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ABSTRACT

Recent studies in momentum management conducted on the VAX Space Station
Simulator have renewed interest in the features and performance of the CSDL-de-
veloped hybrid CMG/RCS steering/selection procedure. Since the linear program
employed by the steering/selection law can often substantially change its solution
while the CMGs are in motion, appreciable high-frequency noise can appear in gim-
bal rate profiles. While this artifact has little effect on momentum management
results (where gimbal rates are integrated), it can introduce potential problems
when commanding real CMGs onboard a flexible spacecraft. This report examines
a means of changing variables in the linear program to create a steering law that
improves the continuity of calculated CMG gimbal rates.



Methods of Smoothing CMG Gimbal Rates Calculated By Linear Programming

1) Introduction

Previous work [1],[2],[3],[4] has demonstrated several advantages of resolving
the CMG steering problem through linear programming; ie. implicit consideration of
upper bounds on decision variables, intrinsic optimization of a linear objective func-
tion, highly flexible system definition and reconfiguration abilities, and the possibility
of automatically commanding additional actuator families (ie. jets) when needed.
Refs. [1 = 4] detail many applicétions of the above-listed features that significantly
enhance the attitude control capabilities of CMG-bearing vehicles such as the Spacei
Station.

The optimal solution to a linear programming problem will specify non-zero
decision values for a subset of available activity vectors. A basis of three activity
vectors (assuming 3-axis rotational control) is always selected with intermediate
decision values, together with other activity vectors (where necessary) saturated at
their upper bounds. When using linear programming to specify CMG motion in
response to an input torque request, the activity vectors represent torque authorities
of individual CMG gimbals, and their decision variables are the corresponding gim-
bal rates (although Refs. [1] 'and [2] solved for CMG gimbal displacements in
response to input vehicle rate-change commands, the situation was analogous).

For small torque commands, the linear program will generally pick only a basis
of three CMG gimbals to be run at modest rates; these three gimbals represent the
optimal solution with respect to the current linear objective coefficents. After the
assigned CMG gimbals have moved by a small amount, the linear selection is
repeated. Now, however, the objective coefficents and activity vectors can be con-
siderably different, due to the nonlinear nature of the global problem (note that the
linear program solves only a local tangent approximation at each time step). As a
* result, the three CMG gimbals chosen to solve the updated problem may be entirely
different from those in the original solution. This behavior can also appear at higher
torque levels, where additional activity vectors included at their upper bounds can



similarly modulate on-and-off as the nonlinear character of the problem dynamically
influences the tangent approximatibn.

When it occurs, this rapid switching of the selected gimbals can create an
excessively noisy gimbal rate profile, with CMG gimbals repeatedly turned on and
off after only a small number of simulation time steps have elapsed. Although the
gimbal angles themselves generally follow adequately smooth trajectories, driving
actual CMGs with such a spiky rate command may excite structural resonances,
reduce hardware lifetime, and lead to a considerably elevated power dissipation.
Pseudoinverse-based CMG steering laws also use tangent approximations to the
nonlinear global problem, but they continually assign rates to all CMG gimbals (due
to the intrinsic 2-norm optimization), thus frequently yield a smoother response than
the linear program (which prefers to consider a subset of only 3 gimbals in its sol-
ution).

A geometric interpretation of linear programming [5] provides additional insight
into this problem. The set of linear constraints which define the torque command
and actuator bounds (ie. see Eq. 1 in the next section) may be described by a con-
vex hyper-polyhedron in gimbal-rate space (which is dimensioned to the number of
available gimbals). Each face of the polyhedron is determined by a linear combina-
tion of activity vectors (ie. gimbal output torques) that satisfy these constraints.
Since the objective function specifies a unique direction to minimize in gimbal
space (or maximize; let’s assume the former here), the point on the polyhedron hav-
ing minimum projection along the objective direction represents the optimal solution
to the constraints. Since the polyhedron is convex, this optimal point will always be
a vertex (unless a face is orthogonal to the objective direction, causing each point
on that face to be équally optimal; in this case, the particular linear program incar-
nated here will still pick a vertek). This vertex condition also describes the reason
why linear programming prefers to pick only 3 gimbals to answer the 3-axis torque
constraint (in the absence of upper bounds, all vertices will correspond to solutions
with 3 non-zero gimbal rates).

