


Methods of Smoothing CMG Gimbal Rates Calculated By Linear Programming

1) Introduction

Previous work [1],[2],[3],[4] has demonstrated several advantages of resolving
the CMG steering problem through linear programming; ie. implicit consideration of
upper bounds on decision variables, intrinsic optimization of a linear objective func-
tion, highly flexible system definition and reconfiguration abilities, and the possibility
of automatically commanding additional actuator families (ie. jets) when needed.
Refs. 1 -- 4] detail many applications of the above-listed features that significantly

enhance the attitude control capabilities of CMG-bearing vehicles such as the Space
Station.

The optimal solution to a linear programming problem will specify non-zero

decision values for a subset of available activity vectors. A basis of three activity
vectors (assuming 3-axis rotational control) is always selected with intermediate

decision values, together with other activity vectors (where necessary) saturated at
their upper bounds. When using linear programming to specify CMG motion in
response to an input torque request, the activity vectors represent torque authorities

of individual CMG gimbals, and their decision variables are the corresponding gim-

bal rates (although Refs. [1] and [2] solved for CMG gimbal displacements in
response to input vehicle rate-change commands, the situation was analogous).

For small torque commands, the linear program will generally pick only a basis

of three CMG gimbals to be run at modest rates; these three gimbals represent the

optimal solution with respect to the current linear objective coefficents. After the

assigned CMG gimbals have moved by a small amount, the linear selection is

repeated. Now, however, the objective coefficents and activity vectors can be con-

siderably different, due to the nonlinear nature of the global problem (note that the

linear program solves only a local tangent approximation at each time step). As a

result, the three CMG gimbals chosen to solve the updated problem may be entirely

different from those in the original solution. This behavior can also appear at higher

torque levels, where additional activity vectors included at their upper bounds can
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similarly modulate on-and-off as the nonlinear character of the problem dynamically

influences the tangent approximation.

When it occurs, this rapid switching of the selected gimbals can create an

excessively noisy gimbal rate profile, with CMG gimbals repeatedly turned on and

off after only a small number of simulation time steps have elapsed. Although the

gimbal angles themselves generally follow adequately smooth trajectories, driving

actual CMGs with such a spiky rate command may excite structural resonances,

reduce hardware lifetime, and lead to a considerably elevated power dissipation.

Pseudoinverse-based CMG steering laws also use tangent approximations to the

nonlinear global problem, but they continually assign rates to all CMG gimbals (due

to the intrinsic 2-norm optimization), thus frequently yield a smoother response than

the linear program (which prefers to consider a subset of only 3 gimbals in its sol-

ution).

A geometric interpretation of linear programming [5] provides additional insight

into this problem. The set of linear constraints which define the torque command

and actuator bounds (ie. see Eq. 1 in the next section) may be described by a con-

vex hyper-polyhedron in gimbal-rate space (which is dimensioned to the number of

available gimbals). Each face of the polyhedron is determined by a linear combina-

tion of activity vectors (ie. gimbal output torques) that satisfy these constraints.

Since the objective function specifies a unique direction to minimize in gimbal

space (or maximize; let's assume the former here), the point on the polyhedron hav-

ing minimum projection along the objective direction represents the optimal solution

to the constraints. Since the polyhedron is convex, this optimal point will always be

a vertex (unless a face is orthogonal to the objective direction, causing each point

on that face to be equally optimal; in this case, the particular linear program incar-

nated here will still pick a vertex). This vertex condition also describes the reason

why linear programming prefers to pick only 3 gimbals to answer the 3-axis torque

constraint (in the absence of upper bounds, all vertices will correspond to solutions

with 3 non-zero gimbal rates).

As the CMG gimbals rotate, the shape of the polyhedron changes (but it remains

convex, at least in the linear tangent space), and the objective direction shifts, caus-

ing different verticies to project optimally. When another vertex becomes optimal,

the chosen solution can change dramatically, resulting in a corresponding disconti-

nuity in gimbal rates.

