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Abstract

An analysis package has been developed to investigate an alignment
scheme defined for the GEM muon barrel.  Individual chambers can be
arbitrarily translated and/or rotated, and sagitta corrections are calculated
from a system of alignment monitors.  The sagitta error, correction, and
residual are plotted (vs. θ and φ) for straight-line tracks arising from the IP.
Using this package, intuition may be developed into the accuracy and nature
of particular alignment corrections.  Several effects have been found to limit
the error correction to the percent or permil levels for certain chamber
deflections, which may become significant for large misalignments.
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Figure 1: Schematic of the muon alignment scheme adopted in the simulations

1) Motivation, Strategy, and Analysis

The alignment requirements1,2 needed to attain the required momentum precision

in the GEM muon barrel are extremely demanding.  The most exacting of these

specifications are driven by the 25 µm alignment error allowed in the bending coordinate

(here referred to as "x").  In order to attain such accuracy, it has been proposed3 to

dynamically measure the deviation of the chamber systems from perfect alignment using

precision alignment monitors such as LED/LENS4 or RASNIK5 systems (for layer-to-

layer alignment) and multi-point monitors such as stretched wires6,7 or nested 3-point

optical monitors8 to determine inter-chamber alignment within a layer.  A rough diagram

of such a system applied to the GEM muon barrel is depicted in Fig. 1.  The multipoint

monitors (which measure the displacements of the chamber corners from the line between

the layer endpoints) run horizontally along z on each side of a superlayer.  Six projective

3-point LED-LENS straightness monitors run between superlayers (a pair on each side

with monitors connecting the four superlayer corners, plus a pair in the center).  The

horizontal multipoint monitors measure the corrections needed to effectively "straighten"

a superlayer, while the projective 3-point monitors measure the displacement of the three

layers in the bending coordinate.  The simple scheme depicted in Fig. 1 is somewhat

idealistic, in that it provides the minimal set of measurements needed to correct

misalignments.  The accuracy of an actual deployed system would benefit considerably

from additional projective monitors and multipoint sensors, as will be discussed in the

conclusion of this report.
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Figure 2: The standard 3-point optical straightness monitor

In order to access the performance of alignment schemes such as suggested in Fig.

1, several simulations have been (or are being) written to determine alignment corrections

from postulated monitor systems and evaluate their accuracy.  One of these routines9

randomly perturbs (i.e. rotates, translates) chamber superlayers about all axes, and

statistically evaluates the alignment correction for arbitrary chamber motions; such a

verification is essential in guaranteeing the performance of any alignment layout.  The

software developed under this study takes a different tack, however, in that a specific

chamber misalignment is generated (the chambers and layers may be translated, rotated,

or scaled as desired), and the alignment correction and residual (for straight-line tracks)

are then plotted across the entire superlayer θ,φ span for visual analysis.

Because the local alignment requirements are so exacting, small, higher-order

effects can become quite significant, especially with large displacement errors (i.e. it has

been suggested3 that the GEM alignment monitors be designed to yield a dynamic range

approaching ±5 mm, within which an alignment correction could be made in the muon

reconstruction software).  This study has investigated several such effects, and simulation

results are presented in this report.  Together with the analysis technique of Ref. [9], these

error sources can be identified, understood, and their effect on the muon momentum

reconstruction appropriately limited.

The standard 3-point optical straightness monitor is shown in Fig. 2.  It measures

the displacement of the optical center of a lens from the line between the light source

(conventually a smooth-aperture LED with a square collimator) and a receiver (generally

a quadrant photodiode; potentially a lateral-effect photodiode or CCD array).  The ideal

measurement may be easily parameterized in vector notation:

1)    ∆ a = r12 x r13 x r13

 r13 = Vector from source to receiver
r12 = Vector from source to lens
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Figure 3: Straightness Monitor measurement of middle superlayer displacement

The straightness monitors of Fig. 2 have an implicit gain of 2 in their

measurement, which is not included in Eq. 1.  In addition, there are several other effects

that can enter, which are unaccounted for here.  If the lens is translated along the line

between source and receiver, a change in magnification will result, effectively displacing

the measurement.  In addition, the receiver essentially performs a centrioding operation

over the projected image of the source; due to nonlinearity inherent in the receiver

response to displacement, the measured position can change with the size of the source

image, which is also a function of the spacing of the 3 elements along the source-detector

line.  Granted, such effects are generally small, but should be included in future

simulations; as is shown in this study, combinations of minor errors can become

significant when large alignment corrections are required.

The vector  ∆  has essentially 2 components perpendicular to  r13.  The relevant

component of this measurement (m) is also perpendicular to the magnetic field direction

(which is assumed to always point along the z-axis).  The component orthogonal to this
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Figure 4: Straightness Monitor measurement of top superlayer displacement

(q) is not directly related to the sagitta error (although still may be of beneficial use in an

estimator, which will be discussed later).  These components can thus be described:

2)
    

m = ∆a • z x r 13

q = ∆ • r x z x r

The straightness monitors thus measure the normal distance between the lens and

the line connecting the source and receiver.  The chambers, however, ideally measure the

intercept of a track along a plane.  If they are displaced, the sagitta errors in the

reconstructed muon momenta appear along the plane of the chamber, not along the

normal to  r13 that is directly measured by the monitors.  The situation is depicted in Fig.

