

П

Imaging In Challenging Weather Conditions

Guy Satat

Computational Imaging for Self-Driving Vehicles @ CVPR 2018

© 2018 Guy Satat. All Rights Reserved.

State of the local division of the local div

© 2018 Guy Satat. All Rights Reserved.

TYATI

Imaging Through Fog == Imaging Through Scattering?

Why not RADAR ?

Resolution

Optical contrast

Different Strategies to Drive in Fog

Estimated visiblity: 80 cm

Information Carried by Light

• The plenoptic function:

$I(r, \lambda, t, \theta, P, n, \Phi)$

Information Carried by Light

• The plenoptic function:

$I(r, \lambda, t, \theta, P, n, \Phi)$

Scattering Types

Sparse Scattering

- Milky glass
- Paper
- Lensless imaging

Volumetric Scattering

- Tissue
- Fog

Lessons learned from seeing into the body

Phase Conjugation

Phase Conjugation

Phase conjugation

Long iterative process Requires Guide Star

Diffuse Optical Tomography

Constrained Imaging Geometry

Photo credit: Wikipedia

Descattering with Photon Gating

Angle Time Polarization Coherence Not enough photons Doesn't reject all scattered light No computation

Constrained Imaging Geometry

Continuum of possible densities Patchy (heterogeneous) Moving platform

Towards Photography Through Realistic Fog

Guy Satat, Matthew Tancik, Ramesh Raskar

ICCP 2018

Estimated visiblity: 80 cm

Dense, Dynamic, Heterogeneous

Key Idea

- Observation:
 - Photons reflected from fog and those reflected from target obey different statistics
- Solution:
 - A probabilistic technique to reject the backreflected photons

Optical Thickness: $OT_t = -\log\left(\frac{P_0}{P_t}\right)$

Optical Thickness: 0.04

Pixel wise Model

Pixel wise Model

 au_8

 τ_1

T

k

i=1

 $d_i =$

T

k

i=1

 τ_i

 τ_6

 τ_7

 τ_2

 τ_5

 au_4

 τ_3

Pixel wise Model

 au_8

 τ_1

T

k

i=1

 $d_i =$

7

k

i=1

 τ_i

 τ_6

 τ_7

 τ_2

 au_5

 τ_4

 τ_3

Photon Classes

Fog Model • $T = \sum_{i=1}^{k} \tau_i$

• $\tau_i \sim Exp\{\mu_s\}$ • $1/\mu_s$ - mean time between scattering events

 τ_{A}

EDE

• $T \sim Gamma\{\mu_s, k\}$

•
$$f_T(t|B) = \frac{\mu_s^k}{\Gamma(k)} t^{k-1} \exp\{-\mu_s t\}$$

Fog Model

Signal Model

• Another Gamma?

•
$$f_T(t|S) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(t-\mu)^2}{\sigma}\right\}$$

Measurement Model

Model Estimation

$f_T(t) = P(B)f_T(t|B) + P(S)f_T(t|S)$ Fog Signal

Model Estimation

 $f_T(t) = P(B)f_T(t|B) + P(S)f_T(t|S)$

Fog

Signal

Time Profile Estimation

KDE (Kernel Density Estimator):

• Works well with a few sampling points

Background Estimation

Signal Estimation

Signal Estimation

$f_T(t) = \underbrace{P(B)f_T(t|B)}_{\text{Fog}} + \underbrace{P(S)f_T(t|S)}_{\text{Signal}}$

Signal Estimation

$\left[\widehat{P}(S), \widehat{P}(B)\right] = \underset{\left[P(S), P(B)\right]}{\operatorname{argmin}} \sum_{t} \left[P(B)\widehat{f}_{T}(t|B) + P(S)\widehat{f}_{T}(t|S) - \widehat{f}_{T}(t)\right]^{2}$

Target Distance

$f_T(t) = P(B)f_T(t|B) + P(S)f_T(t|S)$

Target Recovery

•
$$P(S)f_T(t|S) = P(S)\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left\{-\frac{(t-\mu)^2}{\sigma}\right\}$$

Reflectance

Reflectance Recovery Error

Depth Recovery Error

How Many Photons?

Limitations

Ignores spatial nature of scattering

- Impose priors
- Deblur

Ignores spatial nature of scattering

Photon efficiency

- Current hardware efficiency is $\sim 1:10^6$
- Algorithm efficiency could improve

Limitations

Ignores spatial nature of scattering

Photon efficiency

Acquisition time

- New frame every $100\mu s$
- Currently use constant window of 20K frames $\rightarrow 2s$
- Dynamic window based of fog estimate

Limitations

- Optical thickness is unitless
- Larger scenes \rightarrow relaxed requirement for time resolution
- More dependency on spatial scattering?

Object Classification through Scattering Media with Deep Learning

Guy Satat, Matthew Tancik, Otkrist Gupta, Barmak Heshmat, Ramesh Raskar

Optics Express (2017)

We Have to Calibrate

Why Deep Learning?

Can learn invariants

Learning Invariant to Calibration Parameters

Train on Synthetic Data Test on Lab Measurement

No graduate students were harmed in calibrating the system

Summary

media.mit.edu/~guysatat guysatat@mit.edu

- Variety of weather conditions
- Imaging through fog ~ Imaging through scattering
 - Wide range of fog conditions:
 - Dense, dynamic, heterogeneous
 - Calibration free
 - No raster scan
- Probabilistic Computational Imaging
- Data Driven Computational Imaging

