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Abstract

We demonstrate an imaging technique that allows identification and
classification of objects hidden behind scattering media and is invariant
to changes in calibration parameters within a training range. Traditional
techniques to image through scattering solve an inverse problem and are
limited by the need to tune a forward model with multiple calibration
parameters (like camera field of view, illumination position etc.). Instead
of tuning a forward model and directly inverting the optical scattering,
we use a data driven approach and leverage convolutional neural networks
(CNN) to learn a model that is invariant to calibration parameters vari-
ations within the training range and nearly invariant beyond that. This
effectively allows robust imaging through scattering conditions that is not
sensitive to calibration. The CNN is trained with a large synthetic dataset
generated with a Monte Carlo (MC) model that contains random realiza-
tions of major calibration parameters. The method is evaluated with a
time-resolved camera and multiple experimental results are provided in-
cluding pose estimation of a mannequin hidden behind a paper sheet with
23 correct classifications out of 30 tests in three poses (76.6% accuracy on
real-world measurements). This approach paves the way towards real-time
practical non line of sight (NLOS) imaging applications.

1 Introduction

Sensing through optical scattering is a challenging and important problem which
enables applications such as image dehazing [1], cloud tomography [2], under-
water imaging [3] and recovery of material scattering properties [4]. When
considering strongly scattering media and non line of sight (NLOS) imaging,
such as seeing around corners, traditional imaging with ambient illumination
may prove to be insufficient. Many active methods have been demonstrated for
imaging through scattering such as optical coherence tomography [5], wavefront
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shaping [6, 7, 8, 9], speckle correlations [10, 11], acousto-optic [12] and photo-
acoustic [13, 14]. Active time-of-flight (ToF) methods are used to overcome
scattering with the advantage of wide-field imaging, and minimal (or no) raster
scan [15]. ToF systems are either impulse [16, 17, 18] or phase [19, 20, 21, 22]
based. Different aspects of imaging have been demonstrated with ToF systems
like full scene reconstruction [23], pose estimation [24], tracking [25], character
recognition [26], and medical applications such as seeing through tissue [27].
NLOS imaging has been demonstrated with impulse based systems like streak
camera [17] and single photon avalanche photodiode (SPAD) [28, 29]. Recently
a system with an active illumination and a regular camera demonstrated track-
ing around a corner [30]. All computational methods that rely on scattering
inversion are sensitive to model calibration.

The requirement for calibration when performing imaging through scatter-
ing is directly related to the need of a physical model that explains the mea-
surements. Such models simulate light transport and depend on the geometry
and other physical parameters of the system. Since inverting scattering is an
ill-posed problem, any mismatch between the physical model and the actual
measurement will degrade performance. As a result, accurate calibration of
imaging system parameters like illumination position, camera orientation etc.
is needed (the full list of calibration parameters considered here is provided in
table 1). This limits many inversion based techniques to scale to real-world ap-
plications. The approach presented here allows robust classification of objects
hidden behind scattering media or beyond the line of sight of the camera that
is not sensitive to calibration.

To tackle the problem of calibration-invariant imaging we use convolutional
neural networks (CNN). Recently, CNN has become the main workhorse in
many computer vision tasks. CNN are especially appealing for our applica-
tion due to their ability to capture invariants [31, 32], reduce dimensionality
from noisy data [33], and classify objects [34]. Initial uses of data driven ap-
proaches for imaging problems have been suggested in microscopy [35], com-
pressive imaging [36], synthetic aperture radar [37], remote sensing [38, 39],
dehazing [40], phase imaging [41], medical imaging [42], and classification with
coherent light [44, 43]. In our case the CNN is trained with synthesized data
that includes variations in calibration parameters. By training the CNN with
synthetic and diverse data the network learns a model that is not only invariant
under traditional transformations like translation, but also invariant to changes
in calibration parameters within the training range and nearly invariant beyond
that range. Thus, we eliminate the need to precisely calibrate a computational
model for NLOS object classification.