3, which shows a middle chamber displaced excessively along the sagitta axis.  In order

to derive the appropriate quantity, the monitor measurement m must be divided by the

cosine of the angle between the straightness monitor axis  r13 and the normal to the

chamber planes (here assumed to be 11.25°, which is the half-angle in φ subtended by the

GEM hexants).
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Figure 5: Sagitta error from radial shift of middle chamber position

This effect can introduce limited errors; i.e. since the angle between  r13 
 and the

chamber plane normal is not measured, it must be assumed at a default value (i.e. 11.25°,

as in Fig. 3).  As the chambers shift, however, this assumption looses validity.  Fig. 4

shows a simple example of this effect; i.e. the top chamber is shifted (here by an

exaggerated amount) in the sagitta direction.  As a result, the sagittas measured at each

side of the hexant are different [m1 > m2] (although this effect will not be seen by the

straight-line muon coordinates in the chamber intercepts), and because the angles

between the straightness monitor axes and middle chamber plane are assumed to still be

identical (certainly untrue here; ø1  ø2), different sagitta corrections will be applied at

each hexant edge.  This causes a non-zero second order correction (as described below) to

be applied to the muon sagitta vs φ, which produces an error; the actual correction should

be uniform.

Another chamber displacement that can induce a sagitta error is a radial motion of

the chamber planes; i.e. a change in distance between layers 1 & 2 or 2 & 3.  This causes

the edges of the hexants to become non-projective, as illustrated in Fig. 5.  In Ref. [1], the

error from this source was parameterized by ∆x = ∆y tan φ, where ∆x is the sagitta error,

and ∆y is the radial offset from the ideal chamber position (this is noted in the triangle
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drawn at upper left of Fig. 5, where we see that a radial shift of the middle chamber by

126 µm will expend the net alignment error budget of 25 µm at the hexant edges).
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Figure 6: Comparison of errors due to radial shift and longitudinal scaling of middle superlayer

This correction, however, is not exact.  A radial shift of a chamber layer (i.e. the

middle layer as shown in Figs. 5 & 6), also changes the relative φ intercepts between the

three layers.  If one goes through a sagitta calculation of the standard form:

3) ∆x = (x2 - x1) - (x3 - x1) (y2 - y1)/(y3 - y1)

where the "y" coordinates are the locations of the chamber planes from the IP (folding in

the ∆y errors of Figs. 5 & 6), one derives the relation (for a displacement of the middle

layer by ∆y):

4) ∆x =   y2
y2 + ∆y  

∆y tan φ
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The alignment monitors, however will measure a slightly different result; they

read as s = ∆y tan φ (after dividing the raw measurement by the directional cosine, as

illustrated in Fig. 3).  By incorporating the sagitta measurement into the assumed position

of the straightness monitors (i.e. adding the ∆x measured by the monitors into the

nominal monitor φ locations used in fitting the sagitta correction), this error may be

completely accounted for, and the projective monitors are able to totally cancel radial

movement of the middle chamber (and greatly attenuate movement of the inner and outer

chambers; the effect noted in Fig. 4 holds here as well!).  The correction for static shifts

(i.e. Figs. 3 & 4) remains unaffected under this assumption.

A difficulty arises here, however, in also accounting for scale changes.  Assuming

that a chamber endplate is an ideal metal slab that expands uniformly with temperature

(which certainly needs verification for the required level of accuracy), thermal shifts will

cause a scale change in the chamber endplates, most critically in the bending (x)

direction.  This is illustrated in Fig. 6, where the middle chamber has shrunk by a factor

of ß.  Running through the sagitta analysis of Eq. 3 yields a much simpler result; in this

case, ∆x = s  directly; i.e. the sagitta that is measured by the monitors is equal to that

experienced by a muon traversing at the edge of the hexant.  The additional factor in

parenthesis in Eq. 4 does not apply here, thus if one modifies the correction fit ordinates

as described above, a small error can be produced (this error can nonetheless approach

tens of microns for a measured s  around 5 mm, which becomes significant for the GEM

muon system).

The above argument illustrates that these projective sagitta alignment

measurements are inadequate for a complete error correction.  Fig. 6 shows (an

exaggerated) situation where a displaced middle layer (∆y) and scaled middle layer (ß)

will produce the same measurement on the straightness monitors.  As discussed, however,

the exact sagitta correction is different in each case.  This is illustrated by the projective

muon line drawn at the edge of the hexant in Fig. 6.  Although the alignment monitors

will measure "s" in both cases, the intercepts on the displaced and scaled layer are

different (the discrepancy is denoted as ε), thus their reconstructed sagittas will likewise

differ.

The dilemma posed by this situation may be resolved in a variety of fashions.  By

using the information in the other straightness monitor coordinate (they are, afterall,

2-axis sensors), the ambiguity could potentially be broken.  This is not directly possible

here, however, since the monitor set at θ = 90° is unable to independently measure the

y-coordinate, and the monitors at θ = 30° also couple in the z displacements.  The
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Figure 7: Rotation of Middle Superlayer about z-axis

compromise that may evict the best performance (without changing the monitor system)

is to not redefine the fit ordinates (as discussed above), but apply the sagitta corrections

directly to completely cancel out scaling shifts (assuming that these will be significantly

present; of course, this depends on the endplate composition and expected thermal

environment).  This will, however, enhance the error arising from radial chamber

displacement, but these motions are already attenuated by a factor of tan φ (where the

maximum φ is currently 11.25°), thus their contribution to the error budget will be

smaller.