The pseudoinverse, on the other hand, is subject to the same equality constraint

(without bounded variables), but minimizes an entirely different objective (the sum
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of gimbal rates squared). This can essentially be interpreted as a minimum-radius

condition, and when applied to the constraint polyhedron, it no longer suggests

selection of a vertex as being optimal; in fact, it will probably most often choose a

point on the midst of a face. This results in a solution involving all gimbals (not just

a subset of 3), and produces a more continuous variance as the constraints vary;

the minimum-radius point will track smoothly as the face changes orientation, and

jump to another face only after a significant change in the constraint (ie. a different

torque command is specified). In comparison, the vertex-jumping behavior implicit

in linear programming can frequently produce substantially different solutions as the

gimbals move.

One straightforward method of smoothing the gimbal rates output from the line-

ar program is to low-pass filter the gimbal rate commands before applying them to

the CMGs. Because the gimbal angle history appears quite reasonable on average,

a modest filtering of the gimbal rates should create a sufficiently smooth set of CMG

directives (most gimbal "noise" is at high frequency). In order to retain full control
bandwidth, however, the steering law may be required to assign gimbal rates more

frequently (potentially reducing the update period and increasing the computational

burden). During on-orbit space station operation, the required torques are generally
fairly small and steady (considerable reduction of control bandwidth might actually
be necessary to avoid interaction with low-frequency structural modes), thus such a

gimbal rate smoothing filter might be an appropriate approach.

Another method, however, presents a possibility of achieving smoother gimbal

rate profiles without requiring an output filter. This technique involves a change-of-

variables in the linear program; instead of solving for the CMG gimbal rates

required to achieve an absolute torque request, we now use the linear program to

pick the change in CMG gimbal rates needed to realize a desired change in vehicle

torque. Because the linear program is intrinsically attracted to the solution that pro-
duces decision values of zero (ie. no CMG motion in the absolute torque formulation

with positive objective coefficents), it will now prefer to invoke minimal change in

the CMG gimbal rates, thereby yielding a smoother gimbal rate response. The fol-

lowing sections of this report present the details required to implement this strate-

gy, and examine its performance in a series of simulation examples.

2) Procedure

This section outlines the modifications that must be performed to the CMG

steering logic in order to enable the linear. program to operate properly under the

4



change of variable. Details of the original linear programming logic and steering

law may be found in [2]; the following text assumes that the reader is already famil-

iar with these principles.

The equality constraint that is used in the baseline steering law to solve torque

requests (actually, we solve for acceleration in practice, but the torque convention

will be retained here for simplicity) may be stated similarly to Eq. 25 of [2]:

N

(1) j=1

I Xj I < Xmaxj

Where...

N = # CMG gimbals considered
Ai-= Output torque of CMG gimbal #j at unit gimbal rate
Xi = Gimbal rate for CMG gimbal #j

Xmax. = Peak gimbal rate for CMG gimbal #j

M = Vehicle Torque Request

Changing variables in this relation to steer CMGs under a delta torque scenerio

is straightforward:

N

Z Aj A = AM
(2) j=1

-Xmaxj Xj < AXj _ Xmax- xi

Where...

Ax = Change in gimbal rate for CMG gimbal #j
AM = Change in vehicle torque request
N, A, xj, Xmaxj are as defined in Eq. 1

The objective function used in the baseline steering law (as described in Ch. 3

of [2]) contains components that act to minimize inner gimbal angles, avoid gimbal
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stops, and prevent singular states. If one applied this objective directly to Eq. 2, the

initial selection would indeed pick gimbal rates satisfying these criteria. A problem,

however,-arises after the gimbals are in motion. Although it becomes increasingly

more costly to select additional gimbal action Ax in a direction- that approaches a

problematic configuration (ie. singularity or stop vicinity), the linear program is not

forced to specify gimbal motion in the opposing direction (ie. avoiding the stop or

singularity). Since the linear program tends toward a minimum-action solution, the