As the CMG gimbals rotate, the shape of the polyhedron changes (but it remains
convex, at least in the linear tangent space), and the objective direction shifts, caus-
ing different verticies to project optimally. When another vertex becomes optimal,
the chosen solution can change drarﬁatically, resulting in a corresponding disconti-
nuity in gimbal rates.

The pseudoinverse, on the other hand, is subject to the same equality constraint
(without bounded variables), but minimizes an entirely different objective (the sum



of gimbal rates squared). This can essentially be interpreted as a minimum-radius
condition, and when applied to the constraint polyhedron, it no longer suggests
selection of a vertex as being optimal; in fact, it will probably most often choose a
point on the midst of a face. This results in a solution involving all gimbals (not just
a subset of 3), and produces a more continuous variance as the constraints vary;
the minimum-radius point will track smoothly as the face changes orientation, and
jump to another face only after a significant change in the constraint (ie. a different
torque command is specified). In comparison, the vertex-jumping behavior implicit
in linear programming can frequently produce substantially different solutions as the
gimbals move.

One straightforward method of smoothing the gimbal rates output from the line-
ar program is to low-pass filter the gimbal rate commands before applying them to
the CMGs. Because the gimbal angle history appears quite reasonable on average,
a modest filiering of the gimbal rates should create a sufficiently smooth set of CMG
directives (most gimbal “noise” is at high frequency). In order to retain full control
bandwidth, however, the steering law may be required to assign gimbal rates more
frequently (potentially reducing the update period and increasing the computational
burden). During on-orbit space station operation, the required torques are generally
fairly small and steady (considerable reduction of control bandwidth might actually
be necessary to avoid interaction with low-frequency structural modes), thus such a
gimbal rate smoothing filter might be an appropriate approach.

Another method, however, presents a possibility of achieving smoother gimbal
rate profiles without requiring an output filter. This technique involves a change-of-
variables in the linear program; instead of solving for the CMG gimbal rates
required to achieve an absolute torque request, we now use the linear program to
pick the change in CMG gimbal rates needed to realize a desired change in vehicle
torque. Because the linear program is intrinsically attracted to the solution that pro-
duces decision values of zero (ie. no CMG motion in the absolute torque formulation
with positive objective coefficents), it will now prefer to invoke minimal change in
the CMG gimbal rates, thereby yielding a smoother gimbal rate response. The fol-
lowing sections of this report present the details required to implement this strate-
gy, and examine its performance in a series of simulation examples.

2) Procedure

This section outlines the modifications that must be performed to the CMG
steering logic in order to enable the linear program to operate properly under the




change of variable. Details of the original linear programming logic and steering

law may be found in [2]; the following text assumes that the reader is already famil-
iar with these principles.

The equality constraint that is used in the baseline steering law to solve torque
requests (actually, we solve for acceleration in practice, but the torque convention
will be retained here for simplicity) may be stated similarly to Eq. 25 of [2]:

SEPILAL

[ Xi| = Xmax; .

Where...

N = # CMG gimbals considered
A;= Output torque of CMG gimbal #j at unit gimbal rate
x; = Gimbal rate for CMG gimbal #]
Xmax, = Peak gimbal rate for CMG gimbal #j
M = Vehicle Torque Request

Changing variables in this relation to steer CMGs under a delta torque scenerio
is straightforward:

N ,
> Ay =1u
2) =

= Xmax, = Xj S DX S Xmax, = X;

Where...

Ax;= Change in gimbal rate for CMG gimbal #;
AM = Change in vehicle torque request
N, Aj, x;, Xmax; are as defined in Eq. 1

The objective function used in the baseline steering law (as described in Ch. 3
of [2]) contains components that act to minimize inner gimbal angles, avoid gimbal



stops, and prevent singular states. If one applied this objective directly to Eq. 2, the
initial selection would indeed pick gimbal rates satisfying these criteria. A problem,
however,. arises after the gimbals are in motion. Although it becomes increasingly
more costly to select additional gimbal action Ax; in a direction- that approaches a
probiematic configuration (ie. singularity or stop vicinity), the linear program is not
forced to specify gimbal motion in the opposing direction (ie. avoiding the stop or
singularity). Since the linear program tends toward a minimum-action solution, the
small AM commanded to compensate nonlinear effects after the gimbals start rotat-
ing generally precipitates correspondingly small Ax;,. This creates a situation where
the initially selected gimbal motion is not substantially altered; the small trimming
needed to compensate the CMG nonlinearity (assuming the commanded torque M
doesn’t change significant'ly) doesn’t appreciably affect the trajectory of the chosen
CMGs. In a certain sense, this is a direct manifestation of the original purpose in
changing decision variables; the steering algorithim has developed an “inertial” ten-
dancy to keep gimbal rates constant, admitting only minor alterations where neces-
sary. This often creates additional problems, however; ie. if a gimbal is initially
innocent” direction, things can later become ominous if its