As noted in Ref. [10], a rotation of a chamber layer about the z (beam) axis will

induce a quadratic dependance of the sagitta correction on the φ angle (or more

specifically on tan φ).  This can be illustrated by a simple example, where the middle

chamber layer is rotated about its center by an angle α , depicted in Fig. 7.  The direct

sagitta error is  ∆x0 = y2 tan φ (1 - cos α), where y2 is radial  superlayer position.  An

error also comes about from the ∆y displacement; assuming the tangent approximation,

we derive: ∆y = y2 tan φ tan α.  Putting this all together, we get:
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5) ∆xnet ≈  ∆y tan φ + ∆x0  = y2 [tan2φ tan α  + tan φ (1 - cos α)]
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Figure 8: Calculated sagitta for z-rotation of middle superlayer

Eq. 5 is obviously quadratic in tan φ.  It has been plotted vs. φ for a rotation of

α  = .05 rad in Fig. 8.  The differing sagitta values seen at each hexant edge can also be

noted in Fig. 7 (a result of the projective geometry), and are seen in the simulated data.

The sagitta error at φ = 0 must remain zero (since the chamber doesn't translate here),

although the φ = 0 value is not at the quadratic minimum; it is generally at one of the two

roots (the sagitta goes slightly negative at the minimum).  Granted, this is a simple

example.  In reality, there will be a superposition of rotations and translations of all

chamber packages.  Although the coupling of rotations and translations of the various

layers can induce additional projection  errors, the form of Eq. 5 (with offset terms added

for the translations) is seen to hold over a moderate range of possible deflections.

As seen in Fig. 7, the straightness monitors will produce sagitta measurements of

the same sign, which can not be distinguished from a chamber scaling/displacement by

the two edge-running monitors that are shown.  This study has taken the suggestion of

Ref. [10]; i.e. a third straightness monitor system is assumed to be installed at φ = 0 (the

baseline arrangement outlined in Ref. [3] assumed that the radial y-coordinate would be

independently measured by instrumented zerodur rods, eliminating this problem, albeit at

some complication).  This triple measurement determines a unique quadratic,

parameterized as:
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6) ∆x = Aq2 + Bq + C Where:   q = tan φ  for muon intercept in middle chamber

  

 

A =

s1 – s3 q1 – q2
q1 – q3

– s1 – s2

q1
2 – q3

2 q1 – q2
q1 – q3

– q1
2 – q2

2

 
B =

s1 – s3 – A q1
2 – q3

2

q1 – q3
 C = s1 – B q1 – A q1

2

The values s1, s2, s3 are the sagittas measured by the 3 monitors located at

positions q1, q2, q3 (which are stated in terms of qi = tan φi the coordinates of the middle

chamber have been assumed in the fits used here).  The correction for monitor

displacement discussed earlier has been applied in the specification of these coordinates

by adding the measured sagittas into the x positions:

7) qi = (xi(2) + si)/y2

where xi(2)  is the nominal monitor position on the middle chamber plane, and y2 is the

nominal radial position of the middle plane.  Granted, these corrections decrease

sensitivity to rotations and ∆y displacements, but will increase sensitivity to thermal

scaling shifts (as discussed earlier), thus may not be advisable to employ in practice.

The rotations were seen to also be better fit if an additional correction was

incorporated into the quadratic term.  After a sagitta ∆x was derived via Eq. 6, a new

ordinate was determined in a similar fashion to Eq. 7:

8) q' = (y2 tan φ +  12 ∆x)/y2

The sagittas are then re-calculated through a modified version of Eq. 6:

9) ∆x = Aq'2 + Bq + C

The effect of these corrections can be debated.  Granted, they can produce

significant benefit for certain layer misalignments, but can increase the error budget for

others, as has been demonstrated above in the ∆y vs. scaling case.  More investigation is

warranted...

If the chamber is rotated about the x or y axes, the sagitta error will change

linearly with the z-coordinate.  As a result, a linear z interpolation must be performed

between the monitors located at θ = 90° and θ = 30°.  This can be prone to several errors.

The superlayer misalignment in z resulting from the rotation will produce a shift in the
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Figure 9: Application of stretched-wire technique to align chamber packages in a superlayer

measured θ (analogous to the shifts in measured φ that were discussed above), which can

generate an error in the interpolation ordinates.  This can be reduced by straightening the

muon tracks in the nonbending rθ plane; i.e. these lines must be straight (ignoring

scattering effects and nonuniform magnetic fields), thus the middle chamber

measurement can be compensated to maintain a straight line.  Although this is seen to

improve the sagitta correction in the simulations, it leads to another potential problem;

i.e. the measurement of the z-coordinate is fairly coarse (as performed with RPC strips on

the order of 3.5 cm wide on the outer chamber, yielding a σ of roughly 1 cm), thus such a

precise correction may not be possible.  This z resolution will also induce another error
into the a z-interpolation (as needed to recover from an x or y rotation) of 0.7%/ 3 across

the length of a superlayer (assuming a least-squares fit across projectively-sized strips in

each layer), which isn't too bad...

The x and y offsets of individual chamber packages in a superlayer are measured

by a set of multipoint monitors running along the z-axis.  In this fashion, the superlayer is

made analytically straight; i.e. the positions of each chamber are compensated in the

reconstruction analysis, such that a straight line runs between the locations of the

projective 3-point monitors at θ = 30° and θ = 90°.  The all-projective scheme of Ref.

[10] proposes running inter-superlayer projective monitors to each chamber, rather than

relying on the minimal set of measurements at the 90° and 30° superlayer endpoints and

multipoint sensors to "straighten" the chambers mounted in-between.  Since the all-

projective scheme delivers additional relevant information (i.e. the direct relation between

superlayers at each chamber), it is an attractive prospect.  The implementation of this

strategy, however, depends on the superlayer structure; i.e. all chambers must be

differently sized in each superlayer such that the endplates (or alignment references) are

all projective to the IP.  This can create appreciable gaps in the θ acceptance, depending

on the chamber design and how closely the chambers can be packed (of course, they can

always overlap, but this will potentially block the alignment lines of sight).  Regardless,
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Figure 10: Application of nested straightness monitors to multipoint measurements in a superlayer

this alternative is attractive, provided the engineering problems are satisfactorily resolved.