small AM commanded to compensate nonlinear effects after the gimbals start rotat-

ing generally precipitates correspondingly small Ax,. This creates a situation where

the initially selected gimbal motion is not substantially altered; the small trimming
needed to compensate the CMG nonlinearity (assuming the commanded torque M
doesn't change significantly) doesn't appreciably affect the trajectory of the chosen
CMGs. In a certain sense, this is a direct manifestation of the original purpose in

changing decision variables; the steering algorithim has developed an "inertial" ten-

dancy to keep gimbal rates constant, admitting only minor alterations where neces-

sary. This often creates additional problems, however; ie. if a gimbal is initially
selected to move in an "innocent" direction, things can later become ominous if its

trajectory is not altered before it eventually approaches a stop or participates in cre-

ating a singular configuration.

This situation has been addressed by allowing the cost opposing the worst-posi-
tioned CMG gimbal to become negative. As illustrated in [2], every CMG gimbal

has two associated objective factors corresponding to opposite senses of gimbal
rotation. Each of these costs reflects the optimality of moving a CMG gimbal in the

corresponding direction. If one cost is'high, indicating an impending problem, the

other cost should be lower, provided that motion in the opposite sense will not
invoke another difficult configuration. The "urgency" of moving a gimbal is thus

reflected in the difference between its pair of associated costs; if this difference is

excessively large, it is determined that the responsible CMG gimbal is approaching
trouble that can be averted by reversing its direction of rotation. This is indeed

what is performed to prevent the above-mentioned tendancy toward a static sol-

ution. When the cost difference of a gimbal pair increases beyond a preset thresh-

old,- the lower cost of the pair is allowed to go slightly negative, thereby

encouraging its selection and subsequent gimbal reversal. In order to avoid chaotic

solutions which slam negative-cost gimbals at peak rates in order to glean the maxi-

mum benefit from the inverse-sign objective factor, the upper bound regulating the

gimbal rate-change in that direction is reduced, clamping corresponding gimbal

activity to a reasonable level. In addition, only one cost factor out of the entire CMG

ensemble is allowed to go negative per selection; the low-cost factor associated
with the maximum cost difference is chosen.
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The above procedure is summarized below using the conventions of [2]:

Define:

Scj = Ici+-c7I

smin = minimumIc, cI

(3) smin A 1 cm

Cnegimji = minimum(,, {Cnegj}

smin
cimin Cnegjmin

IF Cnegmn < -Co THEN UB mn
min jmin

UBJiminjmin '- K

Adjustable Factors...

A = Negative cost skew factor
Co = Negative cost threshold
K = Upper bound attenuation factor for negative costs

The upper-bound attenuation factor K should be made to decrease toward unity

as the magnitude of the torque request increases, allowing the system to marshal

full response to large input commands.

The logic of Eq. 3 provides' the delta torque steering method a dynamic means

of modifying its strategy in accordance with the objective function. Because of its
inherent "inertial" characteristic, the delta torque method will tend to minimize per-
turbation of the CMG gimbal rates until the threshold (-CO) in Eq. 3 is exceeded and

a cost is made negative.

Although the zero gimbal rate solution served as an intrinsic attractor.for abso-

lute torque steering, the delta torque method has no special preference for zero

rates. This results in an effective loss of damping, allowing the CMG system to be

"pumped" to higher gimbal rates and eventual chaotic behavior after each major

change in the solution (caused by a shifting torque request or negative cost factor).

It is clear that any practical steering law formulated in the delta torque domain must
contain some means of dissipating energy in order to keep gimbal rates from being

excessively boosted.
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The objective function was modified to accomodate such gimbal damping by
adding a term to the objective definition that opposes each gimbal rate. The cost
factor definition (Eq. 30b of [2]) then becomes:

(4) ci s = Ko + KAFAngle( j ,S) + KsGstops(j,s) + KLYLineup(J,S) + KR ZGRate( ,S)

Where...