”

selected to move in an
trajectory is not altered before it eventually approaches a stop or participates in cre-
ating a singular configuration.

This situation has been addressed by allowing the cost opposing the worst-posi-
tioned CMG gimbal to become negative. As illustrated in [2], every CMG gimbal
has two associated objective factors corresponding to opposite senses of gimbal
rotation. Each of these costs reflects the optimality of moving a CMG gimbal in the
corresponding direction. If one cost is high, indicating an impending problem, the
other cost should be lower, provided that motion in the opposite sense will not
invoke another difficult configuration. "The “urgency” of moving a gimbal is thus
reflected in the difference between its pair of associated costs; if this difference is
excessively large, it is determined that the responsible CMG gimbal is approaching
trouble that can be averted 'by reversing its direction of rotation. This is indeed
what is performed to prevent the above-mentioned tendancy toward a static sol-
ution. When the cost difference of a gimbal pair increases beyond a preset thresh-
old, the lower cost of the pair is allowed to go slightly negative, thereby
encouraging its selection and subsequent gimbal reversal. In order to avoid chaotic
solutions which slam negative-cost gimbals at peak rates in order to glean the maxi-
mum benefit from the inverse-sign objective factor, the upper bound regulating the
gimbal rate-change in that direction is reduced, clamping corresponding gimbal
activity to a reasonable level. In addition, only one cost factor out of the entire CMG
ensemble is allowed to go negative per selection; the low-cost factor associated
with the maximum cost difference is chosen.



The above procedure is summarized below using the conventions of [2]:

Define
é¢; = lcl+ - Cf—l
_ stmin = minimum{cf'-v C‘—}
3 Ceg; = 6" = A 8¢,

smin —-c
ijin N€Gjmin
smin
us imin
K

IF Cneg,,,, <—Co THEN

smin
UBjmin -

Adjustable Factors...

A = Negative cost skew factor
C, = Negative cost threshold
k = Upper bound attenuation factor for negative costs -

The upper-bound attenuation factor x should be made to decrease toward unity
as the magnitude of the torque request increases, allowing the system to marshal
full response to large input commands.

The logic of Eq. 3 provides the delta torque steering method a dynamic means v
of modifying its strategy in accordance with the objective function. Because of its
inherent “inertial” characteristic, the delta torque method will tend to minimize per-
turbation of the CMG gimbal rates until the threshold (-C,) in Eq. 3 is exceeded and
a cost is made negative.

Although the zero gimbal rate solution served as an intrinsic attractor.for abso-
lute torque steering, the delta torque method has no special preference for zero
rates. This results in an effective loss of damping, allowing the CMG system to be
“pumped” to higher gimbal rates aﬁd eventual chaotic behavior after each major
change in the solution (caused by a shifting torque request or negative cost factor).
It is clear that any practical steering law formulated in the delta torque domain must
contain some means of dissipating energy in order to keep gimbal rates from being
excessively boosted.
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The objective function was modified to accomodate such gimbal damping by
adding a term to the objective definition that opposes each gimbal rate. The cost

factor definition (Eq. 30b of [2]) then becomes:

(4) s =Ko+ KsFangie(J:8) + KsGsiops(4:S) + K1Y Lineupl( 4:S) + Kr ZGRate( )

Where...

, x| If(s)(x) >0
z s) =4 1%l y
oRatel /) { 0 Otherwise

x; = Current gimbal rate for gimbal #j
s = Sense of gimbal rotation considered (+ 1)

The Zga term added in Eq. 4 increases with the assigned gimbal rate for addi-
tional rotation in the current direction of gimbal motion, effectively penalizing sol-
utions which would specify higher gimbal rates, and encouraging prompt gimbal
deceleration (re. negative cost from Eq. 3) after significant gimbal displacement.