A potential solution, currently being discussed, is to run projective monitors wherever

possible, to be complimented by multipoint monitors running along the z-axis.  This will

yield redundant information, which can be processed by an optimal estimator11 to provide

better alignment accuracy (potentially more robust to sensor noise and failure).

The alignment scheme assumed in this study adopts the sensor configuration

sketched in Fig. 1.  The inter-chamber multipoint measurement along z is performed in

two independent fashions.  One technique is the stretched wire approach6,7, where a wire

is stretched between the superlayer endpoints, and the distance from the wire to fiducials

on the chamber is derived (optically or capacitatively), after correcting for the known

wire sag.  The analysis models this method in a very simple fashion, based on Eq. 1:

10)    ∆ i = r1i x r1N x r1N

 r1N = Vector from 90° edge to 30° edge
r1i = Vector from 90° edge to chamber endplate #i

The application of the stretched wire approach to a 4-chamber superlayer is

depicted in Fig. 9.  Position sensors that reference the wire are placed at the edges of each

chamber.  If warping of the chambers along the z-axis is of concern (potentially a

problem with cathode strip chambers), it may prove desirable to place additional position

sensors along the chamber length.

The other technique used by this analysis to align chambers in a superlayer is the

nested 3-point optical monitor approach, as depicted in Fig. 10.  Here, standard 3-point

optical monitors (as in Fig. 2) are "leapfrogged", such that they are overlapped by half of

an alignment string (i.e. the first lens also has an LED for another monitor, the first
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detector has a lens for the second monitor and an LED for a third monitor, etc...).  The

position of each component relative to the line between the endpoints of the initial and

final monitors may then be backed out by a simple calculation (illustrated in Fig. 10 and

detailed below).  Since the errors arising from each measurement are propagated across

this system, its resolution is somewhat degraded (vs. the stretched-wire technique, where

every sensor independently references a common wire).  The major contributor to the

sensor error over these short path lengths (assuming that thermal gradients are limited) is

mechanical error in the mounting of the optical components.  This may be reduced to

applicable levels by positioning each element precisely in gauge blocks (as was

performed at L3, and realized a resolution on the order of 6 µm12).  Investigations have

been performed by members of the SDC collaboration8 into precision mounting of a light

source and photosensor directly onto a lens, which can then be mechanically located by a

precision mount.  Although such a technique may involve considerable development and

expense, it is a compact means of realizing nested monitor systems as shown in Fig. 10.

The offsets of the monitor components relative to the line connecting the

endpoints may be derived by inverting a sparse matrix, as illustrated below for a 4-

chamber (thus 3-monitor) system, as in Fig. 10.

11)    ∆x = b [I] - [A] -1 where: [I] = 5 x 5 Identity

   

b =

0

ψ2

ψ3

ψ4

0

 

[A] =

0 0 0 0 0

∆z12

∆z13
0

∆z12

∆z13
0 0

0
∆z23

∆z24
0

∆z23

∆z24
0

0 0
∆z34

∆z35
0

∆z34

∆z35

0 0 0 0 0

The calculation of Eq. 11 is performed independently for x and y coordinates (and

is illustrated above for ∆x).  The vector b contains the measurements of the composite

straightness monitors (as shown schematically in Fig. 10); since the ∆x values are

assumed to be relative to a common line between endpoints 1 and 5, the top and bottom

components of b are zero.  The matrix A specifies the monitor geometry.  Its elements are
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fixed (hence the inversion need only be calculated once), and essentially specify the

spacing between the monitor components (of course, as the chambers deflect, the monitor

spacing changes, injecting a small error, as discussed earlier).  The simulation software

emulates each composite monitor string via Eq. 1, and calculates the ∆x deflections via

Eq. 11.  No difference is seen (using this limited model) from the stretched wire results as

calculated by Eq. 10.

The layout of Fig. 10 assumes that at least two nested monitor systems run along

each edge of each chamber; one (upper in figure) to measure the offset of the rightmost

chamber corners, and another (lower in figure) to measure the offset of the leftmost

chamber corners.  This technique, while attractive mechanically (i.e. the fragility and

complication of a stretched wire is avoided), is not readily amenable to including interim

references placed along a chamber frame (perhaps useful for cathode strip devices).

The multipoint schemes of Figs. 9 & 10 will produce a ∆x and ∆y value at each

chamber corner.  During the reconstruction procedure, these must be interpolated

(linearly in the current scheme) between the 4 endpoints of each chamber traversed by a

muon, at the position of the muon intercept (as measured in local chamber coordinates).

This correction is then added into the muon spacepoints for each superlayer (thus

referencing them to the lines between superlayer edges).  These are then adjusted by the

results of the inter-layer 3-point monitors, first interpolated along the z-axis.  A linear

interpolation (expressed in terms of cot θ) is performed on the quadratic coefficients

(A,B,C; see Eq. 6) determined by the 90° and 30° monitors, at the angle θ specified by a

least-squares fit between the 3 superlayer spacepoints.  The resulting quadratic

coefficients are used to interpolate across tan φ (using the coordinates of the muon

intercept on the middle superlayer, corrected as described in Eq. 7).