If (s)(x) > 0

ZRate(JS) = { x0 Otherwise

xj = Current gimbal rate for gimbal #j
s = Sense of gimbal rotation considered ( ( 1)

The Z,,Rte term added in Eq. 4 increases with the assigned gimbal rate for addi-
tional rotation in the current direction of gimbal motion, effectively penalizing sol-
utions which would specify higher gimbal rates, and encouraging prompt gimbal
deceleration (re. negative cost from Eq. 3 after significant gimbal displacement.

Other innovations where incorporated to damp excessive gimbal chattering as
momentum saturation was approached; these included both boosting K (Eq. 4) and
reducing the allowed magnitude of negative costs as the system saturates. Since
both of these effects were made proportional to the increase in saturation beyond
80% momentum capacity, they are of little relevance to the test presented in the fol-
lowing section (which didn't drive the system beyond these extremes).

In examining the detailed performance of the linear programming process with
negative cost factors, a correction was made to the invite loop of the simplex proce-
dure detailed in the flow chart presented in Fig. 5 of [2]. The relation
SGN = sign(F), which determines the best rotation sense to use when inviting can-
didate gimbals into the solution, should read:
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(5) SGN = sign2 F- C + + Cl}

Where...

I = Index of invited activity vector

C+ = Cost of invited activity in the + direction

This function will yield a value of + 1 if a positive rotation determines a greater

cost gradient (CG) than a negative rotation, and -1 if vice-versa. The previous for-

mulation is accurate when all cost factors are positive (ie. SGN is always selected

such that F projects positively, yielding the only chance for a positive cost gradient

in this case), but may cause convergence to suboptimal solutions when negative

costs are allowed. Eq. 5 directly accounts for the different cost factors in each

direction, thus any effective gain from negative costs are considered.

2) Simulations

In order to examine the effect these concepts might produce in practical appli-

cation, several simulations were performed assuming the DualKeel Space Station

to be controlled by an array of 6 parallel-mounted double gimballed CMGs initially in

a zero-momentum state with outer g imbal axes aligned along vehicle pitch. Param-

eters defining the Dual Keel configuration and associated CMGs are identical to

those applied in [3]. The linear program was not allowed to select jets in these

tests (no examples ran the CMGs into saturation), but the logic to answer vehicle

rate-change commands through hybrid solutions was left intact for-this contingency.

a) Attitude Slews About Pitch/Roll

The first set of simulations run the system at fairly high torque by performing a

fast attitude slew about the vehicle pitch and roll axes. Vehicle rates of 0.0055

deg/sec are linearly built about pitch and roll within approximately 35 seconds, then

removed within a similar time frame, establishing a constant vehicle acceleration of

+ 0.00016°/ sec2 (this results in a net torque of about 500 ft-lb due to the large Dual

Keel inertias). Vehicle environment and control (if necessary) were updated at 80

msec. intervals.
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Fig. 1 shows the gimbal results for this maneuver as managed by commanding
absolute torque in a similar fashion to the relevant examples of [3]. The inner gim-
bal angles are seen to advance in a "braided" fashion, where an initial solution pri-
marily advances one gimbal until it becomes slightly more expensive than its
colleagues, thereby causing it to be halted and substituted by another, and so on....
This process stepwise increases the inner gimbal angles (which are the only means
of attaining pitch torque) until the input command reverses direction after they near
40°. Their reverse trajectory is not so uniform (since the extreme expense of
increasing inner gimbal angles no longer limits the solution), yet most inner gimbals
again approach zero deflection at the close of the test. Outer gimbals are seen to
smoothly congregate together at the midpoint of the simulation (indicating impend-
ing saturation), and thereafter return to the neighborhood of their initial positions.