Other innovations where incorporated to damp excessive gimbal chattering as’
momentum saturation was approached; these included both boosting K, (Eq. 4) and
reducing the allowed magnitude of negative costs as the system saturates. Since
both of these effects were made proportional to the increase in saturation beyond
80% momentum capacity, they are of little relevance to the test presented in the fol-
lowing section (which didn’t drive the system beyond these extremes).

In examining the detailed performance of the linear programming process with
negative cost factors, a correction was made to the invite loop of the simplex proce-
dure detailed in the flow chart presented in Fig. 5 of [2]. The relation
SGN = sign(F), which determines the best rotation sense to use when inviting can-
didate gimbals into the solution, should read:



(5) SGN=signf{2F—C+C}

Where...
! = Index of invited activity vector

C,i' = Cost of invited activity in the + direction

This function will yield a value of +1 if a positive rotation determines a greater
cost gradient (CG) than a negative rotation, and -1 if vice-versa: The previous for-
mulation is accurate when all cost factors are positive (ie. SGN is always selected
such that F projects positively, yielding the only chance for a positive cost gradient
in thislcase), but may cause convergence to suboptimal solutions when negative
costs are allowed. Eq. 5 directly accounts for the different cost factors in each
direction, thus any effective gain from negative costs are considered.

2) Simulations

In order to examine the effect these concepts might produce in practical appli-
cation, several simulations were performed assuming the Dual -Keel Space Station
to be controlled by an array of 6 parallel-mounted double gimbailed CMGs initially in
a zero-momentum state with outer gimbal axes aligned along vehicle pitch. Param-
eters defining the Dual Keel configuration and associated CMGs are identical to
those applied in [3]. The linear program was not allowed to select jets in these
tests (no examples ran the CMGs into saturation), but the logic to answer vehicle
rate-change commands through hybrid solutions was left intact for this contingency.

a) Attitude Slews About Pitch/Roll

The first set of simulations run the system at fairly high torque by performing a
fast attitude slew about the vehicle pitch and roll axes. Vehicle rates of 0.0055
deg/sec are linearly built about pitch and roll within approximétely 35 seconds, then
removed within a similar time frame, establishing a constant vehicle acceleration of
+ 0.00016°/ sec? (this results in a nef torque of about 500 ft-Ib due to the large Dual
Keel inertias). Vehicle environment and control (if necessary) were updated at 80

msec. intervals.




Fig. 1 shows the gimbal results for this maneuver as managed by commanding
absolute torque in a similar fashion to the relevant examples of [3]. The inner gim-
bal angles are seen to advance in a "braided” fashion, where an initial solution pri-
marily advances one gimbal until it becomes slightly more expensive than its
colleagues, thereby causing it to be halted and substituted by another, and so on....
This process stepwise increases the inner gimbal angles (which are the only means
of attaining pitch torque) until the input command reverses direction after they near
40°. Their reverse trajectory is not so uniform (since the extreme expense of
increasing inner gimbal angles no longer limits the solution), yet most inner gimbals
again approach zero deflection at the close of the test. Outer gimbals are seen to
smoothly congregate together at the midpoint of the simulation (indicating impend-
ing saturation), and thereafter return to the neighborhood of their initial positions.

Although the gimbal angle profiles appear reasonably well-behaved, the gimbal
" rates look significantly more chaotic, forming a series of narrow spikes extending up
to the 5.2 deg/sec maximum (note the switch in sign of inner gimbal rates after the
input command was reversed). These spikes were caused by changes in the linear
programming solution encountered at each control iteration, as predicted in the
introduction of this report (the inner gimbal “stepwise” advance mentioned above is
a physical consequence of this Beha\iior). Driving a system of actual CMGs with
these commands could certainly be problematic. Note, however, that the smooth-
ness of the gimbal angle profiles indicates that a modest filtering of the calculated
gimbal rates might yield a similarly smooth response. Other examples of hoisy'gim—
bal rate commands produced from absolute torque inputs were presented and ana-
lyzed in [4]. ‘

Fig. 2 presents a set of gimbal plots for the same maneuver performed under
delta torque steering. An entirely different behavior is seen to emerge. Looking
first at the inner gimbal angles, one notices that the initial commands were fulfilled
primarily by advancing CMG #5. After it reached a deflection of about 40°, however,
it became sufficiently expensive to trigger the negative cost logic of Eq. 3, encourag-
ing it to be selected in the opposite direction, while advancing two other CMGs from
zero deflection to maintain the commanded torque. This behavior continued across
the entire run, causing a steady-state inner gimbal scissoring as successive CMGs
ramped up until their costs in the reverse direction went negative. The outer gimbal
angles also hint at some scissoring action, however any effect is much more sub-
dued (outer gimbal deflections are not penalized; the major terms in their objective
are due to lineup & singularity avoidance).