2) Simulation Results

The alignment scheme described in the previous section has been simulated for a

single barrel hexant (i.e. Fig. 1) using the MATLAB interpreter package13 running on a

Macintosh Quadra 700.  MATLAB has several advantages over standard languages such

as FORTRAN; i.e. implicit matrix/vector formalism, simple access to a wide variety of

efficient numerical routines, interactive graphics, and an intuitive approach to debugging

and development.  There were a few drawbacks to this application, however; i.e. no

capability in the current MATLAB release to easily define arrays of matrices, and the

slow speed of the interpreter (which was not too inconvenient when running on the

Quadra).
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The software was set up so that rotations (about local x,y,z axes), translations

(x,y,z),  and scalings (x,y,z) could be independently specified as matricies (i.e. as

performed in Ref. [14]) for each chamber, each superlayer, and globally for the entire

hexant.  These transformations were specified by 4 x 4 matrices in order to implicitly

include translations, as is standard in computer graphics applications15.  All

transformations were concatenated into a single matrix for each chamber (first scalings

are applied, then rotations, finally translations; the individual chamber transformations

are applied first, followed by the superlayer transformations, and finally the global

transformations).

Straight-line muons sweep the hexant in a raster scan of 40 (θ) by 11 (φ) points.

The measured muon spacepoints are calculated by finding the intercept of the muon track

with the transformed chambers, then transforming back (with the inverse matrix) to

produce the intercept in local chamber coordinates.  Uncorrected sagittas are calculated

via. Eq. 3, then corrected by the simulated alignment monitors (as discussed above), and

calculated again.  The uncorrected sagittas, correction function, and corrected sagittas are

mesh-plotted vs. θ and φ.  In addition, slices are plotted through the uncorrected and

corrected sagittas at θ = 90°, 60°, 30° (vs. φ) and at φ = -11.25°, 0, +11.25° (vs. θ).

The simulated stretched-wire system is used to correct the chamber positioning

along the z-axis.  These measurements are displayed in a set of plots (together with the

measurements derived from the nested monitor systems, which were seen to be identical).

A final group of plots shows the measurements from the projective, inter-superlayer

3-point monitors.

The superlayer configuration (Fig. 1) is structured in rough accordance with the

GEM Baseline II specification.  The outer layer (#3) is assumed to contain 4 chamber

packages at y = 8700 mm from the beamline, the middle layer (#2) contains 3 chamber

packages at y = 6310 mm, and the inner layer (#1) contains 2 chamber packages at

y = 3920 mm.  All chamber packages are sized identically in z and projectively in x.

The first example is exceedingly straightforward; i.e. all chambers in the middle

superlayer are translated along the bending coordinate (x) by 10 mm (see Fig. 3).  Fig. 11

shows the raw and corrected sagittas.  It is immediately evident that the measurements

from the straightness monitor system perfectly reproduce the muon measurements, hence

completely annihilate the sagitta error, which is constant in θ and φ.  The straightness

monitor measurements (as projected onto the chamber planes by dividing by the cosine of

their inclination; see Sec. 1) are plotted in Fig. 12; the ∆x shift is directly detected at all

3-point sensor locations (the deflection along x couples into the ∆y measurement seen by

the projective monitors at θ = 30°).  Since individual chambers are not displaced in this
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Figure 11: Sagitta error and correction for middle superlayer offset by ∆x = 10 mm

example, the multipoint measurements are zero all along the superlayers, as seen in the

lower sets of plots in Fig. 12 (these plots will thus be omitted in all tests excepting those

that displace individual chambers).
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Figure 12: Straightness monitor measurements for middle superlayer offset by ∆x = 10 mm

The next example is as well a translation in x, however now the outer superlayer

(#3) is shifted by ∆x = 20 mm (see Fig. 4).  Sagittas and corrections are shown in Fig. 13.

Due to the rotation of the projective alignment axes, the monitors running at opposite

sides of the hexant in φ see slightly different sagittas (which are not encountered by the

straight-line muon).  This is evident in the curve of the correction, which is caused by a
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Figure 13: Sagitta error and correction for outer superlayer offset by ∆x = 10 mm

small quadratic component arising from the monitor mismatch, producing an analogous

residual error, approaching 10 µm at the superlayer edges (larger at θ = 90°).  The

projective monitor measurements are given in Fig. 13.  The small difference between the

monitors at opposite φ angle can not be discerned here, thus a table output from the

simulation has been included to list these results (which disagree by 4 µm, front-to-back).
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Figure 14: Straightness monitor measurements for outer superlayer offset by ∆x = 10 mm

The next example applies a scale factor to the x-dimension of the middle chamber

layer (see Fig. 6 and discussion).  The measured x-coordinate is effectively reduced by a

factor of 0.995.  Sagittas and corrections are given in Fig. 15, while the straightness

monitor measurements are plotted in Fig. 16.  Although the straightness monitors

detected roughly 6.3 mm of sagitta error, a residual remains after correction, approaching

50 µm at the chamber edges!
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Figure 15: Sagitta error and correction for middle superlayer x-coordinate scaled by 0.995

This is due to the addition of the sagitta error into the fit ordinates (as in Eq. 7),

and was discussed at length for Fig. 6.  Although this correction aids in compensating ∆y

error, it generates susceptibility to scaling errors, such as noted here.