Although the gimbal angle profiles appear reasonably well-behaved, the gimbal
rates look significantly more chaotic, forming a series of narrow spikes extending up
to the 5.2 deg/sec maximum (note the switch in sign of inner gimbal rates after the
input command was reversed). These spikes were caused by changes in the linear
programming solution encountered at each control iteration, as predicted in the
introduction of this report (the inner gimbal "stepwise" advance mentioned above is
a physical consequence of this behavior). Driving a system of actual CMGs with
these commands could certainly be problematic. Note, however, that the smooth-
ness of the gimbal angle profiles indicates that a modest filtering of the calculated
gimbal rates might yield a similarly smooth response. Other examples of noisy gim-
bal rate commands produced from absolute torque inputs were presented and ana-
lyzed in [4].

Fig. 2 presents a set of gimbal plots for the'same maneuver performed under
delta torque steering. An entirely different behavior is seen to emerge. Looking
first at the inner gimbal angles, one notices that the initial commands were fulfilled
primarily by advancing CMG #5. After it reached a deflection of about 400, however,
it became sufficiently expensive to trigger the negative cost logic of Eq. 3, encourag-
ing it to be selected in the opposite direction, while advancing two other CMGs from
zero deflection to maintain the commanded torque. This behavior continued across
the entire run, causing a steady-state inner gimbal scissoring as successive CMGs
ramped up until their costs in the reverse direction went negative. The outer gimbal
angles also hint at some scissoring action, however any effect is much more sub-
dued (outer gimbal deflections are not penalized; the major terms in their objective
are due to lineup & singularity avoidance).
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The companion gimbal rates show much less high frequency component when

compared to the absolute torque results; the "spikes" are essentially gone. These

rates, however, do frequently move between thier positive and negative limits as

gimbals are scissored back and forth at maximum clip, indicating excessive energy

being pumped into the system, thus emphasizing the need for damping.

The next test tries to tame this scissoring by increasing KR in Eq. 4 (it was

almost negligible in the previous test), thereby adding significant rate-damping

encouragement to the objective. In addition, the bound attenuation factor K in Eq. 4

was boosted to 3 (it was set to unity in the above example, allowing scissoring at

maximum rates), significantly limiting the adjustment of gimbal rates associated with

negative costs.

The results, as given in Fig. 3, are quite dramatic. Both inner and outer gimbal

angle profiles become quite smooth and well-behaved. The calculated rates are the

most continuous yet seen; indeed, they often vary smoothly across the maneuver

and exhibit comparitively little significant discontinuity. Although gimbal rates are

non-zero at the close of the run (they are essentially performing null motion), little

evidence of excessive energy pumping is evident in this example, indicating suc-

cessful compensation attained from the rate-damping objective and upper-bound
attenuation.

Fig. 4 shows the vehicle rates resulting from the previous three examples. In

spite of the differing gimbal trajectories pursued in each example, all rate histories

appear nearly identical, and the peak pitch/roll rates of 0.0055 deg/sec were linearly
achieved and removed with little disturbance.

b) Orbital Simulations

In order to examine the performance of delta torque steering in a more practical

context, longer simulations were performed over an orbital period, throughout which

the Dual Keel model was commanded to hold constant LVLH attitude in the pres-
ence of aerodynamic and gravity gradient torques. Orbital altitude was assumed to

be 400 km, and the target attitude inthe initial tests was chosen to produce torque

equilibrium about the pitch axis. Vehicle fabrication axes were used in the other

coordinates; this introduced significant Euler coupling across the orbit, which

required the CMGs to cyclically absorb 70% of their momentum capacity. More

details on the orbital environment and attitude controller used in these examples

can be found in Sec. (c) of [3].
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Fig. 4) Vehicle Rates Resulting from Attitude Slew
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Fig. 5 shows gimbal parameters resulting from such an orbital attitude hold
under absolute torque steering. Assumptions, made in this simulation were nearly
identical to those of Fig. 22 in [3], thus we see analogous gimbal behavior.
Because the pitch torques are in equilibrium, no significant inner gimbal activity is
evident. Outer gimbals are seen to rotate through large angles, however, in order
to null the Euler torques about roll and yaw. Although the gimbal trajectories
appear reasonably smooth, the outer gimbal rates do exhibit some characteristic
chatter, although at a smaller level than seen in the previous test (these examples
are run over a much longer duration, thus involve considerably less torque). Note
the factor 10 reduction of scale on all gimbal rate plots presented with on-orbit tests;
y-axes now range + 0.5 deg/sec. Vehicle rates (not plotted here due to lack of
space) remained under 4 x 10- 5 deg/sec .