10
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The companion gimbal rates show much less high frequency component when
compared to the absolute torque results; the “spikes” are essentially gone. These
rates, however, do frequently move between thier positive and negative limits as
gimbals are scissored back and forth at maximum clip, indicating excessive energy
being pumped into the system, thus emphasizing the need for damping.

The next test tries to tame this scissoring by increasing K in Eq. 4 (it was
almost negligible in the previous test), thereby adding significant rate-damping
encouragement to the objective. [n addition, the bound attenuation factor « in Eq. 4
was boosted to 3 (it was set to unity in the above example, allowing scissoring at
maximum rates), significantly limiting the adjustment of gimbal rates associated with
negative costs.

The results, as given in Fig. 3, are quite dramatic. Both inner and outer gimbal
angle profiles become quite smooth and well-behaved. The calculated rates are the
most continuous yet seen; indeed, they often vary smoothly across the maneuver
and exhibit comparitively little significant discontinuity. Although-gimbal rates are
non-zero at the close of the run (they are essentially performing null motion), little
evidence of excessive energy pumping is evident in this example, indicating suc-
cessful compensation attained from the rate-damping objective and upper-bound
- attenuation.

Fig. 4 shows the vehicle rates resulting from the previous three examples. In
spite of the differing gimbal trajectories pursued in each example, all rate histories
appear nearly identical, and the peak pitch/roll rates of 0.0055 deg/sec were Iinéérly
achieved and removed with little disturbance.

b) Orbital Simulations

In order to examine the performance of delta torque steering in a more practical
context, longer simulations were performed over an orbital period, throughout which
the Dual Keel model was commanded to hold constant LVLH attitude in the pres-
ence of aerodynamic and gravity gradient torques. Orbital altitude was assumed to
be 400 km, and the target attitude in the initial tests was chosen to produce torque
equilibrium about the pitch axis. Vehicle fabrication axes were used in the other
coordinates; this introduced significant Euler coupling across the orbit, which
. required the CMGs to cyclically absorb 70% of their momentum capacity. More
details on the orbital environment and attitude controller used in these examples
can be found in Sec. (c) of [3].

13
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Fig. 4) Vehicle Rates Resulting from Attitude Slew Tests
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Fig. 5 shows gimbal parameters resulting from such an orbital attitude hold
under absolute torque steering. Assumptions made in this simulation were nearly
identical to those of Fig. 22 in [3], thus we see analogous gimbal behavior.
Because the pitch torques are in equilibrium, no significant inner gimbal activity is
evident. Outer gimbals are seen to rotate through large angles, however, in order
to null the Euler torques about roll and yaw. Although the gimbal trajectories
appear reasonably smooth, the outer gimbal rates do exhibit some characteristic
chatter, although at a smaller level than seen in the previous test (these examples
are run over a much longer duration, thus involve considerably less torque). Note
the factor 10 reduction of scale on all gimbal rate plots presented with on-orbit tests;
y-axes now range * 0.5 deg/sec. Vehicle rates (not plotted here due to lack of
space)' remained under 4 x 107°% deg/sec .

The next investigation applies the delta torque approach as perfected in the
example of Fig. 3. A considerably noisier result is gleaned here, however, as seen
in Fig. 6. Initially, the inner gimbal of CMG #4 was steadily advanced, while others
were slowly moved about to null residual torques. After CMG #4’s inner gimbal
reached 12°, the cost of further advance rose high enough to invoke the logic of Eq.
3, which drove the opposing cost into negation. Since it became an effective "bar-
gain”, the inverse motion of CMG #4 was brought in at its maximum, causing it to
move quickly to the opposite extreme and instigate a chaotic limit cycle of frantic
scissoring.' Similar behavior is observed in the outer gimbal system. Note that this
scissoring, frenetic as it may seem, is nonetheless null motion, and vehicle rates
were maintained below 3 x 107*deg/sec. Remember that these plots of gimbal
rates saturate at * 0.5 deg/sec; allowed rates may still range up to + 5.2 deg/sec.