The imaging procedure is shown in Fig. 1 and is partitioned into two halves.
First (offline process) a Monte Carlo (MC) model is used to synthesize a large
training dataset of potential measurements drawn from the distribution of all
target variations and calibration parameters. The synthesized dataset is used
to train a CNN. The resulting CNN is invariant to changes in calibration pa-
rameters within the training range, effectively allowing calibration-invariant ob-
ject classification through scattering. This enables the second (online phase)

2



b) In the Wilda) Training

...

CNN

Train CNN

Compute MCMC
Forward Model

Randomly Sample 
Scene Properties

1

2

3

4

5

6

Time Resolved
Measurement

Figure 1: Calibration-invariant object classification through scattering. a)
Training phase is an offline process in which the user defines random distri-
butions of physical model parameters (based on approximate measurements or
prior knowledge). The distributions are used to generate synthetic measure-
ments with an MC forward model. The synthetic data is used to train a CNN
for classification. b) Once the CNN is trained the user can simply place the cam-
era (demonstrated here with a time sensitive SPAD array) and an illumination
source in the scene, capture measurements (six examples of time resolved frames
are shown), and classify with the CNN without having to precisely calibrate the
system.

in which the user can simply place the camera and illumination without cali-
bration and classify, in real time, hidden objects behind scattering media. We
experimentally demonstrate this method with human pose estimation behind a
scattering layer. Pose estimation behind scattering has many important applica-
tions in areas such as: privacy preserving human computer interaction systems
(e.g. human pose estimation without access to face or body images) as well as
search and rescue missions.

The key contributions of our approach are: 1. A measurement-independent
training method that uses only synthetic data (based on a Monte Carlo renderer)
to train a CNN; before acquiring any actual measurements. 2. A technique for
imaging through scattering that is invariant to variations in system calibra-
tion parameters within the training range. 3. The technique allows real-time
classification through scattering medium and beyond line of sight.

2 Imaging Procedure

2.1 Measurement System

The optical setup is shown in Fig. 1. A pulsed source (NKT photonics SuperK)
with a repetition rate of 80MHz and pulse duration of 5ps is spectrally filtered
to a band of 580±10nm. The camera is a single photon avalanche diode (SPAD)
array (Photon Force PF32) with 32 × 32 pixels, and a time resolution of 56ps.
The laser is incident on the diffuser at ∼ 45◦. The camera is focused on the
diffuser (regular paper sheet which presents non-uniform scattering properties).
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Figure 2: Comparison of SPAD measurement and forward model. The targets
are two poses of a mannequin placed behind a paper sheet (diffuser). The data
shows six frames (each frame is 32 × 32 pixels) of raw SPAD measurements,
examples of two synthetic results generated by the MC forward model with
similar measurement quality, and a synthetic result with high photon count and
no additive noise. Note that differences between synthetic ex. 1, 2 and the raw
measurement are due to the fact that the forward model was never calibrated
to this specific setup. The synthetic images represent different instances chosen
randomly from the dataset. The synthetic example with high photon count
helps to distinguish between measurement (or simulated) noise and the actual
signal as well as to observe the full signal wavefront.
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Table 1: Distributions for calibration and target parameters used in mannequin
dataset.

Calibration parameters

Laser
- Incident position LP ∼ U(−4, 4)cm

Diffuser
- Scattering profile DD ∼ N(0, σ) , σ ∼ U(0.8, 1.2)rad

Camera
- Position CP ∼ U(−1.5, 1.5)cm
- Time resolution CTR ∼ N(0, σ) , σ ∼ 56 + U(−5, 5)ps
- Time jitter CTS ∼ U(0, 3 ∗ 56)ps
- Field of view CFV ∼ U(0.1, 0.2)rad
- Homography Normal distributions

Noise
- Dark count NDC ∼ U(3000, 9000) photons

Target parameters

- Position TPx,y,z
∼ U(−4, 4)cm

- Scale TS ∼ U(18, 30)cm

A flexible mannequin is placed behind the diffuser (20cm head to toe). A
black screen separates the camera from the incident position of the laser on the
diffuser (to prevent direct reflection from the diffuser to the camera). The optical
setup demonstrates a reflection mode geometry. The first 64 time bins of the
SPAD measurement are used, such that the data structure is of size 32 × 32 × 64
(the large number of frames guarantees consistency and flexibility of the data
structure). Several examples of the measurement frames are provided in Fig. 2.