The next investigation applies the delta torque approach as perfected in the
example of Fig. 3. A considerably noisier result is gleaned here, however, as seen
in Fig. 6. Initially, the inner gimbal of CMG #4 was steadily advanced, while others
were slowly moved about to null residual torques. After CMG #4's inner gimbal
reached 120, the cost of further advance rose high enough to invoke the logic of Eq.
3; which drove the opposing cost into negation. Since it became an effective "bar-
gain", the inverse motion of CMG #4 was brought* in at its maximum, causing it to
move quickly to the opposite extreme and instigate a chaotic limit cycle of frantic
scissoring. Similar behavior is observed in the outer gimbal system. Note that this
scissoring, frenetic as it may seem, is nonetheless null motion, and vehicle rates
were maintained below 3 x 10-4deg/sec. Remember that these plots of gimbal
rates saturate at + 0.5 deg/sec; allowed rates may still range up to + 5.2 deg/sec.

The above results emphasize a need for additional damping under these condi-
tions. The test of Fig. 6 was run with an upper bound attenuation factor of K = 3, as
was found adequate in Fig. 3. Here, however, the gimbals can travel much further
during a time step because of the longer 1 second update interval, causing scissor-
ing to be reversed after nearly every control application. The discussion associated
with Eq. 3 hinted that the upper bound on negative-cost activity vectors should be
tightened with decreasing torque requirement; since environmental torquing is
indeed quite low here, K was increased to 100 in the following example ( K could be
automatically scaled in practice). In addition, the gimbal rate objective contribution
KR (Eq. 4) was again increased to provide more gimbal damping.

Results are summarized in Fig. 7, where things appear significantly improved.
Inner gimbal usage remains minimal (corresponding gimbal rates are quite smooth).
Considerable scissoring is noted in the outer gimbal system, however high-energy
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chaos is avoided, and gimbal rates appear reasonably consistant throughout most of

the run (note that the update interval is a full second here, and rates stay well below

a half degree per second). Gimbal rates do seem to run a little higher than

encountered in the analogous absolute torque example (Fig. 5), but tend to exhibit

less low-level chattering (particularly in the latter half of the test), as expected under

the delta torque scenerio. Vehicle rates are well stabilized and again stay under

4 x 10- 5 deg/sec.

The success of the previous test encourages an attempt at a more complex sim-

ulation; the next.-examples offset the pitch attitude by 0.50 from torque equilibrium,

requiring a steady advance of inner gimbals to offset the resulting buildup of secular

pitch momentum. Fig. 8 shows the gimbal response under absolute torque steering;

indeed, all inner gimbals move essentially together, and outer gimbals still rotate to

null precession torques. The outer gimbal angles and rates are very similar to

those seen at equlibrium (Fig. 5), including the charactic chatter. The inner gimbal
rates seem to consist of a near-zero "fuzz"; when magnified, this phenomenon

begins to resemble the "spikes" seen in the rate plots of Fig. 1, indicating that the

inner gimbals are indeed "stepwise" deflecting together at low torque.

The delta torque approach was applied to this situation in Fig. 9. Inner gimbals

are seen to scissor as their mean deflection increases. This scissoring creates
large gimbal deflections at the latter portion of the run; since all inner gimbals

(which are the sole source of pitch torque with this mounting protocol) become con-

siderably expensive to advance at large angle, the net inner gimbal reaction
required to null the torque produced by reversing a gimbal trajectory likewise

becomes quite expensive. The linear program does not find this solution sufficiently

cost-effective until the magnitude of the negated gimbal-reversal cost grows high

enough to offset the expense of the required reaction. Toward the end of the run,

most inner gimbal increases become so costly that the reversal break-even doesn't

happen until the worst-case gimbal nears 15° of its maximum swing (at which point
its stops contribution, Eq. 32 of [2], rapidly increases, pushing the reversal cost

quickly negative).