" The above results emphasize a need for additional damping under these condi-
tions. The test of Fig. 6 was run with an upper bound attenuation factor of k = 3, as
was found adequate in Fig. 3. Here, however, the gimbals can travel much further
during a time step because of the longer 1 second update interval, causing scissor-
ing to be reversed after nearly every control application. The discussion associated
with Eg. 3 hinted that the upper bound on negative-cost activity vectors should be
tightened with decreasing torque requirement; since environmental torquing is
indeed quite low here, k was increased to 100 in the following example ( k could be
automatically scaled in practice). In addition, the gimbal rate objective contribution
Kk (Eqg. 4) was again increased to proVide more gimbal damping.

Results are summarized in Fig. 7, where things appear significantly improved.

Inner gimbal usage remains minimal (corresponding gimbal rates are quite smooth).
Considerable scissoring is noted in the outer gimbal system, however high-energy
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chaos is avoided, and gimbal rates appear reasonably consistant throughout most of
the run (note that the update interval is a full second here, and rates stay well below
a half degree per second). Gimbal rates do seem to run a little higher than
encountered in the analogous absolute torque example (Fig. 5), but tend to éxhibit
less low-level chattering (particularly in the latter half of the test), as expected under
the delta torque scenerio. Vehicle rates are well stabilized and again stay under
4 x 10™° deg/sec.

The success of the previous test encourages an attempt at a more complex sim-
ulation; the next-examples offset the pitch attitude by 0.5° from torque equilibrium,
requiring a steady advance of inner gimbals to offset the resulting buildup of secular
pitch momentum. Fig. 8 shows the gimbal response under absolute torque steering;
indeed, all inner gimbals move essentially together, and outer gimbals still rotate to
null precession torques. The outer gimbal anglesahd rates are very similar to
those seen at equlibrium (Fig. 5), including the charactic chatter. The inner gimbal
rates seem to consist of a near-zero “fuzz”; when magnified, this phenomenon
begins to resemble the “spikes” seen in the rate plots of Fig. 1, indicating that the
inner gimbals are indeed “stepwise” deflecting together at low torque.

The delta torque approach was applied to this situation in Fig. 9. Inner gimbals
are seen to scissor as their mean deflection increases. This scissoring creates
large gimbal deflections at the latter portion of the run; since all inner gimbals
(which are the sole source of pitch torq{Je with this mounting protocol) become con-
siderably expensive to advance at large angle, the net inner gimbal reaction
required to null the torque produced by reversing a gimbal trajectory likewise
becomes quite expensive. The linear program does not find this solution sufficiently
cost-effective until the magnitude of the negated gimbal-reversal cost grows high
enough to offset the expense of the required reaction. Toward the end of the run,
most inner gimbal increases become so costly that the reversal break-even doesn’t
happen until the worst-case gimbal nears 15° of its maximum swing (at which point
its stops contribution, Eq. 32 of [2], rapidly incréases, pushing the reversal cost
quickly negative).

Inner gimbal rates are, however, quite smooth when compared with the corre-
sponding “fuzz” of Fig. 8 (yet they do tend to run somewhat higher). Outer gimbal
trajectories remain reasonable, although considerable scissoring is encountered
early in the test. Even though gimbal rates, on average, are significantly higher than
those of Fig. 8, less low-level noise is noted in this example, excepting perhaps the
excessive outer gimbal scissoring encountered initially (but this seems to be prima-
rily at Iower'frequency).
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The large inner gimbal excursions seen in this example are undesirable; in
addition to nearing stop limits, Iérge inner gimbal swings degrade the companion
outer gimbal’s control authority. One method of reversing the inner gimbal trajecto-
ry at an earlier stage would be to unifaterally increase the overall gain on negative
costs (ie. boost A in Eq. 3). This, unfortunately, can allow the linear program to
choose unphysical solutions (which were formerly too expénsive), leading to even-
tual chaos. Boosting A under a selective heuristic, however, could still provide
some superior characteristics, while perhaps avoiding ridiculous solutions. Refer-
ring to the notation of Eq. 3:

c jmin

——smin — —
©® IF[ >ayC | AND [€>bo] THEN Cpeg,, = Do Cneg,,

Where...