2.2 Forward Model - Synthetic Data Generation

The proposed method is based on an MC model that renders the SPAD mea-
surements. Since SPAD captures single photon events it fits well to an MC
model that traces individual photons. MC is a very generic forward modeling
technique that can be easily modified to simulate various system geometries like
looking around corners and seeing through a scattering medium (which is the
focus of this work). This is accomplished by modeling a wide range of physical
parameters which can be broadly divided into target and calibration related.

The MC forward model is used to generate a dataset with random realiza-
tions of potential measurements for different target instances and calibration
parameters. For each new simulated data point, the above parameters are
randomly sampled from their given distributions to define a specific system,
geometry and target (Table 1 provides the list of parameters and distributions
used here). A ray tracer is used to simulate propagation of individual photons
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from the illumination source, through the diffuser, onto the target, back to the
diffuser and finally into the camera (see Algorithm 1). This process takes into
account the propagation time. SPAD array measurements are only based on
thousands of detected photons. Since there is no need to render the full time-
dependent scene irradiance, the computational burden of ray tracing with MC
is low (we simulate 106 photons for each data point, which takes ∼1 second on
a regular desktop computer). Figure 2 compares raw measurements taken with
the SPAD camera and instances of the forward model (chosen randomly from
the synthetic dataset).

We note that while paper sheet is a strongly scattering media with multiple
scattering events, it can be modeled as a single scatter event due to: 1) The
propagation time through the paper (∼10ps) [45] is much smaller compared to
the time resolution of the SPAD camera. 2) The scene size (target feature size
and scene length scales) are much larger compared to the scatterer thickness,
so we can approximate the photon exit coordinate to be equal to the entrance
coordinate. In cases where these assumptions don’t hold, it is easy to add a
random walk simulation to the Monte Carlo renderer that would simulate the
scattering process in the material (including the time and location dependency).

Each data point in the dataset corresponds to a specific example of a target
measured by a system that is defined by a set of random target and calibration
parameters (see table 1):

• The target is defined by a label and an instance (for example, a specific
appearance of a digit in a handwritten digits dataset), these are simply
selected from the dataset. The dataset may or may not include variations
in parameters such as scale and orientation. For improved robustness it is
preferred to add variability in all parameters, this is achieved by scaling
the target with parameters that are drawn from distributions of plausible
target size. Finally, the target is placed at a random 3D location behind
the diffuser, the location is sampled from a uniform distribution which
defines the NLOS volume of interest.

• The imaging system is defined by a realization of various calibration pa-
rameters that are sampled from random distributions. User input is in-
volved only in determining the random distributions, which are defined
based on approximate measurements, for example observation of the sys-
tem geometry by the naked eye. If a parameter is easy to evaluate (for
example the laser position on the diffuser) it can be modeled with a Gaus-
sian distribution with the known mean and small variance. Or if it is hard
to evaluate, it can be modeled with a uniform distribution.

Varying calibration parameters in the training data allows the CNN to be invari-
ant to changes in those parameters within the training range (see section 2.3).

2.3 Learning Calibration Invariant Sensing with CNN

The synthetic random dataset generated with the MC forward model is used
to train a CNN for classification of hidden objects behind a diffuser. CNNs
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Algorithm 1 MC Forward Model

1: Initialize scene by randomly sampling:

2: Target: label, instance, position, size
3: Laser: incident position
4: Diffuser: scattering profile
5: Camera: position, time resolution, time jitter, field of view, homography

parameters

6: for All photons do
7: Calculate initial intersection point with diffuser
8: Randomly sample diffuser local scattering profile
9: Randomly sample photon’s angle after diffuser

10: Calculate photon’s intersection point with target
11: if does not hit target then
12: continue to next photon
13: end if
14: Randomly sample angle after reflection from target
15: Calculate photon’s intersection point with diffuser
16: if does not hit diffuser then
17: continue to next photon
18: end if
19: Randomly sample diffuser local scattering profile
20: Randomly sample photon’s angle after diffuser
21: Map photon to camera sensor using homography
22: Randomly sample photon’s arrival time jitter
23: Store photon’s arrival time (with jitter) and location
24: end for
25: Bin recorded photons into discrete time frames.
26: Add dark count noise to measurement

are a natural fit for this task since: 1) they have been shown to perform well
in classification tasks, 2) they are designed to be invariant to translations, and
3) learn to be invariant to other data transformations like scaling, rotation and,
as demonstrated here, variations in the system calibration parameters.