Inner gimbal rates are, however, quite smooth when compared with the corre-

sponding "fuzz" of Fig. 8 (yet they do tend to run somewhat higher). Outer gimbal

trajectories remain reasonable, although considerable scissoring is encountered

early in the test. Even though gimbal rates, on average, are significantly higher than

those of Fig. 8, less low-level noise is noted in this example, excepting perhaps the

excessive outer gimbal scissoring encountered initially (but this seems to be prima-

rily at lower frequency).
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The large inner gimbal excursions seen in this example are undesirable; in

addition to nearing stop limits, large inner gimbal swings degrade the companion

outer gimbal's control authority. One method of reversing the inner gimbal trajecto-

ry at an earlier stage would be to unilaterally increase the overall gain on negative

costs (ie. boost in Eq. 3). This, unfortunately, can allow the linear program to

choose unphysical solutions (which were formerly too expensive), leading to even-

tual chaos. Boosting under a selective heuristic, however, could still provide

some superior characteristics, while perhaps avoiding ridiculous solutions. Refer-

ring to the notation of Eq. 3:

(6) IF Cjmin > a0 C] AND [E > bo] THEN cnegj,,i - g Cnegjmn

Where...

c = Average of maximum {cj +, c ) over all gimbals
-smin

cjmin = High cost paired with cost factor brought negative
a0 = Threshold above mean cost for boost application
bo = Minimum mean cost for boost application
go = Boost factor applied to negative cost

Ecnegjmn, is the negative cost value, as in Eq. 3]

Condition (6) applies an additional gain g on negative cost factors only when

the abberant gimbal has achieved a cost a above the mean cost () of expensive
gimbal rotations. In addition, the mean cost must be greater than threshold b, pre-

venting application of this logic except in critical situations. Eq. 6 thus effectively

imposes a well-defined hysteresis margin on the scissoring process at large costs.

Fig. 10 examines the application of Eq. 6 to the situation encountered in Fig. 9.

In this example, a, was set near 2, b was relatively low, and g was set to 10. Inner

gimbal swings are much more limited, and the scissoring frequency increases at

higher inner gimbal angles as the extra gain from Eq. 6 cuts in and forces prompt

trajectory reversals. Things don't get out of hand here, however, and excessive

pumping (re. Fig. 6) is avoided. Outer gimbal angles and rates seem to have the

same general character as the previous example (with perhaps more scissoring at

the end of the run).
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Fig. 11 is an analogous test with the gain go set to 20. The tighter inner gimbal

trajectory is evident; gimbals now scissor more closely to the mean deflection
angle. Inner and outer gimbal rate profiles appear smaller and more consistant

than encountered in Fig. 10; indeed, Fig. 11 gives the best results for this maneuver.

Fig. 12 extends this investigation by setting go to 50. The initial portion of the

test (up to t= 1500 sec) doesn't appear too different from the behavior encountered

in Fig. 11. After the inner gimbal angles pass 150, however, Eq. 6 begins to be

introduced, and the large go frequently reverses inner gimbal trajectories straying
above the mean path. Eq. 6 now acts strongly as a sheparding function, holding all

inner gimbals to an avarage trajectory and restoring the properties of absolute tor-
que steering, as were shown in Fig. 8. Since the scissoring is now tightly con-

strained to the mean deflection, gimbal rates are much noisier, thereby defeating
the original purpose for which delta torque steering was instituted. Vehicle rates

throughout this test (and all other tests examining pitch displacement from equlibri-
um) remained under 4 x 10-5 deg/sec.