21

-10

0

10

-20 -10 0 10 20

Sensor Angle (deg)

X
 (

m
m

)
Projective (90°)

-10

0

10

-20 -10 0 10 20

Sensor Angle (deg)

X
 (

m
m

)

Projective (30°)

-0.05

0

0.05

-20 -10 0 10 20

Sensor Angle (deg)

Y
 (

m
m

)

Projective (90°)

0

0.5

1

1.5

-20 -10 0 10 20

Sensor Angle (deg)
Y

 (
m

m
)

Projective (30°)

Figure 16: Projective monitor measurements for middle superlayer x-coordinate scaled by 0.995
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Figure 17: Sagitta residual for middle superlayer x-coordinate scaled by 0.995; no fit correction
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Figure 18: Sagitta error and correction for middle superlayer radially offset by ∆y = 10 mm

Fig. 17 shows the same chamber deformation (x scaling by 0.995) as in Fig. 15,

however here the ordinate corrections of Eq. 7 have been omitted.  Indeed, the sagitta

error is now fully compensated.  In order to retain consistency, however, all examples in

this report employ the correction of Eq. 7, unless explicitly stated otherwise.
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Figure 19: Projective monitor measurements for middle superlayer radially offset by ∆y = 10 mm

-5

0

5 x10-3

20 40 60 80 100

Theta (deg.)

S
ag

itt
a 

(m
m

) Corrected

-5

0

5 x10-3

-20 -10 0 10 20

Phi (deg.)

S
ag

itt
a 

(m
m

) Corrected

Corrected Sagitta

P
hi

Theta

Net Correction

P
hi

Theta

Figure 20: Sagitta residual for middle superlayer radially offset by ∆y = 10 mm; no fit correction
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Figure 21: Sagitta error and correction for middle superlayer rotated by 5 mr about z-axis

The next example applies a simple radial offset of the middle superlayer (as

depicted in Fig. 5) of ∆y = 10 mm.  The sagitta and corrections are shown in Fig. 18.  The

error is seen to be essentially linear in φ, reaching up to ±2 mm.  The straightness

monitors, which are seen to properly measure the superlayer positioning in Fig. 19, apply

a perfect cancellation.
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Figure 22: Projective monitor measurements for middle superlayer rotated by 5 mr about z-axis
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Figure 23: Sagitta correction and residual for middle superlayer rotated by 5 mr about z-axis;
no second-order correction included
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Figure 24: Sagitta error and correction for various z rotations & superlayer translations

Fig. 20 shows the sagitta correction and residual for the same chamber

displacement, except the ordinate correction of Eq. 7 is omitted.  The error cancellation is

no longer perfect, and residuals of up to 5 µm are noted at the hexant edges.
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Figure 25: Projective monitor measurements for various z rotations & superlayer translations

As expected, chamber offsets along the z-axis have been seen to create no sagitta

error or produce finite corrections from the alignment monitor measurements, hence

z-offset examples are not presented in this report.

The next example examines a rotation of the middle chamber about the z-axis (see

Fig. 7) by 5 milliradians.  Fig. 21 shows the sagitta error, correction, and residual.  The

quadratic nature of the sagitta error is obvious.  The maximum error of 1.5 mm is reduced

to under 1 µm by the alignment correction (monitor outputs are shown in Fig. 22), which

leaves a residual appearing somewhat sinusoidal.  Fig. 23 shows the alignment correction

and residual for the same example, except now the second-order ordinate correction of

Eq. 8 is omitted.  The improvement is modest; the residual now extends to nearly 2 µm at

the hexant edges.  Note that the results with the second-order correction (Fig. 21) gave a

zero residual at the location of the alignment monitors, indicating a proper compensation

at the position where the measurements are taken.

The next example combines the above tests, in that several superlayers are

simultaneously rotated about z and translated along various axes.  In particular, layer 2 is

rotated by 5 mr about z, layer 1 is rotated by -4 mr about z, layer 1 is offset by 10 mm in

x, and layer 2 is offset by 10 mm in y.  Sagitta effects and corrections are shown in Fig.

24.  The initial error of up to 6 mm is compensated by the monitor systems (Fig. 25)

down to the 50 µm level, with the residual showing significant θ dependance (probably

due projective errors in the monitor systems).
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Figure 26: Sagitta error and correction for rotation of middle superlayer by 2.5 mr about the x-axis

In the next example, the middle superlayer is rotated by 2.5 milliradians about the

x-axis.  Sagitta results are shown in Fig. 26, where we see a maximum error of roughly 3

mm produced at the θ extremes of the hexant.  These are appreciably attenuated by the

correction from the monitor measurements (Fig. 27), although significant residuals of up

to 15 µm remain, depending on θ and φ.
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Figure 27: Projective monitor measurements for rotation of middle superlayer by 2.5 mr about x-axis
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Figure 28: Sagitta residual and correction for rotation of middle superlayer by 2.5 mr about x-axis;
"ideal" z-coordinate correction applied
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Figure 29: Sagitta error and correction for rotation of middle superlayer by 2.0 mr about the y-axis

Much of this error is due to problems implicit in the z-interpolation, as discussed

in the first section of this report.  Fig. 28 shows the residuals for the same example,

except the z-sagitta is now corrected by "perfect" chamber measurements; the worst-case

sagitta residual has been reduced by better than a factor of two.  Note that the residual at

the monitor locations is zero here, and all remaining error is in the interpolation.
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Figure 30: Projective monitor measurements for rotation of middle superlayer by 2.0 mr about y-axis
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Figure 31: Sagitta residual and correction for rotation of middle superlayer by 2.0 mr about y-axis;
"ideal" z-coordinate correction applied
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Figure 32: Sagitta error and correction for displacements of inner chamber packages

The ordinate correction of Eq. 7 does not aid in reducing sagitta errors from such

x-rotations; if these corrections are omitted, the sagitta residuals in Fig. 26 are reduced by

nearly half.
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Figure 33: Straightness monitor measurements for displacements of inner chambers

The next example examines a rotation about the y-axis of the middle chamber

layer by 2 milliradians.  Figure 29 shows the sagitta results; we see a sizable position

error created (on the order of 15 mm in the worst case), which is attenuated to the 5 µm

level by the corrections from the alignment monitor measurements (Fig. 30).  If z-axis
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adjustments from "perfect" chamber resolution are also included, the chamber

misalignment can be nearly perfectly corrected, as seen in Fig. 31.  In contrast to the x-

rotations shown in the previous set of examples, these y-rotations benefit from the

ordinate corrections of Eq. 7 (again, on the order of 50% improvement has been realized

in this example; Figs. 29,31 account for these correction).