C = Average of maximum {cj+, c; } over all gimbals

¢ ™" = High cost paired with cost factor brought negative

jmin
agp = Threshold above mean cost for boost application
by = Minimum mean cost for boost application
go = Boost factor applied to negativé cost

[Cnegjm;n is the negative cost value, as in Eq. 3]

Condition (6) applies an additional gain g, on negative cost factors only when
the abberant gimbal has achieved a cost a, above the mean cost (¢) of expensive
gimbal rotations. In addition, the mean cost must be greater than threshold b, pre-
venting application of this logic except in critical situations. Eq. 6 thus effectively
imposes a well-defined hysteresis margin on the scissoring process at large costs.

Fig. 10 examines the application of Eq. 6 to the situation encountered in Fig. 9.
In this example, a, was set near 2, b, was relative|y~ low, and g, was set to 10. Inner
gimbal swings are much more limited, and the scissoring frequency increases at
higher inner gimbal angles as the extra gain from Eq. 6 cuts in and forces prompt
trajectory reversals. Things don’t get out of hand here, however, and excessive
pumping (re. Fig. 6) is avoided. Outer gimbal angles and rates seem to have the
same general character as the previous example (with perhaps more scissoring at
the end of the run).
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Fig. 11 is an analbgous test with the gain g, set to 20. The tighter inner gimbal
~ trajectory is evident; gimbals now scissor more closely to the mean deflection
angle. Inner and outer gimbal rate profiles appear smaller and more consistant
than encountered in Fig. 10; indeed, Fig. 11 gives the best results for this maneuver.

Fig. 12 extends this investigation by setting g, to 50. The initial portion of the
test (up to t= 1500 sec) doesn’t appear too different from the behavior encountered
in Fig. 11. After the inner gimbal angles pass 15°, however, Eq. 6 begins to be
introduced, and the large g, frequently reverses inner gimbal trajectories straying
above the mean path. Eq. 6 now acts strongly as a sheparding function, holding all
inner gimbals to an avarage trajectory and restoring the properties of absolute tor-
que steering, as were shown in Fig. 8. Since the scissoring is now tightly con-
strained to the mean deflection, gimbal rates are much noisier, thereby defeating
the original purpose for which delta torque steering was instituted. Vebhicle rates
throughout this test (and all other tests examining pitch displacement from equlibri-
um) remained under 4 x 107° deg/sec.

Most discussion of the previous examples centered around gimbal rates and
inner gimbal deflection; little was mentioned of the singularity problem. Since the
lineup avoidance amplitude (Eq. 33 of [2]) is preserved, the delta torque steering
procedure should also reverse gimbal trajectories when singular states are
approached (indeed, such behavior has been observed). One potential difficulty
with the absolute torque steering mode concerns its minimum action policy; gimbals
are moved primarily in response to input requests, and any null components tended
to scale with the request magnitude. As a result, poorly positioned gimbals (as in
an approach to a singular configuration) could be left untended it their motion didn‘t
benefit the objective for solving the requested torque (ie. the gimbal response to the
objective function will depend on the torque input). Conventional steering laws
avoid this difficulty by always adding null motion independently of the torque
request. Linear programming could potentially attain this property by allowing costs
to go negative; this concept was discussed and attempted in [3] with mixed results
(conclusions might improve it the correction of Eq. 5§ were incorporated into sim-
plex). The delta torque scenerio, however, tends to keep CMG gimbals moving (as
mentioned earlier, attracting the zero-rate solution can be difficult), thus the system
is nearly always performing null motion. Since the objective function influences this
gimbal activity, the system should generally steer away from singular configura-
tions. |If a problem configuration is neared, however, the continuous null motion
should promptly remove the system from its vicinity (provided the singular state is
escapable).
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Fig. 13) 3—Axis CMG Controllability at TEA