Several neural network architectures were considered. The data structure
in our case is composed of several frames, which is similar to the case of
action recognition and gesture classification from short videos. Works such
as [46, 47] indicated that convolutional architectures produce robust classifica-
tion in that task. Thus, multiple convolutional architectures were evaluated
including VGG [48], ResNet [49], and several custom shallower networks with
various combinations of layers. All architectures performed similarly on the clas-
sification task with marginally better performance for VGG. The VGG topology
was selected and modified by extension of convolution filters into time domain
(3D space-time filters). Filters were resized to 3 × 3 × 10 where the last index
denotes the time dimension (see further details in section 5). The training time
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Figure 3: CNN learns to be invariant to model parameters. The CNN is trained
with the complete random training set (based on the MNIST dataset), and eval-
uated with test sets in which all model parameters are fixed except for one that is
randomly sampled from distributions with growing variance. Three parameters
are demonstrated (other parameters show similar behavior). a) Diffuser scat-
tering profile variance DD ∼ N(0, σ) , σ ∼ U(1 − α, 1 + α) radians, b) Camera
field of view CFV ∼ U(0.15 − α, 0.15 + α) radians, and c) Illumination source
position LP ∼ U(−α, α) cm. The top plots show the classification accuracy as
a function of the parameter distribution variance in the test set. Red lines show
the ranges used for training. The ’X’ marks point to specific locations sampled
for PCA projections in the bottom part of the figure. PCA projections show a
color map where each digit has different color. Performance is maintained be-
yond the training range and starts to slowly degrade further from it, as can be
observed in PCA projection III where more mixing is apparent at a test range
×2.5 larger compared to the training set.

on 60, 000 data points is approximately two hours on an Nvidia Titan XP GPU.
To evaluate our approach, we used the well-known MNIST dataset of hand-

written digits. The goal is to evaluate the CNN ability to classify hidden objects
while being invariant to changes in calibration parameters. To that end, 60, 000
training samples and 10, 000 test samples are synthesized with the MC forward
model. Each data point is a realization of a different set of target and calibra-
tion parameters. The result on the test set is an overall classification accuracy
of 74% (compared to 10% random guess accuracy). These simulations demon-
strate the ability to classify objects hidden behind a scattering layer without
calibration. As a proof of concept lab experiment, we cut two targets from card-
board shaped like zero and one digits, placed them behind a paper sheet, and
measured the response with the SPAD camera. The two time resolved measure-
ments were correctly classified as zero and one using the above network. The
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training dataset generation and network training were performed prior to this
data acquisition. This demonstrates that our method is robust to variations
in calibration parameters on raw data. Section 3 provides more challenging
experimental results.

In order to evaluate the extent of the network’s ability to handle changes in
calibration parameters a set of controlled synthetic experiments were performed.
We used the trained network with the MNIST dataset, and tested it with mul-
tiple test sets that were generated for the purpose of this evaluation. In each
test set, all calibration parameters are held fixed (on the mean), except for one
parameter that is randomly sampled from distributions with different variances.
Thus, the CNN’s sensitivity to variations in different parameters is probed in-
dependently. Specifically, for each calibration parameter to be investigated,
multiple test sets are generated, each one with a different distribution variance.
The variance is scanned starting from zero (i.e. just the mean) throughout the
range that was used for training and then continues to grow beyond the training
range up to at least ×2.5 of the training range. Figure 3 demonstrates results for
three calibration parameters (other parameters demonstrate similar behavior).
As can be seen from the test accuracies, performance is maintained within the
variance range used for training, and extended well beyond that range. This
demonstrates the network ability to learn an invariant model to changes in the
calibration parameters within the training range and nearly invariant beyond
that range. For example, in Fig. 3(c) the network was trained with data that
had the illumination position distributed uniformly within 5cm from the mean.
Yet, the test performance starts to slightly drop only after the illumination po-
sition may be found within 10cm of the mean. Qualitative evaluation of these
results are also presented in the bottom part of Fig. 3 with PCA projections
of the activations from the penultimate layer of the CNN, these demonstrate
sustained performance well beyond the training range.