Most discussion of the previous examples centered around gimbal rates and
inner gimbal deflection; little was mentioned of the singularity problem. Since the
lineup avoidance amplitude (Eq. 33 of [2]) is preserved, the delta torque steering
procedure should also reverse gimbal trajectories when singular states are
approached (indeed, such behavior has been observed). One potential difficulty
with the absolute torque steering mode concerns its minimum action policy; gimbals

are moved primarily in response to input requests, and any null components tended

to scale with the request magnitude. As a result, poorly positioned gimbals (as in
an approach to a singular configuration) could be left untended it their motion didn't
benefit the objective for solving the requested torque (ie. the gimbal response to the

objective function will depend on the torque input). Conventional steering laws

avoid this difficulty by always adding null motion independently of the torque

request. Linear programming could potentially attain this property by allowing costs

to go negative; this concept was discussed and attempted in [3] with mixed results

(conclusions might improve it the correction of Eq. 5 were incorporated into sim-

plex). The delta torque scenerio, however, tends to keep CMG gimbals moving (as

mentioned earlier, attracting the zero-rate solution can be difficult), thus the system

is nearly always performing null motion. Since the objective function influences this

gimbal activity, the system should generally steer away from singular configura-

tions. If a problem configuration is neared, however, the continuous null motion

should promptly remove the system from its vicinity (provided the singular state is

escapable).
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Fig. 13) 3-Axis CMG Controllability at TEA
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CMG controllability parameters are plotted for the orbital runs of Fig. 5 (Abso-

lute Torque Steering at Torque Equlibrium) and Fig. 7 (Damped Delta Torque Steer-

ing at Torque Equlibrium) in Fig. 13. The parameter of interest in these plots is the

CMG gain (Eq. 44 of 2]), which represents the degree of 3-axis CMG controllability

(this is the upper curve; high gain implies high controllability). The absolute torque

method (top plot) shows a significant drop in CMG gain at t 2200 sec. Observing

the outer gimbals in Fig. 5, one can notice that this is due to the approach of a sin-

gular state with CMG #6 pointing antiparallel to all others. A delay in moving the

outer gimbals of CMG #6 allowed this situation to occur (as it stands, it managed to

move CMG #6 before the system actually went singular). This effect was also noted

in 3] (Fig. 22), however the cost factors were adjusted differently in this case, and

the rotor alignment did not become quite so critical.

The lower plot of Fig. 13 presents the controllability parameters produced under

delta torque steering, using the same antilineup objective contribution. Here we

see an essentially flat gain profile remaining at its maximum value; indeed, the

omnipresent null motion performed under delta torque steering was able to dislodge

the outer gimbal of CMG #6 before it approached the antiparallel orientation, creat-

ing a superior gimbal trajectory.

The above example supports the potential superiority of delta torque steering in
singularity avoidance. Before.definite conclusions are adoped in this area, however,

additional studies should be performed.

4) Conclusions

The practical application of linear programming to CMG steering may require a

means of smoothing the calculated gimbal rates. The simplest means of accom-

plishing this is to low-pass filter the gimbal rate output. If bandwidth and/or compu-

tational considerations preclude this option, changing decision variables-to delta

torque may also provide a more continuous gimbal rate profile. This strategy, how-

ever, requires additional logic to impose objectives onto gimbal motion and damp

excessive gimbal activity. Methods to accomplish this were developed and tested

in simulations; results indicated that delta torque steering could be applied success-

fully to yield lower gimbal chatter. If this method is adopted, however, deeper

investigation should be performed into better damping of gimbal scissoring. Addi-

tional tweaking of upper bound attenuation and further adaptation of the objective

function and linear program formulation could yield improvement over the results

presented here (the effort described in this report constituted a quick study; a more
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systematic look should be taken if the need for delta torque steering arises). Test
results also seemed to indicate that the perpetual null motion performed under the
delta torque formulation can move potentially hung gimbals into better orientations,
enabling superior rotor lineup and singularity avoidance characteristics. Methods of
slowing gimbal motion in the vicinity of momentum saturation were discussed;
these ideas may be developed further if this proves to be problematic.
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