249–258.

18. Myers, B. A., Zanden, B. V., and Dannenberg, R. B.
Creating graphical interactive application objects by
demonstration. UIST (1989), 95–104.

19. Sannella, M. Skyblue: a multi-way local propagation
constraint solver for user interface construction. UIST
(1994), 137–146.

20. Singh, G., Kok, C. H., and Ngan, T. Y. Druid: A system
for demonstrational rapid user interface development.
UIST (1990), 167–177.

21. Sinha, N., and Karim, R. Compiling mockups to flexible
uis. ESEC/FSE (2013), 312–322.

22. Viegas, F. B., Wattenberg, M., van Ham, F., Kriss, J., and
McKeon, M. Manyeyes: A site for visualization at
internet scale. IEEE Trans. on Visualization and
Computer Graphics (2007), 1121–1128.

23. Vlissides, J. M., and Tang, S. A unidraw-based user
interface builder. UIST (1991), 201–210.

24. Weitzman, L., and Wittenburg, K. Automatic presentation
of multimedia documents using relational grammars.
MULTIMEDIA (1994), 443–451.

25. Zeidler, C., Lutteroth, C., Sturzlinger, W., and Weber, G.
The auckland layout editor: An improved gui layout
specification process. UIST (2013), 343–352.

26. Zeidler, C., Lutteroth, C., and Weber, G. Constraint
solving for beautiful user interfaces: How solving
strategies support layout aesthetics. CHINZ (2012),
72–79.

Developer Tools I UIST’14, October 5–8, 2014, Honolulu, HI, USA

241

www.SMT-LIB.org