CMG CONTROLLABILITY

250
200
150 -
100 Legend
cuc cam__
EIGLHVALUE |
so4 ;—7\——.“_—‘_ - EICENVALUE 2
T Tt EIGENVALUE 3
TN - _/"C""i + MANEUVER
~.._~ % JETS
0 A T T 1 :
0 1200 2400 3600 4800 6000
SEC
ORBIT; TEA; STEER ABSOLUTE TORQUE
CMG CONTROLLABILITY
250+
WM‘
200 -
150 -
1007 Legend
CMGGAIN
o e e e EIGENVALUE |
50 - EIGENVALUE 2
RV an VP VAN Lol NS L EIGENYALUE 3
’Vv‘\/\‘\/\/"_"“\-/—\-‘-/ - + MANEUVER
o ) % JETS
T T T T ]
° 1200 2400 3600 4800 6000
SEC

ORBIT; TEA; STEER DELTA TORQUE

28



CMG controllability parameters are plotted for the orbital runs of Fig. 5 (Abso-
lute Torque Steering at Torque Equlibrium) and Fig. 7 (Damped Delta Torque Steer-
ing at Torque Equlibrium) in Fig. 13. The parameter of interest in these plots is the
CMG gain (Eqg. 44 of [2]), which represents the degree of 3-axis CMG controllability
(this is the upper curve; high gain implies high controllability). The absolute torque
method (top plot) shows a significant drop in CMG gain at ¢ = 2200 sec. Observing
the outer gimbais in Fig. 5, one can notice that this is due to the approach of a sin-
gular state with CMG #6 pointing antiparallel to all others. A delay in moving the
outer gimbals of CMG #6 allowed this situation to occur (as it stands, it managed to
move CMG #6 before the system actually went singular). This effect was also noted
in [3] (Fig. 22), however the cost factors were adjusted differently in this case, and
the rotor alignment did not become quite so critical.

The lower plot of Fig. 13 presents the controllability parameters produced under
delta torque steering, using the same antilineup objective contribution. Here we
see an essentially flat gain profile remaining at its maximum value; indeed, the
omnipresent null motion performed under delta torque steering was able to dislodge
the outer gimbal of CMG #6 before it approached the antiparallel orientation, creat-
ing a superior gimbal trajectory.

The above example supports the pofential superiority of delta torque steering in
singularity avoidance. Before definite conclusions are adoped in this area, however,
additional studies should be performed.

4) Conclusions

The practical application of linear programming to CMG steering may require a
means of smoothing the calculated gimbal rates. The simplest means of accom-
plishing this is to low-pass filter the gimbal rate output. If bandwidth and/or compu-
tational considerations preclude this option, changing decision variables to delta
torque may also provide a more continuous gimbal rate profile. This strategy, how-
ever, requires additional logic to impose objectives onto gimbal motion and damp
excessive gimbal activity. Methods to accomplish this were developed and tested
in simulations; results indicated that delta torque steering could be applied success-
fully to yield lower gimbal chatter. If this method is adopted, however, deeper
investigation should be performed into better damping of gimbal scissoring. Addi-
tional tweaking of upper bound attenuation and further adaptation of the objective
function and linear program formulation could yield improvement over the resuits
presented here (the effort described in this report constituted a quick study; a more
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systematic look should be taken if the need for delta torque steering arises). Test
results also seemed to indicate that the perpetual null motion performed under the
delta torque formulation can move potentially hung gimbals into better orientations,
enabling superior rotor lineup and singularity avoidance characteristics. Methods of
slowing gimbal motion in the vicinity of momentum saturation were discussed;
these ideas may be developed further if this proves to be problematic.

LIST OF REFERENCES

1. Paradiso, Joseph A., “A Highly Adaptable Steering/Selection Procedure for
Combined CMG/RCS Spacecraft Control”, 1986 AAS Guidance and Control Conf.,
Keystone CO., AAS 86-036, CSDL-P-2653, February, 1986.

2. Paradiso, Joseph A., “A Highly Adaptable Steering/Selection Procedure .for
Combined CMG/RCS Spacecraft Control”, Detailed Report, CSDL-R-1835, March,
1986. ) '

3. Paradiso, Joseph A., “Performance & Applications of a Hybrid Jet Selection &
CMG Steering Law Based on Linear Programming”, CSDL-R-1901, October,
1986.

4. Paradiso, Joseph A., “Selection and Management of Magnetically Gimballed
CARES Gyroscope$ via Linear Programming”, 10C Space Station Memo 86-19,
December, 1986.

5. Chuhg, A., Linear Programming, Charles E. Merril Books, Inc., Columbus, Ohio,
1966..

30