The next example illustrates the performance of the multipoint monitors along the

z-axis.  A series of transformations (various translations and rotations) are applied to the

chamber packages that do not move the projective monitors (i.e. the chambers at the θ
edges of the hexants are not displaced, and no superlayer transformations are applied).

Sagitta results are shown in Fig. 32.  A complicated sagitta error function is realized (with

peak amplitude approaching 5 mm) as the straight-line muons are swept across the

various displaced chambers and their deflections are combined (since the chambers at the

θ extremes remain undisturbed, the error is zero in these regions).  As can be seen at the

bottom of Fig. 32, this error is completely canceled by the multipoint monitor

measurements.  The ∆x and ∆y coordinates measured by the alignment system are able to

completely describe the chamber misalignment (of course this is a simplified system; we

assume that a set of monitors running on each chamber edge [i.e. φ = ±11.25°] can be

linearly interpolated into the chamber body; i.e. the chamber wire supports are perfectly

rigid or uniformly scaled).

Since the projective monitors (top of Fig. 33) measure zero deflection, they

introduce no correction in this example.  The multipoint monitor measurements are also

shown in the bottom of this figure.  The monitor measurements on the edge of the

chambers at φ = -11.25° are denoted by "o", while the measurements at φ = +11.25° are

denoted by "+".  The leftmost region of the plots shows the monitor data for superlayer

#1, the middle region shows monitor data for superlayer #2, and the rightmost region

shows monitor data for superlayer #3 (the points are shaded differently in these regions).

The points are plotted in the sequence encountered when traversing the superlayer from

left to right.  The regions where the chambers are displaced is clearly visible.  The top

row of plots shows the data from the simulated stretched wire system, while the bottom

row shows data derived via Eq. 11 from a simulated set of nested monitors.  As

mentioned earlier, both sets of measurements are identical.

The next example is generated by rotating a set of chambers at the θ = 90° edge of

the hexant about the z-axis, and translating the middle layer's chamber at the θ = 30° edge

of the hexant along the y-axis.  The information from the projective monitors must thus

be combined with the measurements from the multipoint monitors along z.
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Figure 34: Sagitta error and correction for displacement of θ-edge chambers

The sagitta results are shown in Fig. 34.  The sagitta error is again somewhat

complicated, as the various chamber displacements are encountered across the θ range.

The correction reduces the maximum error from roughly 2 mm to 4 µm.  Interpolating the

projective monitor measurements along z induces a θ dependance on the residual.

Straightness monitor measurements are shown in Fig. 35.
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Figure 35: Straightness monitor measurements for displacement of θ-edge chambers

The next example takes this even further; all chambers and layers are translated

and/or rotated about various axes (such as might be realistically expected).  Sagitta results

are given in Fig. 36, where we note a maximum error approaching 5 mm, distributed in a

complicated fashion over θ and φ.  The straightness monitor measurements (Fig. 37) are

seen to reduce the sagitta residual to under 20 µm.
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Figure 36: Sagitta error and correction for "random" deflections of chambers and layers

The final set of examples examine the effect on the alignment correction from

global displacements of the hexant relative to the IP; i.e. where the interlayer monitors

depart from a projective geometry, and no longer point along the straight-line muon path

toward the interaction region.
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Figure 37: Straightness monitor measurements for "random" deflections of chambers and layers

This effect was examined in Ref. [1], although the analysis was not entirely based

on a projective 3-dimensional system, as is simulated here.  The effort of Ref. [1] looked

at "torque" errors, where the straightness monitors yielded a null measurement, although

the superlayers were displaced relative to one another (i.e. the layers were rotated by

different amounts that kept the monitor axes straight, but changed their inclination).
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Figure 38: Sagitta results for skewed superlayers; projective geometry

Because of the projective geometry, obtaining null results for all six interlayer

monitors simultaneously appears to be difficult without complicated scaling or

deformation of the chamber planes, which would be difficult to realize in the current

version of this simulation.
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Figure 39: Interlayer straightness monitor measurements for skewed superlayers; projective
geometry

Nonetheless, in order to look at various effects relating to the projective geometry,

the three chamber layers were rotated in different axes (the outer layer by 1 mr about y,

the middle layer by 5 mr about z, and the inner layer by 1 mr about z), thereby coupling

all of the axes in the interpolations.

Sagitta results are shown for this example in Fig. 38; the uncorrected errors run up

to a maximum near 10 mm, while the monitor corrections (Fig. 39) reduce these to under

15 µm (many of the effects illustrated in the previous examples are contributing to this

residual).  Figure 40 shows the residual for the same example, except the IP location is

now offset along the x-axis by 5 cm.  The maximum residuals are now considerably

worse, ranging up to 40 µm (granted, a 5 cm error  in this coordinate is perhaps

excessive; the preliminary trigger requirements [1] are already on the order of 6 mm).