This analysis shows that the network performance is maintained when the
calibration parameters deviate from the mean within the training range. Fur-
thermore, even if the network was trained under an assumption of certain ranges
for system parameters, the performance degrades slowly if the actual calibration
parameters are outside the training range.

3 Experimental Results - Hidden Human Pose
Estimation

In order to demonstrate human pose estimation behind scattering medium, a
flexible mannequin (length from head to toe ∼ 20cm) is placed behind a regular
paper sheet (Fig. 1). We define three different poses for the mannequin using
various positions of hands and legs (Fig. 4).

CNN training is accomplished by synthesizing 24, 000 samples for training
and 6, 000 samples for validation. Translations and perturbations to the man-
nequin’s head and limbs are applied to create multiple instances of each pose.
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Figure 4: Lab experiments show successful estimation of hidden human pose.
a) Three examples (rows) demonstrate target pose, raw SPAD measurement
(first six frames), and the successful classification. b) Confusion matrix for
classification of raw test set (10 samples per pose).

The test set is composed of 30 raw SPAD measurements, 10 per pose. For
each measurement, the mannequin is moved around and the position of the
hands, legs and head are adjusted. The CNN classifies correctly 23 out of the
30 tests (76.6% overall accuracy, compared to 33.3% random guess accuracy).
Figure 4(a) shows examples of mannequin pose, SPAD measurements, and clas-
sification. Figure 4(b) shows the confusion matrix of this raw test set.

Here training is performed on one dataset (synthetic) and tested on another
dataset (gathered by lab experiments). In general, it is challenging to train and
test on different datasets and it is common to note performance degradation in
such cases. The degradation in performance can potentially be mitigated with
domain adaptation methods (e.g. [50]), we leave this to a future study.

To further explore the sensitivity to the number of poses we expanded the
training set to include seven different poses (Fig. 5 bottom shows illustrations of
the poses). The poses include a diverse combination of limb positions. For each
label 8, 000 training examples and 2, 000 test examples were generated (total
training set of 56, 000 examples and 14, 000 test set examples). Figure 5(a) shows
a two dimensional student’s t-distributed stochastic neighbor embedding (t-
SNE) [51] visualization of activations from the CNN penultimate layer generated
on the test set. This visualization demonstrates that the network correctly
separates the classes. Figure 5(b) shows the confusion matrix for this synthetic
test set. The network is able to classify the seven classes with 91.86% accuracy.
The synthetic test accuracy for the network trained only on the three poses
(Fig. 4) achieved 96.7%. This indicates the ability to experimentally classify
among more poses without significant decrease in accuracy.

4 Evaluation

To evaluate our approach we compare its classification performance to several
other classification techniques. The classification task is based on the three man-
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Figure 5: Classification among seven poses on synthetic test dataset. a) t-SNE
visualization demonstrates the CNN ability to classify among the seven poses.
b) Confusion matrix for classification on the synthetic test dataset.

nequin poses. We create two datasets for evaluation, each one consists of 24, 000
training examples and 6, 000 test examples. The clean dataset demonstrates
the algorithms’ sensitivity just to variation in calibration parameters (decou-
pling the sensitivity to measurement quality). The realistic dataset probes the
algorithms’ ability to classify on the actual lab experiments.

The results are summarized in table 2. While some of the traditional al-
gorithms perform reasonably on the clean dataset, they fail on the realistic
dataset. Our approach significantly outperforms the traditional methods on
the clean dataset, and as demonstrated previously, it performs well on the lab
measurement.