Figure 41 shows the residual with the IP location now offset along y by 5 cm.  A similar

level of degradation is again noted, with the residuals now offset toward negative values,

exceeding 50 µm.  Figure 42 shows the residual with the IP location shifted along z by 5

cm.  Less degradation is noted here, but the residual has definitely worsened, approaching

a maximum around 30 µm.  This coordinate will have an intrinsic smear of this order due

to the anticipated size of the proton bunch envelope, thus the alignment monitoring and

correction system must be robust to such shifts in the z origin of the muon tracks.
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Figure 40: Sagitta results for skewed superlayers; IP offset by 5 cm in x
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Figure 41: Sagitta results for skewed superlayers; IP offset by 5 cm in y
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Figure 42: Sagitta results for skewed superlayers; IP offset by 5 cm in z

Granted, by examining a single set of chamber deflections (such as shown in Figs.

38-42), one can not make a blanket statement about sensitivities to non-projective

alignment geometry; the sensitivities to displacements in each coordinate can vary

according to the type of chamber misalignment.  This example has generated an idea of

the magnitude of this effect, and it seems surmountable (other projectivity requirements,

such as in the trigger system[1] are potentially more stringent).  The intrinsic bunch

width, however, will limit the accuracy that can be attained with projective geometry

along z, thus this may be a driver for keeping the chamber deflections under a couple of

millimeters and maintaining rotations at the milliradian level.

3) Conclusions and Further Investigation

The simulation described in this report has only recently been developed, and all

findings shown here are essentially initial impressions and observations.  The postulated

alignment monitors were seen to attenuate positioning errors projecting onto in the sagitta

coordinate to the percent or permil levels (as experienced by a straight-line muon track

originating at the IP).  Nonetheless, the sensitivity of the correction function interpolated

from a projective alignment system can be significant at the required level of accuracy
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(i.e. 25 µm) for chamber deflections ranging near the currently anticipated 5 mm

maximum1,3.  These studies indicate that the required accuracy can be obtained if

chamber translations are limited to the order of a mm and rotations restricted to the

vicinity of a mr.  Certain translations and rotations produce more effect than others,

depending upon the type of chamber deformation that is encountered (thus it is difficult

to set absolute limits on particular coordinates; i.e. the 1 mm and 1 mr constraints may be

conservative for some chamber misalignments).  The visual analysis of the correction

residuals presented in Sec. 2 was also biased toward consideration of the peak alignment

error across the hexant; in a true application, the RMS error may be of more quantitative

relevance, thus this quote may again be somewhat restrictive.  Regardless, this effort has

indicated that the intrinsic residuals in these corrections hover at sufficient levels to

warrant serious consideration.

Several corrections to the interpolation functions were proposed in Sec. 2 and

tested in Sec. 3.  While these were seen to improve the residuals for some hexant

deformations, they added error for others (i.e. the net information remains limited in this

system, and is only traded from one set of assumptions to another), thus their value is

debatable in the current context.

A set of examples probed the sensitivity of this system to non-projectivity of the

interlayer alignment axes.  Little effect will be produced for pointing errors in the x and y

axes below the cm level (as required for maintaining trigger efficiency1), and the IP

smear along z expected from the finite bunch width will not introduce excessive error,

provided that the chamber deflections are limited to the ranges sketched above.

The stretched-wire or nested monitor multipoint monitors were seen to be

completely sufficient for correcting chamber positioning errors to a straight line between

superlayer endpoints.  The modelling of these components was somewhat ideal, however;

noise and resolution effects were not considered, and chambers were considered to be

rigid (i.e. a perfect glass bridge or solid endplate was assumed, producing no bending or

nonuniform scaling).  Errors were seen to be injected, however, from the z-interpolation

between the projective monitor measurements at θ = 30° and 90°.  These could be

attenuated somewhat by correcting with the nonbending chamber measurements,

provided that they are of sufficient accuracy (which is not currently baselined), or by

backing out z errors from the alignment monitors (the scheme of Fig. 1 is under-

instrumented for this, although it may prove more feasible for the all-projective system of

Refs. [9,10]).

Future investigations should improve the modelling of the straightness monitors

(i.e. include magnification and centroiding/transfer functions), and a noise/resolution
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analysis should be performed for this system.  Ultimately, an optimal estimator11 should

be constructed for candidate alignment schemes, with a model of the chamber deflections

(positions to be estimated), plus the sensor models, geometry, and resolutions (expressed

through a covariance matrix).  In this fashion, redundant measurements can be

appropriately blended (i.e. if the system of Fig. 1 were to add more projective lines

between other sets of chambers, such as proposed in [9,10]), and the information from

sagitta-orthogonal axes of the 2D-sensitive alignment detectors can be properly included.

Such schemes could also serve to reduce ambiguities and extend the range of accurate

sagitta correction.

Again, the chamber models assumed in this study were quite simple (i.e. planar),

and the possible range of transformations were limited (i.e. purely linear).  The expected

types of chamber deformations and bending modes (as experienced by the sense wires

and/or strips) should be included once they are determined for the preferred chamber

technologies.

As mentioned earlier, the purpose of this analysis was to examine specific effects,

and gain insight into the correction residuals for particular chamber displacements.  The

average sensitivity to all possible chamber displacements will be derived by iterating

such an analysis with stochastically perturbed chamber packages, as in Refs. [9,10], with

an accurate sensor model (this is prohibitive under the MATLAB interpreter13 [in which

this analysis has been coded], as its execution speed is too slow [particularly on a

Macintosh-class machine] to gain sufficient statistics).

As a detailed alignment scheme is designed for the GEM endcaps, analysis

packages similar to this (and the effort of [9,10]) should be assembled to likewise

examine the validity of the sensor measurements and derived correction functions.
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