The details of the datasets are:

1. Clean dataset : This dataset aims to probe the ability to classify in extreme
variation in calibration parameters in a noiseless measurement case. It is
based on synthetic measurements with calibration parameters varying in
ranges that are twice as large compared to the realistic dataset, and with
108 photons without any additive noise (Fig. 2 shows two noiseless exam-
ples from this dataset). In this case both training and testing datasets are
synthetic.

2. Realistic dataset : this is the dataset used for training the network de-
scribed in section 3. It is based on renderings with 106 photons with
additive noise to approximate our SPAD measurements (see Fig. 2 syn-
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Table 2: Comparison of different approaches on classification of the clean and
realistic datasets. The CNN outperforms all methods in the clean dataset, and
is the only method that achieves results that are better than random accuracy
on the realistic dataset.

Training set Clean dataset Realistic dataset

Mean Example 33.3 33.3
KNN 53.0 30.0
SVM 57.1 20.0
Random forest 68.8 30.0
Single layer network 68.2 23.8
Our CNN 84.0 76.6

thetic examples 1 and 2). In this case the training is performed on the
synthetic data and testing is based on the 30 lab measurements.

The different classification approaches that were used for comparison are:

1. Mean example: For each label we take the mean of the training data,
such that we have one representative sample per label. Classification is
performed based on nearest neighbor (closest sample in the dictionary to
the measurement). This approach fails on both datasets.

2. K-nearest neighbors: Since this method may be sensitive to dictionary
size, it is first evaluated on the clean dataset. We randomly choose varying
number of samples from the training set to form different dictionary sizes.
We consider two approaches here: a) Nearest neighbor — for each test
point the chosen label is the label of the closest dictionary element. b) K-
nearest neighbors (KNN) — for each test point the chosen label is the label
of the majority of the K-nearest neighbors. K is chosen for each dictionary
size with a validation set (taken from the training set). These results
are presented in Fig. 6. The nearest neighbor approach shows decreased
performance with increase in data size due to the increased ambiguity
between dictionary elements. The K-nearest approach is able to overcome
this limitation and provides classification accuracy in the range of 50% on
the clean dataset, however it fails on the realistic dataset.

3. Support vector machine (SVM): The SVM is evaluated with different ker-
nels, and got the best performance with the linear kernel. After hyper
parameters optimization we were able to achieve 57.1% classification ac-
curacy on the clean dataset, and fail on the realistic dataset.

4. Random forest : A random forest is trained with 100 trees. The random
forest achieves 68.2% accuracy on the clean dataset, and fails on the real-
istic dataset.
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Figure 6: Performance of the K-nearest neighbor approach on the clean dataset.
Classification accuracy with varying dictionary size for a) nearest neighbor clas-
sifier, and b) K-nearest neighbors classifier.

5. Single layer network : A neural network composed of one hidden layer.
This network achieves 68.2% accuracy on the clean dataset, and like the
previous methods, it fails on the realistic dataset.

This analysis presents the key difficulty and the requirement for both cali-
bration invariance and robustness to noise. While some of the traditional ap-
proaches perform reasonably well on the clean data, they fail on the realistic
dataset. Our approach is the only one that achieves results that are better than
random accuracy.

5 Discussion

While our approach is invariant to variations of calibration parameters within
the training range, it still requires some approximate measurements or knowl-
edge of system parameters and geometry. This limitation is somewhat mitigated
by the fact that the network can operate well beyond its training regime (see
Fig. 3 for examples). Another limitation is the need to synthesize a dataset
and train the CNN on different types of geometries, which might slow down the
process when arriving to a completely new setting. Faster hardware for data
generation and CNN training can potentially address this in the future. Active
acquisition systems like the ones used here, may suffer from interference with
ambient illumination. This can be more challenging with single photon counting
sensors. One possible solution is the use of narrow-band spectral filters to pass
only the source’s wavelength. These filters are already used in systems such as
LIDARs.

The measurement system suggested here uses time-resolved measurements
with few spatial pixels (32 × 32). The importance of temporal resolution for
classification when imaging through scattering media is evaluated with the sug-
gested imaging pipeline. The MC model is used to create training and test sets
(based on the MNIST dataset) with different time resolutions. The result is plot-
ted in Fig. 7(a), where we note that the performance degrades slowly until the
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Figure 7: Time resolution is more important than number of pixels for imaging
through scattering. a) Classification accuracy vs. time resolution (for 32x32
pixels). b) Classification accuracy vs. number of pixels (for non time-resolved
system).

time resolution nears 400ps and then degrades rapidly. In the scenes discussed
and analyzed here, the time between the first and last signal photons spans
roughly 500ps, so any time resolution better than that provides at least two
frames with signal which allows the network to learn temporal filters. As seen
from the measurements provided in Fig. 2, the spatial features have very little
high frequency content, and therefore, unsurprisingly, low pixel count is suffi-
cient for classification. To quantitatively evaluate this, we use the same pipeline
to simulate no time dependency, while varying the pixel count. Figure 7(b)
demonstrates that simply adding more pixels doesn’t improve the classification
accuracy. This analysis is limited to the particular scene considered here and
evaluates two extremes: low pixel count with varying time resolution and, no
time resolution with varying spatial resolution. This demonstrates theoreti-
cal performance of commercially available hardware variants. We leave further
analysis of potential hardware with e.g. high pixel count and significant time
resolution to a future study.

The importance of time-resolved data for classification with CNN can be
observed from the filters the network learns (Fig. 8). Inspection of these indi-
cate that the network performs derivatives in the time domain. Similar spatio-
temporal features have been demonstrated when using CNNs for action recogni-
tion in videos [46]. The temporal features learned by our network combined with
the strong dependency of classification accuracy on the SPAD’s time resolution
shows that network inference is computed using information in both space and
time.

Several aspects can be taken into account when considering the potential of
this approach to scale into real-world applications:

• Hardware: Our hardware is a SPAD camera. Since SPAD cameras are
manufactured with scalable semiconductor processes, they can be com-
moditized. Other approaches like phase based ToF systems are also a
possibility (probably with significantly lower time resolution, which would
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Figure 8: Examples of spatio-temporal filters learned by the CNN. The network
generates both a) spatial and b) temporal filters for inference.

impact its ability to classify). We note that SPAD cameras are especially
useful for imaging through scattering due to several reasons:

– They are single-photon sensitive which is extremely useful in NLOS
geometries where the optical signal is very weak.

– The time resolution of ∼50ps corresponds to 1.5cm of spatial resolu-
tion, which is reasonable for room-sized scenes.

– The low spatial resolution is not necessarily a drawback (see above
analysis).

• Real-time operation: Since classification requires only a forward pass
through the trained neural network, it can be performed in real time
using specialized hardware (such as GPUs). The only caveat is the case
of a completely new scene that requires rendering new synthetic dataset
and training a CNN. This requires anticipatory preparation before the
real-time operation.

• Flexibility: The suggested forward model is based on an MC ray tracer.
The MC model is very flexible and can render a wide range of optical
geometries and materials.

In this work we demonstrated the task of classification. As mentioned ear-
lier, current machine learning models are very successful in classification tasks.
Future work will explore more challenging imaging tasks such as full scene recon-
struction. One promising direction is based on the recent research in generative
models (e.g. [52, 53]). In this case the network can be composed of two parts.
The first, an encoder that gathers the underlying information described by the
scene from the captured measurement (this part is similar to the classification
task demonstrated here). The second part is a decoder that would generate the
full scene based on the recovered information (similar to a graphics rendering
program). While each part has been demonstrated separately, the combination
is challenging.
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6 Conclusions

We have demonstrated a method for object classification through scattering that
is effectively invariant to variations in calibration parameters. The approach
leverages the ability of neural networks to learn invariants from synthetic ran-
dom data. We show that the network is invariant to changes in the forward
model parameters within the training range (and nearly invariant beyond that
range) for the purposes of classification. An important cornerstone of our ap-
proach is its ability to generate synthetic data based on a generic forward model
that is used to train and evaluate the neural network. This data driven approach
can alleviate lengthy experimental calibrations that were needed before.
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